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Abstract

The Extended Growth Curve Model (ECGM) is a multivariate lin-
ear model connecting different multivariate regression models in sample
subgroups through common variance matrix. It has the form:

Y =

k∑

i=1

XiBiZ
′
i + e, vec(e) ∼ Nn×p (0,Σ⊗ In) .

Here, matrices Xi contain subgroup division indicators, and Zi corre-
sponding regressors. If k = 1, we speak about (ordinary) Growth Curve
Model. The model has already its age (it dates back to 1964), but it has
many important applications. That is why it is still intensively studied.
Many articles investigating different aspects or special cases of the model
appeared in recent years. We will try to summarize the progress done so
far.
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1 Introduction

Multivariate linear models play today an important role in many applications
of statistics. One of these is the growth curve model and its many variants. We
try to bring an overview of substantial results in this area during approximately
the last ten years. Results are organized in three sections: the basic model, the
fixed effects extended model, and the random effects extended model.

2 The basic model

The Growth Curve Model (GCM) appeared for the first time in 1964, pursuing
a medical application, see Potthoff & Roy. It connects two or more multivari-
ate regression models of the same form in sample subgroups through common
variance matrix. It has the form

Y = XBZ ′ + e, vec(e) ∼ Nn×p (0,Σ⊗ In) . (1)

Here, Y is an n× p matrix of independent p-variate observations, n×m matrix
X contains subgroup division indicators, and p × r matrix Z corresponding
regressors. Bm×r is the matrix of regression coefficients and Σp×p is the variance
matrix of a single multivariate observation.

This model has many applications. Usually it describes time-dependent
growth. Since all basic results for the general model are rather old and well-
known, we will not present these ones here.

2.1 Distributional results and tests

Kollo, Roos & Rosen (2007) derived an Edgeworth-type approximation of the
distribution of the MLE B̂. The approximation is a mixture of a normal
and a Kotz-type distribution, thus being an elliptical distribution. Simulation
showed that this approximation can bring a considerable improvement against
asymptotic normal distribution. Kollo & Rosen (2000) proposed three different
approximations of the distribution of MLE Σ̂. Their effort is summarized in
Kollo & Rosen (2005). They also derived moments of the estimators B̂ and Σ̂.
General questions of approximations of multivariate distribution functions were
studied by Pihlak (2008).

Srivastava & Rosen (2002) considered GCM with singular variance matrix Σ.
They derived MLE’s of estimable parameters and LR test of a simple linear
hypothesis. Similar problem was considered by Wong & Cheng (2001), with
some linear restrictions causing the singularity. This form can be transformed
to a full-rank model.

Kronecker structure of the variance matrix is assumed in all models. Srivas-
tava, Rosen & Rosen (2008) derived the likelihood ratio test of the hypothesis
that a variance matrix of a random vector (or vectorized matrix) has a Kro-
necker structure. They also derived LRT that in a Kronecker structure one
matrix has the uniform correlation structure. Roy & Khattree (2005) derived a
similar test in a less general situation of single group model.
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Hamid, Beyene & Rosen (2011) proposed a new trace test for linear hypoth-
esis H0 : ABC = 0 with approximate χ2 distribution.

2.2 Methods of estimation

Fang, Wang & Rosen (2006) proposed restricted expected multivariate least
squares (REMLS) principle for solving estimation problems in multivariate lin-
ear models. First they define the fitting function

F (EY,Σ) =
1

np
Tr
(
Σ−1(Y − EY )′(Y − EY )

)
.

The principle is based on minimization of |F (EY,Σ) − 1| by finding functions
h1(Σ) and h2(EY,Σ) such that F (EY,Σ) = h1(Σ) + h2(EY,Σ), and estimators
of parameters in Σ are based on h1(Σ) and estimators of parameters in EY
are based on h2(EY, Σ̂). This leads to ML-estimators in the case of normally
distributed GCM.

Hu & Yan (2008) proved asymptotic normality and consistency of classical
LSE of an estimable linear function γ = ABC using estimated variance matrix
Σ̂, when limn→∞ 1

nX
′X = R > 0. They also proved consistency of Σ̂.

