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Abstract

Data depth is an important concept of nonparametric approach to
multivariate data analysis. The main aim of the paper is to review possi-
ble applications of the data depth, including outlier detection, robust and
affine-equivariant estimates of location, rank tests for multivariate scale
difference, control charts for multivariate processes, and depth-based clas-
sifiers solving discrimination problem.
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1 Introduction

Data depth is an important concept of nonparametric approach to multivariate
data analysis. It provides one possible way of ordering the multivariate data.
We call this ordering a central-outward ordering. Basically, any function which
provides a “reasonable” central-outward ordering of points in multidimensional
space can be considered as a depth function. This vague understanding of the
notion of depth function led to the variety of depth functions, which have been
introduced ad hoc since 1970s. The formal definition of a depth function was
formulated by Zuo and Serfling in 2000 [8].
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The most widely used depth function is the halfspace depth function. The
halfspace depth of a point & in R? with respect to a probability measure P
is defined as the minimum probability mass carried by any closed halfspace
containing &, that is

D(#;P) = i%f {P(H): H a closed halfspace in RY: &€ H}.

The halfspace depth is sometimes called location depth or Tukey depth, as it
was first defined by Tukey in 1975 [7]. The halfspace depth is well defined for
all Z € R%. Tts sample version (empirical halfspace depth), defined on a random
sample )21, . ,)?n of the distribution P, is defined as the halfspace depth for
the empirical probability measure P,,. This definition is very intuitive and easily
interpretable. Moreover, there are many desirable properties of the halfspace
depth, which made this depth function very popular and widely used. In par-
ticular, the halfspace depth is affine invariant and has all the other desirable
properties stated in the general definition of depth function by Zuo and Serfling.

The notion of rank is crucial in many applications. Consider a d-dimensional
probability distribution P and a random sample X Tyeons ,Xn from this distribu-
tion. (The empirical probability measure based on the sample is again denoted
by P,). For any point # € R? we define

rp(%) = P(D(X; P) < D(& P) |X ~ P) (1)

and
rp, (F) = # {)@; D(X;;Py) < D(&Py), i=1,... n} /n. 2)

2 Outlier detection—a bagplot

Rousseeuw et al. [6] proposed a bivariate generalization of the univariate box-
plot, so called bagplot. They used the halfspace depth to order the data, but
other depth functions might be used as well. The bagplot consists of

e the deepest point (the point with maximal depth),

e the bag, that is the central area, which contains 50 % of all points; the
bag is usually dark colored,

e the fence, which is found by magnifying the bag by a factor 3; the fence is
usually not plotted; observations outside the fence are flagged as outliers,

e the loop, which is an area between the bag and the fence; usually light
coloured.

The bagplot procedure is available in R library aplpack. As an example, we
plot the bagplot of the car data of Chambers and Hastie that are available in
library rpart. Figure 1 displays car weight and engine displacement of 60 cars.
Five outliers were detected.
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Figure 1: An example of bagplot.

3 Affine-equivariant and robust estimates of location

Donoho and Gasko [1] have shown that two basic location estimators based on
the halfspace depth, the deepest point and the trimmed mean (with trimming
based on the halfspace depth), are both affine equivariant and robust (in the
sense of the high breakdown point). The combination of these two properties is
quite rare in multivariate statistics. The most important results are summarized
in the next theorem:

Theorem 1 Let )?1, e ,)?n be a sample determining empirical version P, of
an absolutely continuous distribution P on R?, with d > 2. Assume data be in
a general position (no ties, no more than two points on any line, three in any
plane, and so forth).

Consider the deepest point T.(P,) = argmaxzD(Z,P,) and a-trimmed
mean To(P,) = Ave(X;: D(X;; P,) > na), the average of all points whose
depth is at least na.

Denote 8 := argmaxgz D(&; P) (8 =1/2 if P is centrally symmetric). Then

1. The breakdown point of T,.(P,) is greater or equal to 1/(d+1). It converges
almost surely to 1/3 as n — oo if P is centrally symmetric.

2. For each a < /(14 8), Ta(Py) is well defined for sufficiently large n and
its breakdown point converges almost surely to o.
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4 Rank tests for multivariate scale difference

Liu and Singh [4] combined ranks based on data depth with well-known one-
dimensional nonparametric procedures to test scale difference between two or
more distributions.

Consider two d-dimensional distributions P, and P, which possibly differ in
dispersion only. Denote X Tyeone an a random sample from P; and Yl, .. Yn2 a
random sample from P,. Denote the combined sample as {Wl, e, Wn1+n2} =
{Xl, e )2“1 , }71, cee }7”2} and denote P, 4+,, the empirical distribution func-
tion based on the combined sample.

