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Abstract

This paper deals with the hypotheses of symmetry of distributions
with respect to a location parameter when the response variables are sub-
ject to measurement errors. Rank tests of hypotheses about the location
parameter and the related R-estimators are studied in an asymptotic set
up. It is shown, when and under what conditions, these rank tests and
R-estimators can be used effectively, and the effect of measurement er-
rors on the power of the test and on the efficiency of the R-estimators is
indicated.
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1 Introduction

In practice we often need to test the hypothesis that a new treatment is better
than the current, or that older twin has different properties than younger, or
the left eye can see sharper than the right one. In all these situations we use
one-sample test of symmetry. The basic idea of this test is that we observe
the difference of two treatments, between younger and older twins, between left
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and right eye and suppose that its distribution is symmetric around Δ and test
whether Δ = 0. We may also be interested in the point and interval estimation
of the location parameter Δ.
If we know that the distribution of the differences is normal, then it is logical

that, for the test of hypotheses, we use the classical paired t-test, and for the
point and interval estimator of the location parameter, we use the sample mean
and student’s t-confidence interval respectively. But often, this condition is not
satisfied because of the nature of experiment and possible measurement errors
that creep into the measuring instruments. For this situation we take recourse
to nonparametric methods, which are the subject matter of this paper and we
consider rank tests and rank estimators. One main feature of nonparametric
methods is that it needs only a weak set of assumptions for its validity together
with the robustness and high efficiency characteristics, relative to the parametric
methods.
In many practical situations, the response variable of interest may not be

obtainable accurately, instead they are effected by additive measurement errors.
In this situation, parametric methods may not be suitable due to the absence
of the knowledge of exact distributions of the measurement errors except for
the restrictive assumption of normality of distributions. In this case, the rank
tests and estimation may lead us to easy, simple and accessible solution to this
problem. The immense growth of parametric methods during the last century
left a vacuum for the nonparametric methods for the measurement error models
so described until recently. The first set of articles on rank tests on regression
model with measurement errors is due to Jurečková et al. [1], [2], [4] and Navrátil
[8] and first set of articles on R-estimation is due to Saleh et al. [9], [10].

2 Rank tests of symmetry

Let X1, . . . , Xn be independent identically distributed (i.i.d.) random variables
with an unknown continuous distribution function F (x − Δ) and continuous
density f(x−Δ), where f is symmetric around zero and has finite Fisher infor-
mation I(f) (these conditions will be assumed in the whole article). We want
to test the hypothesis H0 : Δ = 0 against the alternative Δ > 0. The following
theoretical results are summarizing existing results about this problem; hence
the respective proofs are omitted, inquisitive reader may find them in books [6],
[7], where there are described in detail with some additional comments. The
locally most powerful rank test of hypothesis H0 has the critical region (see [6,
p. 74])

n∑
i=1

ã+n (R
+
i , f) sign(Xi) ≥ kα,

where kα is determined so that the significance level of the test is α and R
+
i are

the ranks of |Xi| among |X1|, . . . , |Xn| and the scores ã+n (i, f) have form

ã+n (i, f) = Eϕ̃+(U(i), f), ϕ̃+(u, f) = ϕ̃

(
u+ 1

2
, f

)
, 0 < u < 1,



Rank tests of symmetry and R-estimation of location parameter 97

where

ϕ̃(u, f) = −f ′(F−1(u))

f(F−1(u))
, 0 < u < 1

and U(1) ≤ . . . ≤ U(n) are the order statistics of a set of independent r.v.
U1, . . . , Un, each uniformly distributed over interval (0,1). The problem is, that
we do not know the distribution of Xi – that is the reason why we use the rank
tests. The other difficulty is to compute exact value of the scores ã+n (i, f). Hence

we use the approximate scores a+n (i) = ϕ+
(

i
n+1

)
, where ϕ+(u) = ϕ

(
u+1
2

)
and

ϕ is a nondecreasing, square integrable function on (0, 1) and finally denote

Sn =
n∑

i=1

a+n (R
+
i ) sign(Xi).