MLEs of B and Σ in the model with various linear constraints on B were
derived by Kollo & Rosen (2005). Kubáček (2008) studied the model with linear
constraint

H1BH2 +H0 = 0

and scalar variance components θi, where Σ =
∑

i θiVi. He derived θ0-MINQUE
of the variance components for either H1 = I or H2 = I, and approximate con-
fidence region for an estimable linear function γ = ABC. A precise confidence
region for known Σ is also given. Moreover, nonsensitivity regions, where the
confidence level is held up to a chosen constant ε, are also derived.

Vasdekis (2008) analyzed the covariance adjusted estimators and compared
it with classical REML estimators. CAE of growth curve parameters is the OLS
estimator adjusted using analysis of covariance. The covariates are functions of
within individuals error contrasts, usually polynomial of higher order than that
used in the regression model. Since theoretical comparison is difficult, he used
simulations, showing that CAE is a comparable alternative.

2.3 Special variance structures

When the number of time observations is not small, the number of 2nd order
parameters (elements of Σ) grows quickly, which requires a lot of observations
(either for estimability or for stability of the estimators). Therefore, it can be
necessary to assume a simpler variance structure in order to keep the number
of unknown parameters reasonable. Models with such special variance struc-
tures have been studied recently by Wu (1998), Rao Chaganty (2003), Žežula
(2006), Klein & Žežula (2007), Ye & Wang (2009), Klein & Žežula (2009),
Žežula & Klein (2010), and Ohlson & Rosen (2010).
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Wu, Žežula, Ye & Wang, and Žežula & Klein considered the following vari-
ance structures: uniform correlation (intraclass correlation), generalized uni-
form, and serial correlation (autoregressive). The first three authors proposed
three different estimators. However, Žežula & Klein showed that the estimators
of Žežula and Ye & Wang coincide in the case of the uniform correlation struc-
ture, and derived their distribution. Also, Klein & Žežula (2007) proved in this
case asymptotic normality of pseudo-Fisher transformation

Zn =
1

2
ln

(
1

p−1 + ρ̂S

1− ρ̂S

)
.

Klein & Žežula (2009) derived MLE of all unknown parameters for the serial
correlation structure.

Recently, Rusnačko (2010) has compared Žežula’s and Ye & Wang’s esti-
mators in generalized uniform structure model with respect to their MSE. His
results show that in most cases Ye & Wang’s estimators are better.

Rao Chaganty (1997) and (2003) proposed a new method, called quasi-least
squares, and applied it in GCM especially for uniform and serial correlation
structure. It consists of minimizing the function

Q(B, ρ) = Tr
(
(Y −XBZ ′)R−1(ρ)(Y −XBZ ′)′

)
,

where Σ = σ2R(ρ). Solutions of this first stage are corrected for bias in the
second stage. This principle does not need the normality assumption, and its
asymptotic properties are very good. For the uniform correlation structure
under normality, they coincide with the MLE.

Ohlson & Rosen (2010) considered general linearly structured variance ma-
trix, i.e. Σ with some elements equal to each other in absolute value. Clearly, the
uniform correlation structure is a special case of such a general one, while serial
structure is not, unless we estimate all powers of ρ independently (which in fact
do Ye & Wang). They found explicit form LSE’s, and proved their consistency.

Ohlson, Andrushchenko & Rosen (2011) derived unbiased and consistent
estimators of the mean and variance parameters, when the variance matrix is
m-banded, i.e. σij = 0 for |i− j| > m. However, they did it only for a constant
mean.

2.4 Other variants and similar models

Reinsel & Velu (2003) studied interesting variant of the model, called reduced-
rank model, assuming non-full rank condition of B:

B = B1B2.

They found MLE of B1, B2, and Σ, and derived LR test of H0 : r(B) ≤ r1.
The nature of the model forces the use of polynomial regression in practi-

cally all applications. This is not a serious limitation on a short time interval,
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but long-term dependencies usually do not behave like that. In order to over-
come this shortage in the case of single-group regression, exponential polynomial
growth curve model (EPGCM) was proposed by Heinen (1999). It is based on
the assumption

Y (t) = θ(t) + e(t), θ(t) = exp(P (t)), t = 1, . . . , p, (2)

where P (x) is a polynomial. Correlation structure of this model is usually the
serial one, but others can also be considered.

Bhattacharya, Basu and Bandyopadhyay (2009) have derived goodness-of-fit
tests for such models with the serial correlation structure.

