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1. Introduction

Impulsive differential equations are a basic tool to study dynamics of processes

that are subjected to abrupt changes in their states. Theory of impulsive differential

equations has been motivated by a number of applied problems. We point out names

of a few representative examples, control theory [9], [10], population dynamics [20],

chemotherapeutic treatment in medicine [14], and some physics problems [17]. A

significant development has been made in the mathematical theory of impulsive

differential equations in the last two decades; see the monographs [2], [3], [15], [24].

Periodic boundary value problems for nonlinear differential equations with impulse

were earlier studied [4]–[7], [11], [13], [16], [18], [19], [21]–[23], [25], [26]. However,

due to the special form of our problem we have developed in this paper more detailed

analysis and established more explicit results.

*This work was supported by a NATO Science Reintegration Grant.
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In this paper, we deal with the following boundary value problem with im-

pulse (BVPI):

−[p(x)y′]′ + q(x)y = f(x, y), x ∈ [a, c) ∪ (c, b],(1)

y(c−) = d1y(c+), y[1](c−) = d2y
[1](c+),(2)

y(a) = y(b), y[1](a) = y[1](b),(3)

where a < c < b; y = y(x) is a desired solution; y[1](x) = p(x)y′(x) denotes the quasi-

derivative of y(x); y(c−) is the left-hand limit of y(x) at c and y(c+) is the right-hand

limit of y(x) at c; the coefficients p(x), q(x) of the equation (1) are complex-valued

functions defined on [a, c) ∪ (c, b], f(x, ξ) is a complex-valued function defined on

([a, c) ∪ (c, b]) × C; d1 and d2 in the conditions (2) are nonzero complex numbers.

Note that everywhere C denotes the set of complex numbers.

The conditions in (2) express an impulse effect at the point c. The conditions

in (3) are called the periodic boundary conditions and they form an important rep-

resentative of nonseparated boundary conditions.

Note that a complex-valued function y(x) defined on [a, c)∪(c, b] is called a solution

of (1)–(3) if its first derivative y′(x) exists for each x ∈ [a, c) ∪ (c, b], p(x)y′(x) is

differentiable on [a, c)∪(c, b], there exist finite values y(c±) and y[1](c±), the impulse

conditions in (2) and the boundary conditions in (3) are satisfied, and the equation (1)

is satisfied on [a, c) ∪ (c, b].

The paper is organized as follows. In Section 2, following our paper [12] we present

basic properties of solutions of the second order linear homogeneous differential equa-

tion with impulse

−[p(x)y′]′ + q(x)y = 0, x ∈ (−∞, c) ∪ (c,∞),

y(c−) = d1y(c+), y[1](c−) = d2y
[1](c+),

and give the Green’s function of the linear BVPI

−[p(x)y′]′ + q(x)y = h(x), x ∈ [a, c) ∪ (c, b],(4)

y(c−) = d1y(c+), y[1](c−) = d2y
[1](c+),(5)

y(a) = y(b), y[1](a) = y[1](b).(6)

In Section 3, the Green’s function of the linear problem (4)–(6) is used to reduce

the nonlinear BVPI (1)–(3) to a fixed point problem. In Section 4, by using the

Contraction Mapping Theorem (Banach Fixed Point Theorem) we show that there

is a unique solution of the BVPI (1)–(3) if f(x, ξ) satisfies a Lipschitz condition.

In Section 5, a theorem (Theorem 7) based on the Schauder Fixed Point Theorem
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is proved which gives a result that yields existence of solutions without implication

that the solutions must be unique. In Section 6, Theorem 7 is illustrated by several

examples. Finally, in Section 7, we end with some concluding remarks.

2. Auxiliary linear problem and its Green’s function

Let c be a real number and d1, d2 nonzero complex numbers. Consider the second

order linear homogeneous differential equation with impulse

−[p(x)y′]′ + q(x)y = 0, x ∈ (−∞, c) ∪ (c,∞),(7)

y(c−) = d1y(c+), y[1](c−) = d2y
[1](c+),(8)

where y = y(x) is a desired solution and

(9) y[1](x) = p(x)y′(x)

denotes the quasi-derivative of y(x). We will assume that the coefficients p(x) and

q(x) of the equation (7) are complex-valued continuous functions on (−∞, c)∪(c,∞)

and p(x) 6= 0. In addition, it is assumed that there exist finite left-sided and right-

sided limits p(c±) and q(c±), and that p(c±) 6= 0.

A function y(x) defined on (−∞, c)∪(c,∞) is called a solution of (7)–(8) if its first

derivative y′(x) exists, p(x)y′(x) is continuously differentiable on (−∞, c) ∪ (c,∞),

there exist finite values y(c±), y[1](c±) that satisfy the impulse conditions (8), and

the equation (7) is satisfied on (−∞, c) ∪ (c,∞).