We want to test the hypothesis Hy of equal scales against the alternative
that P, has larger scale in the sense that the scale of P» is an expansion of the
scale of P;. If the scale of P, is greater, then obviously observations from the
second distribution tend to be more outlying than the observations from P;.
Consider the sum of the non-normalized ranks for the sample from Ps:

n2
R (Ylv s 7Y’ﬂ2) = (nl =+ ’I’Lg) ZrPnlJrnz (}/1)

i=1

Now we proceed as in the case of testing for a (negative) location shift in the
univariate setting. This leads us to the Wilcoxon rank-sum procedure. When
n1 and nsy are sufficiently large, we can rely on asymptotic behaviour of the test
statistic (assuming null hypothesis):

BT, Yo) ~ [na(m 4 na+ /2 By )
[anLQ(TLl + ng + 1)/12]1/2

R =

and hence we reject Hy if R* < ®~1(a), where ®~!(«) is the a-quantile of the
standard normal distribution.

We can proceed similarly when considering more than two (say K > 2) dis-
tributions. We test the hypothesis that the underlying distributions are identical
against the alternative that the scales of these distributions are not all the same,
in the sense of scale contraction. Construction of the test follows the idea of the
well-known Kruskal-Wallis test. Let R; denote the average of non-normalized
ranks (based on data depth) of the observations from the i-th sample in the
combined sample. The total number of all observations in combined sample
(from all K samples) is N. Under the null hypothesis, it holds:

K
_ 12 B2\ D o
T—iN(N_Fl);(mRi) 3(N+1) 3 x4,

We reject the null hypothesis at an approximate level a if T > 3% _;(1 — ),
where x% (1 — «) is the (1 — a) quantile of a chi-squared distribution with
(K — 1) degrees of freedom.

There is a simple graphical tool developed by Liu, Parelius and Singh (see
[5]) to visualize difference in scales of multivariate distributions. They defined
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a scale curve as a plot of p € (0, 1) versus volume of C,, - the p-th central region
(the p-th central region Cp is defined as the smallest region enclosed by depth
contours to amass probability p, that is C, = (), {R(t): P(R(t)) > p}, where
R(t) = {fe R?: D(&; P) > t}) The sample scale curve, based on random
sample )_('1, e ,X:n, plots volumes of the convex hulls containing [np] most
central points versus p. By plotting scale curves for compared distributions in
one plot, the difference in scales can be easily visualized.

The following example should illustrate the methodology. We simulated 250
points from bivariate NV ((_)’7 I) distribution and the same number of points from
N(0,2I) (I denoting 2 x 2 identity matrix). The test statistic was R* = —2, 14,
which is less than ®1(0,05) = —1,64. We thus (correctly) reject the null
hypothesis of identical distributions. The difference in dispersions can be seen
in Figure 2.

20 30 40 50
|

volume(C_p)
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Figure 2: Empirical scale curves based on samples of 250 points from N (6, I)
(solid line) and from N(0, 2I) (dashed line).

5 Control charts for multivariate processes

Liu [3] used the concept of data depth to introduce control charts for monitor-
ing processes of multivariate quality measurements. The idea is to work with
ranks of the multivariate measurements (based on data depth) rather than with
multivariate measurements themselves.

Let G denote the prescribed d-dimensional distribution (if the measurements
follow the distribution G, the process is considered to be in control). G is
either known or it can be estimated: G, denotes its empirical version, based
on n observations. Let X 1, Xz, ... be the new observations from the considered
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process. They follow some distribution F'. Our task is to test the null hypothesis
Hy: FF = G against the alternative H4 : there is a location shift or a scale
increase from G to F.

The test is based on ranks r¢(X1),rq(Xs) ... (or ra, (X1),rq, (Xs2), ... if G
needs to be estimated). Under the null hypothesis, it holds:

—

1. re(X) ~ U0, 1],

2. rg, (X) 5 U|0, 1], provided that D(-; G,,) — D(-; G) uniformly as n — co.

The uniform convergence of D(-;G,,) holds for example for halfspace depth if
G is absolutely continuous. The expected value of rg(X) is thus 0.5. Small
values correspond to a change in the process. A so-called lower control limit is
thus equal to « (typically 0.05). Values rg()zi) < « signalize a possible quality
deterioration.

Similarly as Liu [3], we can demonstrate the procedure on simulated data.
Let the prescribed distribution G be a bivariate standard normal distribution.
Firstly, we generate 500 observations from this distribution to get a sample
version G,, (we consider G to be unknown to mimic some real applications).
Subsequently, we generate new observations—40 observations from bivariate
standard normal distribution (process in control) and next 40 observations from
bivariate normal distribution with shifted mean (2,2)” and both scales doubled.

The control chart is shown in Figure 3.

rank

00 02 04 06 0B 1.0

observation number
Figure 3: Control chart for multivariate process.

There is one so called false alarm in the first half of observations. The out-
of-control status in the second half of observations is correctly detected 30 times
(from 40 observations). The change is apparent from the chart.