Interesting variants of GCM, diagonal GCM and block-diagonal GCM, in-
spired by radar signal processing, were studied by Xu, Stoica & Li (2006). The
names come from the considered structure of the parameter matrix B. Matrix
X in this model is no longer an ANOVA-design matrix. They derived approxi-
mate ML estimators of unknown parameters. The estimators of B are unbiased
and asymptotically efficient.

Åsenblad & Rosen (2005) used GCM for the analysis of special cross-over
designs. They derived ML estimators for the parameters of interest. Nummi
(2000) used GCM for the estimation of parameters in a single group growth
curve model, when regressors are observed with random errors.

3 The fixed effects extended model

The fixed effects Extended Growth Curve Model (ECGM) or the Sum-of-Profiles
Model (SoPM) is a multivariate linear model connecting different multivariate
regression models in sample subgroups through common variance matrix. It has
the form:

Y =

k∑
i=1

XiBiZ
′
i + e , vec(e) ∼ Nn×p (0,Σ⊗ In) . (3)

Here, matrices Xi contain subgroup division indicators, and Zi corresponding
regressors. If k = 1, we speak about (ordinary) Growth Curve Model.

3.1 Methods of estimation

REMLS principle by Fang, Wang & Rosen (2006) leads again to ML-estimators
in the case of normality.

Kollo & Rosen (2005) were able to find the first two moments of ML-
estimators for the case k = 3.

Hu (2010) proposed a variant of the model, assuming X ′
iXj = 0 ∀i �=

j. This variant is under mild assumptions equivalent with the general model
(Žežula & Klein, 2010). Moreover, estimators of all parameters have simple ex-
plicit form, which could not be achieved in the general model. Hu also derived
basic properties of the estimators.
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The above mentioned results of Wu (1998) are in fact done for the general
ECGM, and they include conditions for the existence of UMRU estimators with
a quadratic loss function.

Wu, Zou & Chen (2006) derived MINQE(U,I) estimator of Tr(CΣ) together
with conditions when it turns out to be UMVIQUE. Also, they did the same
for MINQLE(U,I) of Tr(CΣ)+

∑k
i=1 Tr (DiBi). Later, Wu, Liang & Zou (2009)

derived class of all LSE of Tr(CΣ) and necessary and sufficient conditions for it
to be unbiased and invariant estimator, or directly UMVIQUE. Wu, Zou & Li
(2009) also derived necessary and sufficient conditions under which the non-
negative estimator UMVNNQUE of Tr(CΣ) with C ≥ 0 exists, and when a
nonnegative quadratic unbiased estimator (vecY ′)′A(vecY ′) is UMVNNQUE
of Tr(CΣ). In all these papers, Rosen’s condition R (Xk) ⊆ · · · ⊆ R (X1) had
to be assumed.

Wawrzosek & Weso�lowska-Janczarek (2009) derived necessary or necessary
and sufficient conditions for the estimability of parameters under different rea-
sonable constraints, or testability of the corresponding hypotheses. Yang & Wu
(2004) derived necessary and sufficient conditions for the existence of UMRU
estimators in a general class of linear models, which can be also applied to
EGCM.

3.2 Variants of the model

Yokoyama (2001) considered a special form of the model with two components,
with a variant of the uniform correlation structure. He derived MLE’s of the
model parameters and their basic statistical properties.

Weso�lowska-Janczarek & Kolczyńska (2008), Weso�lowska-Janczarek (2009),
and Bochniak & Weso�lowska-Janczarek (2010) studied an important variant of
the model, model with concomitant variables. The model has the form

Y = XBZ ′ + CΓ + e or Y = XBZ ′ +XΓC ′ + e ,

depending on the fact whether the response to concomitant variables is or is not
group-dependent. The first term describes the time dependence and the second
one other concomitant variables (with values in C) dependence, e.g weather
conditions. Frequently considered form of the model is also the following one:

Y = XBZ ′ + 1γ′C + e ,

which assumes homogeneous responses to concomitant variables by all experi-
mental units. They derived ML and/or GLS estimators of unknown parameters.
However, the MLE only in the form of complex system of equation requiring
iterative solution. Kollo & Rosen (2005) derived half-explicit form of the MLEs
for the first form of the model using orthogonal matrices of minimal rank, and
also their moments.

