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Abstract

Mathematical programming under multiple objectives has emerged as
a powerful tool to assist in the process of searching for decisions which
best satisfy a multitude of conflicting objectives. In multiobjective linear
programming problems it is usually impossible to optimize all objectives
in a given system. Trade-offs are properties of inadequately designed
system a thus can be eliminated through designing better one. Multi-
objective De Novo linear programming is problem for designing optimal
system by reshaping the feasible set. The paper presents approaches for
solving the MODNLP problem, extensions of the problem, examples, and
applications.
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1 Introduction

Traditional concepts of optimality focus on valuation of already given sys-
tems. New concept of designing optimal systems is applied (Zeleny [7]). Multi-
objective linear programming (MOLP) is a model of optimizing a given system
by multiple objectives. In MOLP problems it is usually impossible to opti-
mize all objectives together in a given system. Trade-off means that one cannot
increase the level of satisfaction for an objective without decreasing this for an-
other objective. Trade-offs are properties of inadequately designed system and
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thus can be eliminated through designing better one. The purpose is not to mea-
sure and evaluate tradeoffs, but to minimize or even eliminate them. An optimal
system should be tradeoff-free. As a methodology of optimal system design can
be employed De Novo programming for reshaping feasible sets in linear systems.
De Novo concept was introduced by Milan Zelený (see [5]). Basic concepts of
the De Novo optimization are summarized. The paper presents approaches for
solving the Multi-objective De Novo linear programming (MODNLP) problem,
possible extensions, methodological and real applications, and an illustrative
example. The approach is based on reformulation of MOLP problem by given
prices of resources and the given budget. Searching for meta-optimum with
a minimal budget is used. The instrument of optimum-path ratio is used for
achieving the best performance for a given budget. Searching for a better port-
folio of resources leads to a continuous reconfiguration and reshaping of systems
boundaries. Innovations bring improvements to the desired objectives and the
better utilization of available resources.

2 Multi-objective linear programming problem

Multi-objective linear programming (MOLP) problem can be described as fol-
lows

Max z = Cx

s.t. Ax ≤ b (1)

x ≥ 0

where C is a (k, n)-matrix of objective coefficients, A is a (m,n)-matrix of
structural coefficients, b is an m-vector of known resource restrictions, x is an
n-vector of decision variables. In MOLP problems it is usually impossible to
optimize all objectives in a given system. Trade-off means that one cannot
increase the level of satisfaction for an objective without decreasing this for
another objective. For multi-objective programming problems the concept of
non-dominated solutions is used. (see for example Fiala [2]). A compromise
solution is selected from the set of non-dominated solutions. Two subjects
Decision Maker and Analyst are introduced.
Classification of methods for solution of MOLP problems according to infor-

mation mode:
• Methods with a priori information.
Decision Maker provides global preference information (weights, utility, goal

values, . . . ). Analyst solves a single objective problem.
• Methods with progressive information—interactive methods.
Decision Maker provides local preference information. Analyst solves local

problems and provides current solutions.
• Methods with a posteriori information.
Analyst provides a non-dominated set. Decision Maker provides global pref-

erence information on the non-dominated set. Analyst solves a single objective
problem.



Multiobjective De Novo linear programming 31

There are proposed many methods from these categories. Most of the meth-
ods are based on trade-offs. The next part is devoted to the trade-off free
approach.

3 Multi-objective De Novo linear programming problem

Multi-objective De Novo linear programming (MODNLP) is problem for design-
ing optimal system by reshaping the feasible set. By given prices of resources
and the given budget the MOLP problem (1) is reformulated in the MODNLP
problem (2)

Max z = Cx

s.t. Ax− b ≤ 0

pb ≤ B

x ≥ 0

(2)

where b is an m-vector of unknown resource restrictions, p is an m-vector of
resource prices, and B is the given total available budget.
From (2) follows

pAx ≤ pb ≤ B.

Defining n-vector of unit cost v = pA we can rewrite problem (2) as

Max z = Cx

s.t. vx ≤ B (3)

x ≥ 0

Solving single objective problems

Max zi = Cix i = 1, 2, . . . , k

s.t. vx ≤ B (4)

x ≥ 0

z∗ is k-vector of objective values for the ideal system with respect to B.
The problems (4) are continuous “knapsack” problems, the solutions are

xj
i =

{
0 j �= ji

B/vji j = ji

where ji ∈ {j ∈ (1, . . . , n) | maxj(c
i
j/vj)}.

The meta-optimum problem can be formulated as follows

Min f = vx

s.t. Cx ≥ z∗ (5)

x ≥ 0
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Solving problem (5) provides solution:

x∗

B∗ = vx∗

b∗ = Ax∗

The value B∗ identifies the minimum budget to achieve z∗ through solution x∗

and b∗.

4 Optimum-path ratios

The given budget level B ≤ B∗. The optimumpath ratio for achieving the best
performance for a given budget B is defined as

r1 =
B

B∗ .

The optimum-path ratio provides an effective and fast tool for the efficient
optimal redesign of large-scale linear systems. Optimal system design for the
budget B:

x = r1x
∗, b = r1b

∗, z = r1z
∗

If the number of criteria k is less than that of variables n, we can individually
solve the problem and obtain synthetic solutions. Shi [4] defined the synthetic
optimal solution as follows x∗∗ = (x1

j1
, . . . , xk

jk
, 0, . . . , 0) ∈ Rn, where xq

jq
is the

optimal solution of (4). For the synthetic optimal solution a budget is used.
There is possible define six types of optimum-path ratios (Shi [4]):

r1 =
B

B∗ , r2 =
B

B∗∗ , r2 =
B∗

B∗∗ ,

r4 =

∑
i λiB

j
i

B
, r5 =

∑
i λiB

j
i

B∗ , r6 =

∑
i λiB

j
i

B∗∗ .