The exact distribution under null hypothesis is distribution-free and it is
derived in detail in the book [7, p. 124–125], the asymptotic normality of Sn

is proven in [6, p. 197–199], more precisely: Under the assumptions mentioned
above and under H0 statistic Sn is asymptotically normal with 0 mean and
variance σ2

n = nA2(ϕ+), where A2(ϕ+) =
∫ 1

0
[ϕ+(u)]2du, while under the local

alternative Kn : Δ = Δ∗√
n
, where Δ∗ �= 0 is fixed, Sn is asymptotically normal

with mean μn and variance σ2
n, where

μn =
√
nΔ∗γ(ϕ+, f), with γ(ϕ+, f) =

∫ 1

0

ϕ+(u)ϕ̃+(u, f)du.

As being mentioned in the Introduction this procedure is mainly used for
testing homogeneity in two populations. For example, we want to compare two
treatments—we divide experimental objects into n homogeneous pairs (to ex-
clude effects due to the inhomogeneity of the data) and apply the new treatment
to one unit of the pair while the other one is control. Denote Z1, . . . , Zn control
observations and Y1, . . . , Yn treatment observations and define Xi = Yi −Zi for
i = 1, . . . , n and assume that the assumptions above hold. Testing hypothesis
H0 in this case is equivalent testing if there is no effect of the new treatment,
while the alternative Δ > 0 means the positive effect of the new treatment.

3 Rank tests of symmetry with additive measurement
errors

Now suppose that we observe instead of Xi random variables Wi = Xi + Vi,
i = 1, . . . , n, where Vi are i.i.d. random variables independent on X1, . . . , Xn

with an unknown continuous density g(v) symmetric around 0 with finite Fisher
information. We still want to test the hypothesis H0 : Δ = 0 which corresponds
to the distribution of Xi, but these are not observable. Analogously as in the
previous section define

S̃n =
n∑

i=1

a+n (R̃
+
i ) sign(Wi),

where R̃+
i are the ranks of |Wi| among |W1|, . . . , |Wn|.
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Denote h(w) =
∫∞
−∞ f(w−v)g(v)dv density of Wi. Immediately this density

is symmetric around Δ, particularly under null hypothesis h(w) is symmetric
around zero, hence the exact distribution of S̃n is the same as the distribution of
Sn in model without measurement errors, as well as the asymptotic distribution
is also normal with mean 0 and variance σ2

n. It means that if we use the critical
region for the test without measurement errors for the case with measurement
errors, we get the same size α.
However, the distribution of S̃n under Kn is slightly different, it is asymp-

totically normal with mean μ̃n =
√
nΔ∗γ(ϕ+, h) and variance σ2

n, asymptotic
relative efficiency (ARE) of this test in measurement errors model relative to
the same test in model without measurement errors is (ratio of respective non-
centrality parameters):

ARE(S̃n, Sn) =

(
μ̃n

μn

)2

=
γ2(ϕ+, h)

γ2(ϕ+, f)
=

⎛
⎝

∫ 1
1
2
ϕ(u)ϕ(u, h)du∫ 1

1
2
ϕ(u)ϕ(u, f)du

⎞
⎠

2

.

Note that the number ARE(S̃n, Sn) · n can be interpreted (Pitman’s interpre-
tation of ARE) as a number of observations which we would need for reaching
asymptotic the same power as by using the same test in the case without mea-
surement errors.
The following example is an exercise in the book [7, p. 126], but the original

data are from the article [11].

Example 1 In a study of the comparative tensile strength of tape-closed and
sutured wounds, the following results were obtained on 10 rats, 40 days after
incisions made on their backs had been closed by suture or by surgical tape.
Results are summarised in the table 4.

Rat 1 2 3 4 5 6 7 8 9 10
Tape 659 984 397 574 447 479 676 761 647 577
Suture 452 587 460 787 351 277 234 516 577 513
Difference 207 397 −63 −213 96 202 442 245 70 64

Table 4: Comparative tensile strength (lb. per sq. in.) of tape-closed and sutured
wounds of rats.

We test the hypothesis of no difference between tape-closed and sutured
wounds against the alternative that the tape-closed wounds are stronger. We
illustrate it by the Wilcoxon scores ϕ(u) = u − 1/2. As the sample size is
small (n = 10), we use the exact distribution of Sn. The p-value of this test
is 0.0244—at the level of significance α = 0.05 we reject the hypothesis of no
difference between this two treatments.
Now suppose that we observe the differences of both treatments with a mea-

surement error. We make 10 000 replications, every time we contaminate the
original data with random errors and compute respective p-value. Finally we
estimate the p-value as the mean of p-values of these 10 000 replications (the
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p-value is the probability of obtaining a test statistic at least as extreme as the
one that was actually observed). Results are summarised in the table 5 (N(0, b)
stands for the normal distribution with variance b, U is uniform and C(0, b) is
Cauchy with scale parameter b).