Reinsel & Velu (2003) derived ML estimators of unknown parameters for the
reduced-rank model with concomitant variables, and also in the model

Y = (X1B1B2 +X2B3)Z
′ + e .
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Mentz & Kshirsagar (2003) considered model with exchangeable errors using
two profiles, i.e. model in which different groups of observations are correlated:

Y = (I ⊗X1)B1Z
′
1 + (I ⊗X2)B2Z

′
2,

where Y ′ = (Y ′
1 , . . . , Y

′
s ), var vecYi = Σ ⊗ I, and cov (vecYi, vecYj) = Φ ⊗ I.

They found explicit form estimators of the unknown parameters and their vari-
ances.

Srivastava (2002) studied nested models with two and three components,
i.e. models where not only Rosen’s condition holds, but also regressors in Zi are
directly contained in Zi−1. He found explicit estimators and derived tests for
H0 of basic GCM. These can be used to test that some regression coefficients
in the basic GCM vanish.

Kanda, Ohtaki & Fujikoshi (2002) considered the same model as Srivastava,
but with general number of components. Their motivation was the use of poly-
nomial growth curves with k different degrees. They proposed simple estimators
of the mean and variance parameters which are closely related to the MLEs. Us-
ing these estimators they constructed simultaneous confidence regions for each
or all of k growth curves.

4 The random effects extended model

The random effects ECGM has similar basic structure as SoPM, but some re-
gression coefficients are random. As in the univariate model, usual notation at
first collects fixed effects and then independent random effects:

Y =
k∑

i=1

XiBiZ
′
i + e ,

vec

(
Y −

�∑
i=1

XiBiZ
′
i

)
∼ Nn×p

(
0,

k∑
i=�+1

ZiΣiZ
′
i ⊗XiX

′
i +Σe ⊗ In

)
. (4)

However, the model practically does not appear in its generality, but only in
different variants according to specific needs.

4.1 Variants of the model

Fang, Wang & Rosen (2006) derived REMLS estimators of variance components
in the GCM with matrix variance components:

Σ =

k∑
j=1

ZjΨjZ
′
j + σ2I,

which is a variant of random effects model.
Nummi & Möttönen (2000) considered random effect model for multivariate

responses at each time point:

Y = XB (I ⊗ Z ′
1) + U (I ⊗ Z ′

2) + e,
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where U contains the random effects. They derived MLE’s and REML esti-
mators of relevant parameters, and provided test statistic for a general linear
hypothesis.

A special case of this model, motivated by certain 2-stages measurement
design, was investigated by Fujikoshi & Rosen (2000). They developed likelihood
ratio tests for the following simplifications of general variance structure: (1) the
(row) variance matrix of the first term is a part of the variance matrix of the
second term; (2) the (row) variance matrices in both part of the model are the
same. They also derived corresponding asymptotic null distributions.

Lin & Lee (2003) derived exact tests using generalized p-values in the model
with one fixed and one random component with uniform correlation structure of
the variance matrix. They also considered the case with group-specific residual
variances, derived coefficients tests for that model, and test of the homogeneity
of residual variances.

4.2 Similar models

Wu & Zhang (2002) proposed a local polynomial random-effects model, which
does not have the formal structure of EGCM, but models the same situation.
They derived basic estimators and their asymptotic properties.

Nummi & Koskela (2008) proposed another similar solution, using cubic
smoothing splines. They showed that cubic splines maximize certain penalized
log-likelihood function. If the variance structure belongs to certain simple class
(including uniform correlation structure and linear correlation structure), the
estimator of location parameters does not depend on the variance matrix esti-
mator. Moreover, the spline solution can be expressed as the BLUP in a mixed
model (random effects ECGM), where the fixed part contains straight lines for
groups of individuals and the random part reflects the spline features around
these straight lines.

Similar work was done by Satoh & Ohtaki (2006), who proposed nonpara-
metric kernel-type GCM using locally linear approximation. They derived basic
statistical properties of the estimators.
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[11] Klein, D., Žežula, I.: On uniform correlation structure. In: Mathematical Methods In
Economics And Industry, conference proceedings, Herl’any, Slovakia (2007), 94–100.
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