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Abstract

Highly robust statistical and econometric methods have been devel-
oped not only as a diagnostic tool for standard methods, but they can
be also used as self-standing methods for valid inference. Therefore the
robust methods need to be equipped by their own diagnostic tools. This
paper describes diagnostics for robust estimation of parameters in two
econometric models derived from the linear regression. Both methods are
special cases of the generalized method of moments estimator based on
implicit weighting of individual observations. This has the effect of down-
weighting less reliable observations and ensures a high robustness and low
sub-sample sensitivity of the methods. Firstly, for a robust regression
method efficient under heteroscedasticity we derive the Durbin–Watson
test of independence of random regression errors, which is based on the
approximation to the exact null distribution of the test statistic. Secondly
we study the asymptotic behavior of the Durbin–Watson test statistic for
the weighted instrumental variables estimator, which is a robust analogy
of the classical instrumental variables estimator.

Key words: robust regression, autocorrelated errors, heteroscedas-
tic regression, instrumental variables, least weighted squares
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1 Introduction

This paper is devoted to robust estimation in two recently proposed economet-
ric models. One method is a modification of the linear regression model taking
into account heteroscedasticity. The other method is the weighted instrumen-
tal variables estimator allowing to estimate parameters in the linear regression
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model under the assumption that certain instruments are available, which are
not a part of the explanatory equation but still can be exploited to improve the
estimation. For the robust version of Cragg’s (1983) approach to heteroscedas-
tic regression we propose the Durbin–Watson test of independence of random
regression errors against the alternative hypothesis of autocorrelation, which is
computed as an exact test. For the instrumental weighted variables estimator
we study an asymptotic approximation to the exact distribution of the Durbin–
Watson test statistic.
Fitting linear regression to noisy data is a very common task since all real

data are contaminated. The most usual estimation method in linear regression
is the least squares method, which is very vulnerable with respect to outliers.
Also it is suitable only for models with normally distributed random regression
errors. Therefore highly robust statistical methods have been developed with
the ability to detect outliers and the concept of the breakdown point has become
a crucial robustness criterion, which is a statistical measure of global sensitivity
against outliers in the data (see Jurečková and Picek, 2006). A popular estima-
tor is the least trimmed squares estimator proposed by Rousseeuw and Leroy
(1987), which has the maximal possible robustness in terms of the breakdown
point, but suffers from local shift-sensitivity to small deviations in the center of
data. Its weighted analogy is the least weighted squares regression proposed by
Víšek (2001), which will be defined in Section 2. It down-weights less reliable
observations and does not require to decide definitely if a particular observation
is an outlier or not.
Robust estimation in econometric modifications of the basic linear regres-

sion model has been studied only recently. Such robust methods are considered
reasonable which fulfill the requirements of accurate predictions, clear interpre-
tation, high robustness in terms of the breakdown point, stability and low bias
in parameter estimation or hypotheses testing. Sakata and White (2001) used
S-estimation in econometric nonlinear regression. Ortelli and Trojani (2005)
studied a robust version of the efficient method of moments, which is suitable for
time series in a general context including latent nonlinear dynamics. Gagliar-
dini et al. (2005) investigated test statistics based on the robust generalized
method of moments estimation. Víšek (2005) proposed the robust generalized
method of moments estimation and exploited the asymptotic theory of robust
estimators developed by Jurečková and Sen (1996).
The econometric methods of the current paper are robustifications of two

special cases of the generalized method of moments (GMM) estimator described
by Hansen (1982). This is a general tool for statistical estimation given by or-
thogonality conditions and is defined in a very abstract way for a general para-
metric situation allowing for over-identification, in other words for situations
with more conditions than parameters of the model. Wooldridge (2001) showed
the connection to the classical method of moments, so that the GMM estima-
tor can be defined by means of moment conditions. We consider such robust
versions, which are based on implicit weighting of individual observations. This
allows to down-weight less reliable observations.
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Section 2 of this paper recalls the least weighted squares estimator. The re-
maining parts of the paper assume the data to be observed in equidistant time
intervals. Section 3 recalls the Durbin–Watson test for the least squares. Al-
though the test in the classical implementation is inconclusive for certain values
of the test statistic below the lower and upper bounds for the critical value, we
explain how to approximate the exact critical value for any value of the test
statistic. Section 4 is devoted to robust regression efficient under heteroscedas-
ticity, for which the Durbin–Watson test statistic is examined and its exact null
distribution is approximated. Section 5 studies the weighted instrumental vari-
ables estimator based on the idea of the least weighted squares, for which we
propose an approximation to the exact null distribution of the Durbin–Watson
test statistic. Finally the conclusions of the paper are summarized in Section 6.