Error 0 N(0,100) N(0,400) U(−30,30) C(0,5) C(0,20)
p-value 0.0244 0.0271 0.0285 0.0283 0.0346 0.0564

Table 5: Effect of the measurement errors on p-value of Wilcoxon signed-rank
test.

We can see that the measurement errors increase the p-value and even errors
with large variance may mask effect of the new treatment, so that we would not
reject the hypothesis H0.

Now suppose that the measurement errors Vi are symmetric around Δ0 �= 0.
This case corresponds to the situation where the measurement is affected by a
systematic error (for example caused by wrong calibration, or by human factor).
If we use the classical test based on S̃n and the critical value for the test

without measurement errors (we ignore the measurement errors) in this situa-
tion, the probability of error of the first kind will be no longer α (it can increase
or decrease). The asymptotic probability of error of the first kind of the test is

α∗ = 1− Φ

(
Φ−1(1− α)− μn(Δ0)

σn

)
,

with μn(Δ0) = nΔ0γ(ϕ
+, h) and Φ(x) standard normal distribution function.

From the previous formula we can see that if Δ0 < 0, then α∗ < α (the real
value is lower than prescribed) and if Δ0 > 0, then α∗ > α (the real value is
greater than prescribed). For the opposite alternative Δ < 0 is the situation
symmetric and for the both-sided alternative the real value is always greater
than prescribed.

4 R-estimates of location parameter

Let us start with the model without measurement errors: Let X1, . . . , Xn be
i.i.d. random variables with an unknown continuous distribution function
F (x−Δ) and continuous density f(x−Δ), where f is symmetric around zero.
Moreover, suppose that Xi have finite variance and finite Fisher information
I(f). We want to estimate the location parameter Δ. Again, as in Section 2 the
following theoretical results are summarizing existing results about R-estimates
in location model; detailed proofs may be found in books [3], [5].
Now, define

Sn(t) =

n∑
i=1

a+n (R
+
i (t)) sign(Xi − t),

where R+
i (t) are the ranks of |Xi − t| among |X1 − t|, . . . , |Xn − t| and the

approximate scores a+n (i) are defined the same way as in Section 2. As an
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estimator of Δ it is proposed the value of t which solves the equation Sn(t) = 0.
As Sn(t) is discontinuous, such an equation may have no solution; then we define
the R-estimator as

Δ̂
(R)
n,(X) = Δ̂(R)

n =
1

2
[sup{t : Sn(t) > 0}+ inf{t : Sn(t) < 0}] .

In general, the value of Δ̂(R)
n cannot be expressed by some formula, that’s

why we have to use some numerical method for finding Δ̂
(R)
n , but for special

choices of the scores a+n we can get the accurate expression. If a
+
n (i) = 1 for all

i = 1, . . . , n, then

Δ̂(R)
n = Δ̂(med)

n = med{X1, · · · , Xn}

and if a+n (i) =
i

n+1 we have

Δ̂(R)
n = Δ̂(H−L)

n = med

{
Xi +Xj

2
, 1 ≤ i ≤ j ≤ n

}

(Hodges–Lehmann estimator).
Under assumptions mentioned above from asymptotic representation for

Δ̂
(R)
n (see [5, p. 244]) we get the asymptotic distribution of Δ̂(R)

n :

√
n(Δ̂(R)

n −Δ)
d→ N

(
0,

A2(ϕ+)

γ2(ϕ+, f)

)
.

Hence we can also express the asymptotic confidence interval for Δ, this
confidence interval has one disadvantage – we do not know the density f . For
practical computations it is necessary to estimate it. Anyway, it also exists
another approach based on the distribution of Sn(t). Let Cn,α be the smallest
value for which following inequality holds

PH0
(|Sn(0)| ≤ Cn,α) ≥ 1− α.