Liu called this type of control chart the r chart. She also proposed multi-
variate versions of Shewhart chart (@ chart) and CUSUM chart (S chart).
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6 Depth-based methods of discrimination

During the last ten years quite a lot of effort has been put into development
of a nonparametric approach to the discrimination problem, which uses the
methodology of data depth.

Recall the nub of the discrimination problem. Consider k > 2 groups of ob-
jects. Each object can be represented by d € N numerical characteristics. Each
group of objects is characterized by the distribution of the numerical characteris-
tics of its members. We denote these distributions Py, ..., P;. The distributions
are unknown. In what follows we assume the distributions to be absolutely
continuous. Consider further k£ independent random samples )_('m, . 7)_('1’%7
i =1,...,k, from distributions Pi,..., Py. These random samples (known as
the training set) provide the only available information on the considered distri-
butions. Any vector & € R, representing an object not included in the training
set, is considered to be a realization of a random vector from one of the distri-
butions P, ..., Pk, but it is unknown from which of them. There is a need to
estimate to which group the object belongs. The goal is to find some general
rule, which allocates an arbitrary d-dimensional real vector to one of the consid-
ered distributions (groups). The rule (known as classifier) has a form of some
function d: R? — {1,... k}.

Probably the most widely used classifier based on data depth is a so-called
maximal depth classifier. It is based on a simple idea of assigning a new ob-
servation (represented by vector Z) to the distribution, with respect to which it
has maximal depth. An arbitrary depth function can be used, i.e.

d(x) = arg ‘niaka(f; P;). (3)
j=1l..,
Since the theoretical depth is usually unknown, empirical version based on the
data from the training set is used:

d(xz) = arg 'n%anD(f; ﬁj), (4)
j=l...,

where D(Z; 13]) is a depth of Z with respect to empirical distribution of the j-
thﬂdistribut_’ion, which is based on the appropriate points from the training set
(Koo Ky,

A detailed inspection of the method is provided in a paper by Ghosh and
Chaudhuri [2]. The maximal depth classifier is known to be asymptotically
optimal (it has the lowest possible average misclassification rate) in certain sit-
uations. Ghosh and Chaudhuri showed asymptotical optimality of the classifier

for a very special case, assuming that the considered distributions:
e are elliptically symmetric with the density functions strictly decreasing in
every direction from their centers of symmetry,
e differ only in location (have equal dispersions and are of the same type),

e have equal prior probabilities.
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In addition, the used depth function must also satisfy some conditions. Ghosh
and Chaudhuri formulated the following optimality theorem:

Theorem 2 Suppose Pi,..., P, are elliptically symmetric distributions with
densities fi(Z) = g(& — [i;), ¢ = 1,...,k, where g satisfies: g(c¥) < g(Z) for
every Z and constant ¢ > 1. Consider equal prior cases. When using halfspace,
simplicial, majority, or projection depth, the average misclassification rate of
an empirical depth-based classifier (4) converges to the optimal Bayes risk as
min(ng,...,ng) — 0o.

The maximal-depth classifier is not optimal when the considered distri-
butions differ in dispersion. This fact can cause serious problems even in a
very simple situation: consider, for example, two bivariate normal distributions
with equal prior probabilities P, = N ((0,0)7,4I), and P, = N((1,0)7,1),
where I denotes 2 x 2 identity matrix. Denote the new observation ¥ =
(x1,22)". In this case the optimal Bayes rule has the following form: d(z) = 2
iff (z1 —4/3)% + 23 < 4/9 + 16/3In2. Expected misclassification rate for the
group 1 is about 0.3409, for group 2 it is about 0.1406, hence the optimal Bayes
risk is about 0.2408. The theoretical maximal depth classifier, which is equiva-
lent to the classifier minimizing Mahalanobis distance, has the form: d(x) = 2
iff (1 —4/3)? + 23 < 4/9. Expected misclassification rate is 0.0435 for group
1 and 0.8104 for group 2, yielding the average misclassification rate of about
0.4270, which is much higher than the optimal Bayes risk. (The expected mis-
classification rates were enumerated by the numeric integration of densities).

As we can see from the example above, the class of problems that can be
satisfactorily solved using the classifier (4) is quite narrow. The problem of
maximal-depth classifier arises from the discrepancy between the depth and
the density function. The optimal Bayes classifier is based on density func-
tion. While the depth function is affine invariant, the density function does not
have this property. More sophisticated classifiers are needed to overcome this
problem.

7 Conclusion

The concept of data depth provides a useful tool for nonparametric multivariate
statistical inference. Ordering (and ranks) based on data depth provides a
basis for many nonparametric multivariate procedures like outlier detection,
estimation of some basic random vector characteristics, testing for multivariate
scale difference, construction of control charts for multivariate processes, or
construction of classifiers for solving discrimination problem.
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