2 Least weighted squares regression

We consider the linear regression model

Yi = β1Xi1 + · · ·+ βpXip + ei, i = 1, . . . , n, (1)

which can be rewritten in the standard matrix notation as Y = Xβ + e. Here
the i-th row of X is the vector Xi = (Xi1, . . . , Xip)

T corresponding to the i-th
observation for i = 1, . . . , n.
The least weighted squares (LWS) regression estimates the regression pa-

rameters β = (β1, . . . , βp)
T in the linear regression model (1). It is a highly

robust regression method proposed by Víšek (2001). Its main idea of down-
weighting less reliable data points is the basis for the definition of two robust
econometric methods of Sections 4 and 5. The motivation for the LWS estima-
tor is to down-weight less reliable data points. This does not require to specify
if particular observations are outliers or not. Nevertheless Rousseeuw and Leroy
(1987) documented that the outlier detection in the linear regression is a hard
problem. Before the actual computation of the estimator only the magnitudes
of nonnegative weights w1, w2, . . . , wn must be specified. One of possible choices
is to apply linearly decreasing weights

wL
i =

2(n− i+ 1)

n(n+ 1)
, i = 1, . . . , n, (2)

which fulfill
∑n

i=1 w
L
i = 1.

The weights are assigned to the data in an implicit way, namely after a per-
mutation, which is determined automatically only during the computation based
on the residuals

ui(b) = yi − b1Xi1 − · · · − bpXip, i = 1, . . . , n, (3)

corresponding to the estimate b = (b1, . . . , bp)
T ∈ Rp of the parameter β. Let

us order the squared residuals

u2
(1)(b) ≤ u2

(2)(b) ≤ · · · ≤ u2
(n)(b). (4)
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The LWS estimator of β is defined as

argmin

n∑
i=1

wiu
2
(i)(b) (5)

over b ∈ Rp.
Čížek (2008) proposed an alternative two-stage procedure for computing

data-dependent adaptive weights for the least weighted squares estimator and
studied its robustness properties, which turn out to depend on the choice of
the weights. The procedure allows to find automatically also the sizes of the
weights based on comparing the empirical distribution function of squared resid-
uals with the theoretical distribution function under normality. Such approach
yields a high breakdown point combined with a high efficiency of the estimator.
Concerning the computation of the LWS estimator, a weighted analogy of the
approximative algorithm of Rousseeuw and van Driessen (2006) gives a tight
approximation to the true value of the estimate.
The least trimmed squares (LTS) estimator proposed by Rousseeuw and

Leroy (1987) represents a special case of the least weighted squares with weights
equal either to zero or one. The LTS estimator depends on the value of the
trimming constant h (n/2 < h < n), while it is required

∑n
i=1 wi = h. However

the LTS estimator is based on a hard-rejection rule, which needs to determine
if each particular observation is an outlier or not. The robustness of the LTS
was inspected by Hekimoglu et al. (2009).
The advantages of the LWS compared to the LTS include the availability

of diagnostic tools (Kalina, 2007), sub-sample robustness or more delicate ap-
proach for dealing with moderately outlying values. The LWS estimator does
not necessarily solve the outlier detection, although the problem can be solved
by comparing the outliers with a suitable robust estimate of the scale of the
errors e using the result of Vı́̌sek (2010). Also the correlation coefficient based
on the LWS outperforms that based on the LTS in the study of Kalina (2010)
analyzing two-dimensional grey-scale images of faces for genetic applications.

3 Durbin–Watson test for least squares

In the linear regression model (1) we assume the data to be observed as a time
series in equidistant time intervals. An intercept is not required in the model
although it may be present. This work discusses the assumption of independence
of the errors e and its violation. Autocorrelation of the errors e can lead to an
inefficient estimator b of the regression parameters β and biased estimation
of varb and invalid confidence intervals and tests for β. Also the value of the
coefficient of determination R2 is typically over-estimated if the disturbances are
autocorrelated (see Greene, 2002). Therefore we study the Durbin–Watson test
proposed in the papers by Durbin and Watson (1950, 1951) for independence
of the errors e against the alternative hypothesis of their autocorrelation.
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Let us use the notation In for the unit matrix of size n × n, let us define
the matrixM by M = In −X(XTX)−1XT and the matrix A of size n× n by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

. . .
. . .
. . .