We can compute Cn,α from the exact distribution of Sn, or we can use the
asymptotic normal approximation mentioned in Section 2. Hence we get

Cn,α ∼ √
nA(ϕ+)Φ−1(1− α/2).

And finally define the confidence interval
(
Δ̂

(R)
L,n, Δ̂

(R)
U,n

)
:

Δ̂
(R)
L,n =

1

2
[sup{t : Sn(t) > Cn,α}+ inf{t : Sn(t) < Cn,α}] ,

Δ̂
(R)
U,n =

1

2
[sup{t : Sn(t) > −Cn,α}+ inf{t : Sn(t) < −Cn,α}] .
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5 R-estimates of location parameter under additive mea-
surement errors

Now suppose that we observe instead of Xi random variables Wi = Xi + Vi,
i = 1, . . . , n, where Vi are i.i.d. random variables independent with X1, . . . , Xn

with an unknown continuous density g(v) symmetric around 0 with finite Fisher
information and finite variance. We still want to estimate the parameter Δ.
Recall that h(w) =

∫∞
−∞ f(w − v)g(v)dv is density of Wi.

Now, define

S̃n(t) =
n∑

i=1

a+n (R̃
+
i (t)) sign(Wi − t),

where R̃+
i (t) are the ranks of |Wi − t| among |W1 − t|, . . . , |Wn − t| and an

estimator of Δ is

Δ̂
(R)
n,(W ) =

1

2

[
sup{t : S̃n(t) > 0}+ inf{t : S̃n(t) < 0}

]
. (1)

From asymptotic representation for Δ̂(R)
n,(W ) (see [5, p. 244]) we get the asymp-

totic distribution of Δ̂(R)
n,(W ):

√
n(Δ̂

(R)
n,(W ) −Δ)

d→ N

(
0,

A2(ϕ+)

γ2(ϕ+, h)

)
.

It means that if we replace in formula for model without measurement errors
f with h or use the same setup for confidence interval for model without mea-
surement errors, we get the result for R-estimate in measurement errors model.
The ARE Δ̂

(R)
n,(W ) relative to Δ̂

(R)
n,(X) (R-estimate in model with measurement

errors relative to R-estimate in model without measurement errors) is

ARE
(
Δ̂

(R)
n,(W ), Δ̂

(R)
n,(X)

)
=

γ2(ϕ+, h)

γ2(ϕ+, f)
=

⎛
⎝

∫ 1
1
2
ϕ(u)ϕ(u, h)du∫ 1

1
2
ϕ(u)ϕ(u, f)du

⎞
⎠

2

.

Now suppose that the measurement errors Vi are symmetric around Δ0 �= 0.
Because of the form of Wi we cannot distinguish what part of Wi “belongs” to
Δ and what to Δ0. We try to consider the R-estimate given by the equation (1).

We have to realize that the estimate Δ̂(R)
n,(W ) does not estimate parameter Δ,

but Δ+Δ0, hence Δ̂
(R)
n,(W ) is not consistent estimate of Δ. Applying asymptotic

representation theorem for Δ̂(R)
n,(W ) we have

√
n(Δ̂

(R)
n,(W ) −Δ)

d→ N

(
Δ0,

A2(ϕ+)

γ2(ϕ+, h)

)
.

We have also made a simulation study to show how the estimates perform
for finite sample situation; because of its importance, it will be an object of a
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separate study. Anyway, we should mention at least some notes. We have com-
pared mean, median, Hodges–Lehmann estimator and the R-estimate based on
the score function ϕ(u) = Φ−1(u). The simulation study indicates that all con-
sidered estimators estimate parameter Δ approximately the same except from
the mean in heavy-tailed distributions. If the original distribution of Xi or the
distribution of errors Vi is heavy-tailed, then mean fails. Much more interest-
ing is the comparison of variances of R-estimates. It depends on the choice of
score function ϕ and the distributions of measurement errors. It increases with
increasing variance of measurement errors. Hodges–Lehmann estimator and
R-estimator based on normal scores attain the best accuracy for short-tailed
distributions, median attains the best accuracy for heavy-tailed distributions,
but in general we can say that Hodges–Lehmann estimator attains the best
accuracy among other estimates for any measurement errors. Anyway, if mea-
surement errors do not have large variance, the classical R-estimates (rank tests)
may be used quite effectively.
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