Optimum-path ratios are different. There is possible to establish different opti-
mal system design as options for decision maker.

5 Extensions

There are extension possibilities of De Novo programming (DNP):
• Fuzzy DNP.
• Interval DNP.
• Complex types of objective functions.
• Continuous innovations.
Fuzzy De Novo Programming (FDNP) uses instruments as fuzzy parameters,

fuzzy goals, fuzzy relations, and fuzzy approaches (Li and Lee [3]).
Inexact De Novo programming (IDNP) incorporates the interval program-

ming and de Novo programming, allowing uncertainties represented as intervals
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within the optimization framework. The IDNP approach has the advantages
in constructing optimal system design via an ideal system by introducing the
flexibility toward the available resources in the system constraints (Zhang et al.
[8]).
Complex types of objective functions are defined. The multi-objective form

of Max (cx - pb) appears to be the right function to be maximized in a globally
competitive economy (Zeleny [6]).
Searching for a better portfolio of resources leads to continuous reconfigura-

tion and “reshaping” of systems boundaries. Innovations bring improvements
to the desired objectives and the better utilization of available resources. The
technological innovation matrix T = (tij) is introduced. The elements in the
structural matrix A should be reduced by technological progress. T should
be continuously explored. The problem (2) is reformulated in to innovation
MODNLP problem (6)

Max z = Cx

s.t. TAx− b ≤ 0

pb ≤ B

x ≥ 0

(6)

The multi-objective optimization can be then seen as a dynamic process in
three time horizons:
1. short – term equilibrium:
• trade-off,
• operational thinking.

2. mid – term equilibrium:
• trade-off free,
• tactical thinking.

3. long – term equilibrium:
• beyond trade-off free,
• strategic thinking.

6 Applications

The tradeoffs-free decision making has a significant number of methodological
applications. All such applications have the tradeoffs-free alternative in com-
mon:

• Compromise programming minimize distance from the ideal point.
• Risk management—portfolio selection—tradeoffs between investment re-

turns and investment risk.
• Game theory – win-win solutions.
• Added value – value for the producer and value for the customer—both

must benefit.
There are real applications of De Novo approach. For example produc-

tion plan for a real production system is defined taking into account financial
constraints and given objective functions (Babic and Pavic [1]). The paper
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(Zhang et al. [8]) presents an Inexact DNP approach for the design of opti-
mal water-resources-management systems under uncertainty. Optimal supplies
of good-quality water are obtained in considering different revenue targets of
municipalindustrialagricultural competition under a given budget.

7 Illustrative example

The MOLP problem is formulated:

Max z1 = x1 + x2

Max z2 = x1 + 4x2

3x1 + 4x2 ≤ 60,

x1 + 3x2 ≤ 30,

x1 ≥ 0, x2 ≥ 0.

The MODNLP problem is formulated:
Input: p = (0.5, 0.4) B = 42,

unit costs v = pA = (1.9, 3.2).

Max zi = Cix i = 1, 2, . . . , k z∗1 = 22.11, z∗2 = 52.50,
s.t. vx ≤ B

x ≥ 0

Min f = vx x∗
1 = 11.98, x∗

2 = 10.13
s.t. Cx ≥ z∗ B∗ = vx∗ = 55.17

x ≥ 0 b∗ = Ax∗, b∗1 = 76.48, b∗2 = 42.39

r1 =
B

B∗ = 0.761

Optimal system design for B: x = r1x
∗, b = r1b

∗, z = r1z
∗,

x1 = 9.12, x2 = 7.71, b1 = 58.23, b2 = 32.25, z1 = 16.83, z2 = 39.96.

The innovation MODNLP problem is formulated:
Input: p = (0.5, 0.4) B = 42,

technological innovation matrix T =

[
0.8 0
0 0.7

]
,

unit costs v = pTA = (1.48, 2.44),
z∗1 = 28.38, z∗2 = 68.85,
x∗
1 = 14.89, x∗

2 = 13.49,
B∗ = vx∗ = 54.95,
r1 = 0.764,
x1 = 11.38, x2 = 10.31,
z1 = 21.69, z2 = 52.62.
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The solutions in different time horizons are represented in Fig. 1.
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Fig. 1. Solutions for the illustrative example

8 Conclusions

Traditional concepts of optimality focus on valuation of already given system.
New concepts of optimality are oriented on designing optimal systems. The
purpose is not to measure and evaluate tradeoffs, but to minimize or even elim-
inate them. An optimal system should be tradeoff-free. De Novo programming
is used as a methodology of optimal system design for reshaping feasible sets in
linear systems. MOLP problem is reformulated by given prices of resources and
the given budget. Searching for a better portfolio of resources leads to a con-
tinuous reconfiguration and reshaping of systems boundaries. Innovations bring
improvements to the desired objectives and the better utilization of available
resources. These changes can lead to beyond tradeoff-free solutions. Multi-
objective optimization can be taken as a dynamic process. De Novo program-
ming approach is open for further extensions and applications.
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