−1 2 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Durbin and Watson (1950, 1951) proposed the test of autocorrelation of er-
rors for model (1). The one-sided test considers the null hypothesis of in-
dependent errors e against the alternative of positive autocorrelation of the
first order. Denoting the vector of residuals of the least squares regression by
u = (u1, . . . , un)

T , the one-sided test rejects H0 for small values of the test
statistic, which can be expressed as

d =

∑n
t=2(ut − ut−1)

2∑n
t=1 u

2
t

=
uTAu

uTu
=

eTMAMe

eTMe
. (7)

There are three possibilities how to carry out the Durbin–Watson test as a
diagnostic tool of the least squares estimator.

1. Compare the test statistic with the lower and upper bounds for the critical
values. The tables were created by Durbin and Watson (1950, 1951), who
assumed the normal distribution of the errors e and the presence of an
intercept in the model (1). The skeleton decomposition ofM allowed them
to use the theorem of Poincaré to find such lower and upper bounds for the
critical value which do not depend on X. The test remains inconclusive,
if the test statistic lies between the lower and upper bounds.

2. Farebrother (1980) proposed an approximative algorithm for the critical
value, which assumes the intercept in the model (1).

3. The exact p-value or the exact critical value can be approximated (with
an arbitrary precision) for any value of the test statistic and without the
assumption of an intercept in the model (1). Just like Durbin and Watson
(1950, 1951) it can be assumed that e come from the normal distribution
with zero expectation. By repeated simulating of E = (E1, . . . , En−p)

T ∼
N(0,In−p), the exact p-value of the test against the one-sided alternative
can be approximated by the empirical probability

P

[
d ≤ ETMAME

ETME

]
. (8)

Because (7) is scale-invariant, the unit variance matrix of E is valid with-
out loss of generality.

A numerical illustration of the third option is given by Kalina (2007).



60 Jan Kalina

4 Robust regression efficient under heteroscedasticity

Cragg (1983) proposed a modification of the least squares regression, which
is efficient also under heteroscedasticity. Let us consider the linear regression
model in the form (1). Even under heteroscedasticity the estimation using
Cragg’s transformation is reliable and it is possible to estimate β and its vari-
ance without testing whether the heteroscedasticity is present in the model (1).
A robust version was proposed by Víšek (2005), which is based on the idea of
down-weighting less reliable observations. Kalina (2011) suggested an alterna-
tive proposal, which is robust with respect to outliers both in the response and
the regressors. This approach is studied in this section and we supplement the
method with the Durbin–Watson test.
The idea of Cragg’s approach is to use some auxiliary variables which could

contribute to explaining the variability of the errors e, typically squares of all
independent variables from (1) and also products in the form XiXj for i �= j,
where i, j = 1, . . . , n. Therefore we work with the matrix Q consisting of all
columns of X and the auxiliary variables as additional columns. The model (1)
is transformed to

QTY = QTXβ +QT e, (9)

where the regression parameters can be obtained using the least squares estima-
tion. Let us estimate the variance matrix of the errors e by the diagonal matrix
Ŝ containing squares of residuals. The generalized least squares estimator of
Aitken (1935) of the regression parameters β in (9) equals

b = (X∗TV∗−1X∗)−1X∗TV∗−1Y∗, (10)

where X∗ = QTX, Y∗ = QTY and V∗ = var (QT e) can be approximated by
QT ŜQ. Finally an estimator of varb is obtained by

v̂arb =
(
XTQ(QT ŜQ)−1QTX

)−1

. (11)

The robust version of Cragg’s approach based on implicit weighting replaces
the transformation (9) of the model (1) by

QTWY = QTWXβ +QTWe, (12)

where W is a weight matrix with weights determined by the least weighted
squares in the original model (1). We assume the weights to be strictly positive
in order for the following expressions to be correctly defined.

Definition 1 (Robust Cragg’s estimator) The method can be described as
a two-stage estimator:

1. The least weighted squares regression is used in the model (1). The ma-
tricesW and Ŝ1 are obtained.
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2. Computing X∗ = QTWX and Y∗ = QTWY, the estimator of β in (12)
is obtained as (10) with V∗ is replaced by var (QTWe), which is estimated
by V̂∗ = QTWŜ1WQ. The matrix varb is approximated by

v̂arb = (X∗T V̂∗−1X∗)−1. (13)

For this robust version of Cragg’s approach we derive the Durbin–Watson
test. We assume the model (1) with normal errors and equal variances and the
data are assumed to be observed in equidistant time intervals. We compute
the Durbin–Watson statistic with weighted residuals of the weighted regression√
v1u1, . . . ,

√
vnun, where v1, . . . , vn are diagonal elements of V̂∗. The corre-

sponding residuals will be denoted by uRC to stress that they come from the
robust Cragg’s fit as

uRC = Y −X∗(X∗T V̂∗−1X∗)−1X∗T V̂∗−1Y∗ = MWY = MWe, (14)

where
MW = In −X∗(X∗T V̂∗−1X∗)−1X∗T V̂∗−1. (15)

Such test statistic has the form

uT
RCV̂

∗−1/2AV̂∗−1/2uRC

uT
RCV̂

∗−1uRC

(16)

and the following theorem describes the null distribution of this statistic.

Theorem 1 Let us denote positive eigenvalues of

V̂∗1/2MT
W V̂∗−1/2AV̂∗−1/2MW V̂∗1/2 (17)

by γ1, . . . , γn−p and positive eigenvalues of M∗ by λ1, . . . , λn−p. Then the fol-
lowing equation holds in distribution

uT
RCV̂

∗−1/2AV̂∗−1/2uRC

uT
RCV̂

∗−1uRC

D
=

∑n−p
i=1 γiE

2
i∑n−p

i=1 λiE2
i

(18)

for independent random variables E1, . . . , En−p with N(0, 1) distribution, where
D
= denotes equivalence in distribution.

Proof The matrix (17) is symmetric and positive definite of rank n− p. The
statistic (16) is scale-invariant. Let us apply the spectral decomposition (see
Rao, 1973) on the matrices in both the numerator and the denominator of
(16); the principle is to express any square matrix Z by the decomposition
Z = QTΛQ−1, where Λ is a diagonal matrix and the columns of Q are the
eigenvectors of Z. As a result of the decomposition and the general result of
Kalina (2007), following the steps of Durbin and Watson (1950, 1951) we obtain
the statement of the theorem. �
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Theorem 1 can be used to approximate the exact p-value or the exact critical
value with an arbitrary precision based on simulating E = (E1, . . . , En−p)

T ∼
N(0,In−p) in analogy to the least squares (Section 3). The approximative test
is based on approximation to the exact null distribution of the test statistic,
which depends on the weights and also the design matrix X. The p-value of
the Durbin–Watson test for the least weighted squares against the one-sided
alternative of positive autocorrelation based on (16) assuming normal errors is
equal to the probability

P

[∑n−p
i=1 γiE

2
i∑n−p

i=1 λiE2
i

≤ uT
RCV̂

∗−1/2AV̂∗−1/2uRC

uT
RCV̂

∗−1uRC

]
(19)

with E1, . . . , En−p, γ1, . . . , γn−p and λ1, . . . , λn−p defined in Theorem 1.
The test does not require an intercept in the model and can be used for any

value of the test statistic. Numerical examples show that 1000 simulations yield
very reliable results with standard deviations less than 0.01. Similar results
were observed by Kalina (2007) for the Durbin–Watson test for various robust
regression methods. From the computational point of view there should be no
problem with computing the eigenvalues also for larger data sets, because the
QR decomposition (see Rao, 1973) can be exploited.

Table 1: Data.

Time 1 2 3 4 5 6 7 8 9 10
Regressor 6.2 8.1 10.3 12.1 14.1 16.4 18.2 20.1 22.3 24.1
Response 6.1 8.0 10.3 12.1 13.1 14.8 17.9 19.8 19.9 21.6

11 12 13 14 15 16 17 18 19 20
26.1 28.3 30.1 32.3 34.5 36.6 38.0 40.2 42.3 44.7
25.5 25.0 29.3 31.2 33.1 31.8 33.5 38.8 40.7 38.6

Example 1 We illustrate using the Durbin–Watson test as a diagnostic tool
for the robust version of the Cragg’s approach to heteroscedastic regression. We
assume the time series of 20 measurements in equidistant time intervals. The
data are described by Maddala (1988) as expenditures data and are examined
also by Kalina (2011).
The least squares estimate of β is b = (0.847, 0.899)T with standard errors

(0.703, 0.025)T , which are overestimated due to heteroscedasticity. The Durbin–
Watson test statistic is equal to 2.06 and the p-value against the alternative
hypothesis of positive autocorrelation equals 0.453. The LWS estimator with
Čížek’s (2008) adaptive weights estimates β by bLWS = (0.691, 0.904)T . This
regression line is very close to the least squares regression line. The asymptotic
standard errors of bLWS are (0.704, 0.904)T .
We use Cragg’s approach for the least squares with the square of the income

as auxiliary variable contained in the matrix Q. The regression parameters are
estimated by (0.628, 0.910)T with standard errors (0.298, 0.020)T . The estimate
of β is very similar to the classical least squares, while there is reduction in
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the variability. The new estimate of β is therefore more accurate than the
classical estimate, which is deceived by heteroscedasticity. The robust Cragg’s
approach with the square of the income as auxiliary variable and with data-
adaptive weights gives the estimate of β equal to (0.645, 0.906)T . The weights
turn out to be strictly positive. The standard errors given by (13) are equal to
(0.047, 0.0003)T , where the improvement is remarkable compared to asymptotic
variance for the least weighted squares. The Durbin–Watson statistic computed
with the residuals of this robust Cragg’s approach is equal to 2.74, which yields
the p-value equal to 0.597. Therefore the test does not the reject the null
hypothesis of independence of the errors e in the model (1).

5 Diagnostics for weighted instrumental variables
estimator

The instrumental variables estimator is a popular estimation method in econo-
metrics. In the model (1) it is assumed that the random regression errors e
are not uncorrelated with independent variables, while there is a total number
l (l ≥ p) of instrumental variables available. We start by recalling the classical
instrumental variables estimator, then we focus on the robust version of Vı́̌sek
(2006) called instrumental weighted variables estimator and derive the asymp-
totic Durbin–Watson test of independence of the errors e.
In our notation Zi = (Zi1, Zi2, . . . , Zil)

T , i = 1, . . . , n, denotes the vector of
values of the instruments corresponding to the i−th observation and the matrix
Z contains these values using the notation Z = (Zij)ij . As in Greene (2002) let

us assume that ZT e/n
P→ 0 and that ZTX/n converges in probability to a finite

regular matrix. These properties explain the motivation for using the instru-
ments. The instrumental variables estimator is defined in the following form as
a two-stage estimator of β in the model (1), although there exist more general
approaches, which allow to find the estimator as a solution of an optimization
criterion incorporating orthogonality conditions; see for example Hansen (1982).

1. The projected regressor X̂ is computed as the projection

X̂ = Z(ZTZ)−1ZTX

of the independent variables on the space of the instruments.

2. The regression parameters β are estimated by

bIV = (X̂T X̂)−1X̂TY,

which is the least squares estimator of the response against the projected
variables X̂.

The fitted values of the response in the model (1) are computed as Ŷ =
XbIV and the resulting estimator bIV is used as estimator of β in the original
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model (1). The special case l = p allows to obtain an explicit solution for esti-
mating the parameters β as bIV = (ZTX)−1ZTY, which is equal to the solution
obtained by the two-stage approach. However if there are less instruments than
regressors, then it is often possible to include some of the regressors to the set
of instruments so that the advantages of l = p can be exploited.
We describe the Durbin–Watson test for the residuals

uIV = Y −X(ZTX)−1ZTY

of the instrumental variables estimator for the special case l = p. Let us denote
the mean of these residuals as ūIV . In the following text we denote vectors of
constants in bold face, such as ūIV . The statistic

(uIV − ūIV )
TA(uIV − ūIV )/(uIV − ūIV )

T (uIV − ūIV ) (20)

with the matrix A defined by (6) is equal to

eTM̃TAM̃e/eTM̃TM̃e, (21)

where M̃ = In −X(ZTX)−1ZT .
The instrumental variables estimator is highly sensitive to outliers, because

it is based on the least squares estimation procedure. Víšek (2006) proposed
a robust version of the instrumental variables estimator called instrumental
weighted variables (IWV) estimator and examined its robustness properties, its
consistency and asymptotic normality for the special case l = p and also pro-
posed an approximative algorithm for the computation of the IWV estimator.
The estimator down-weights observations in the response, regressors and also
instruments. Another approach to robustification of instrumental variables es-
timation based on S-estimators of multivariate location and scatter is described
by Cohen–Freue (2011).
Now we propose the asymptotic Durbin–Watson test for the IWV estimator

for data observed in equidistant time intervals. Let us denote the empirical
distribution function of the absolute values of residuals for any fixed value of
the estimator b of β by Fn

b (·). Let us choose a nonincreasing continuous weight
function w : [0, 1] → [0, 1], which determines the sizes of the weights. For a
fixed n, the sizes of the weights wi are obtained as wi = w

(
i−1
n

) − w
(
i
n

)
for

i = 1, . . . , n. The instrumental weighted variables estimator is defined by the
system of equations

n∑
i=1

w (Fn
b (|ui(b)|))Zi(Yi − b1Xi1 − · · · − bpXip) = 0. (22)

We use the notation Fβ for the distribution function of the errors e with
the particular vector β of values of the regression parameters and let us further
denote

Q = E
[
w(Fβ(|e1|))Z1X

T
1

]
. (23)
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Vı́̌sek (2006) proved the asymptotic representation of bIWV for l = p under
general assumptions, which will be further denoted as Assumptions A, in the
form

√
n (bIWV − β) = − 1√

n
Q−1

n∑
i=1

w(Fβ(|ei|))Ziei + η, (24)

where coordinates of η are of order oP (1). Based on the asymptotic represen-
tation for the IWV estimator, we can express the residuals uIWV of the IWV
estimator as

uIWV = Y −XbIWV = e+
1

n
XQ−1

n∑
i=1

w(Fβ(|ei|))Ziei +
1√
n
Xη (25)

and their mean will be denoted by ūIWV . The asymptotic Durbin–Watson test
for the IWV estimator is based on the following theorem, which uses residuals
of the IWV estimator for the computation. The technical Assumptions A of
Víšek (2006) are considered.

Theorem 2 Assuming l = p, the test statistic

dIWV = (uIWV − ūIWV )
TA(uIWV − ūIWV )/(uIWV − ūIWV )

T (uIWV − ūIWV )
(26)

is asymptotically equivalent in probability with (21) under Assumptions A.
Proof Modification of the result of Kalina (2007), by considering the more
delicate approximation of (26) in the form

(κ− κ̄)TA(κ− κ̄)/(κ− κ̄)T (κ− κ̄) (27)

with κ = e+ 1
nXQ−1

∑n
i=1 w(Fβ(|ei|))Ziei. �

The computation of the Durbin–Watson test for the residuals of the in-
strumental weighted variables estimator can exploit Theorem 2, which gives an
asymptotic approximation to the exact null distribution of the test statistic (26).
For the computation we recommend to generate random vectors E 1000 times
following normal distribution with zero expectation and unit variance matrix
just like in Section 3. The asymptotic p-value of the test is obtained as the
empirical probability

P

[
dIWV ≤ ETM̃TAM̃E

ETM̃TM̃E

]
(28)

comparing the test statistic (20) with the test statistic evaluated with random
vectors E.

6 Conclusion

This work fills the gap of diagnostic testing theory in robust econometrics. Ro-
bust methods were originally proposed as diagnostic tools for standard meth-
ods of statistics and econometrics. Modern robust methods attain a high ef-
ficiency, which makes them appropriate for self-standing using without being
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accompanied by the standard (non-robust) counterparts. Such robust methods
require to be supplemented by their own diagnostic tools. The arguments in
favor of the least weighted squares estimator were published by Víšek (2001)
or Kalina (2007). Here we investigate the robustification of Cragg’s approach
to heteroscedastic regression and instrumental weighted variables. Both robust
methods have not been supplemented by any diagnostic tools so far.
The Durbin–Watson test is a standard test of autocorrelation of errors in

the linear regression model and this paper studies the classical Durbin–Watson
test statistic for two robust econometric models, which are based on the idea of
implicit weighting of the data allowing to down-weight less reliable data points.
In both cases it turns out that the null distribution of the test statistic can be
approximated by the exact null distribution in a classical case. The computation
of the p-value or the critical value of the test can be performed by a numerical
simulation in the same spirit as the classical Durbin–Watson test.
We point out that there is only a limited possibility to apply diagnostic

tests to robust methods based on trimming, such as the least trimmed squares
estimator. Here it would be difficult to find arguments in favor of using all
residuals in the test statistics, when some observations are trimmed away com-
pletely. Moreover certain methods, such as robust Cragg’s estimator, cannot
be applied at all because it requires strictly positive weights. Therefore the
weighting in the least weighted squares is not just a technical amendment, but
a crucial improvement over the popular least trimmed squares estimator, which
clarifies the interpretation and permits to introduce essential diagnostic tech-
niques. The Durbin–Watson test proposed for the econometric models of this
paper is computationally elegant and can be evaluated as a natural extension
of the classical Durbin–Watson test to new robust regression models.
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