For any fixed point x0 in (−∞, c) ∪ (c,∞) and any complex numbers c0, c1 the

problem (7)–(8) has a unique solution y(x) such that

y(x0) = c0, y[1](x0) = c1.

For two differentiable functions y and z on (−∞, c)∪ (c,∞) we define their Wron-

skian by

Wx(y, z) = y(x)z[1](x) − y[1](x)z(x)

= p(x)[y(x)z′(x) − y′(x)z(x)], x ∈ (−∞, c) ∪ (c,∞).

The Wronskian of any two solutions y and z of (7)–(8) is constant on each of the

intervals (−∞, c) and (c,∞):

Wx(y, z) =

{

ω−, x ∈ (−∞, c),

ω+, x ∈ (c,∞),
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where ω− and ω+ are constants such that

ω− = d1d2ω
+.

It follows that if y and z are two solutions of (7)–(8), then either Wx(y, z) = 0 for

all x ∈ (−∞, c) ∪ (c,∞) or Wx(y, z) 6= 0 for all x ∈ (−∞, c) ∪ (c,∞).

Any two solutions of (7)–(8) are linearly independent if and only if their Wronskian

is not zero.

The problem (7)–(8) has two linearly independent solutions and every solution

of (7)–(8) is a linear combination of these solutions.

Let a, b, and c be fixed real numbers with a < c < b. Consider the following linear

boundary value problem with impulse (BVPI):

−[p(x)y′]′ + q(x)y = h(x), x ∈ [a, c) ∪ (c, b],(10)

y(c−) = d1y(c+), y[1](c−) = d2y
[1](c+),(11)

y(a) = y(b), y[1](a) = y[1](b),(12)

where h(x) is a complex-valued continuous function on [a, c) ∪ (c, b] such that there

exist finite limit values h(c±) the coefficients p(x), q(x), d1, and d2 are as above.

Denote by u(x) and v(x) the solutions of the homogeneous problem

−[p(x)y′]′ + q(x)y = 0, x ∈ [a, c) ∪ (c, b],(13)

y(c−) = d1y(c+), y[1](c−) = d2y
[1](c+),(14)

satisfying the initial conditions

(15) u(a) = 1, u[1](a) = 0

and

(16) v(a) = 0, v[1](a) = 1,

respectively. We have

(17) Wx(u, v) =

{

1, x ∈ [a, c),

d−1
1 d−1

2 , x ∈ (c, b].

Let us set

(18) D = u(b) + v[1](b) − d−1
1 d−1

2 − 1.
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It follows that D 6= 0 if and only if the homogeneous problem (13)–(14) has only

the trivial solution y(x) ≡ 0 satisfying the periodic boundary conditions in (12).

Theorem 1. If D 6= 0 then the nonhomogeneous BVPI (10)–(12) has a unique

solution y(x) for which the formula

(19) y(x) =

∫ b

a

G(x, s)h(s) ds, x ∈ [a, c) ∪ (c, b],

holds, where the function G(x, s) is called the Green’s function of the BVPI (10)–(12)

and it is defined for x, s ∈ [a, c) ∪ (c, b] by the formula

G(x, s)(20)

=
1

DWs(u, v)
[v(b)u(x)u(s) − u[1](b)v(x)v(s)]

+
1

DWs(u, v)











[v[1](b) − 1]u(x)v(s) − [u(b) − 1]u(s)v(x), s 6 x,

[v[1](b) − d−1
1 d−1

2 ]u(s)v(x) − [u(b) − d−1
1 d−1

2 ]u(x)v(s),

x 6 s,

the number D being defined by (18).

Proofs of all the statements given above in this section can be found in the author’s

paper [12]. For the case when there is no impulse see [1].

R em a r k 2. In the case of p(x) ≡ 1, q(x) ≡ α2 (α > 0), a = 0, d1 = d2 = 1,

where α is a constant, the Green’s function G(x, s) of the BVPI (10)–(12) has the

form

G(x, s) =
1

2α(eαb − 1)

{

eα(x−s) + eα(b+s−x), 0 6 s 6 x 6 b,

eα(s−x) + eα(b+x−s), 0 6 x 6 s 6 b.

3. Nonlinear problem

In this section, we consider the nonlinear BVPI

−[p(x)y′]′ + q(x)y = f(x, y), x ∈ [a, c) ∪ (c, b],(21)

y(c−) = d1y(c+), y[1](c−) = d2y
[1](c+),(22)

y(a) = y(b), y[1](a) = y[1](b).(23)

We will assume that the following conditions are satisfied.
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(H1) p(x) and q(x) are complex-valued continuous functions on (−∞, c) ∪ (c,∞)

and p(x) 6= 0. In addition, it is assumed that there exist finite left-sided and

right-sided limits p(c±) and q(c±), and that p(c±) 6= 0.

(H2) d1 and d2 are given nonzero complex numbers.

(H3) f(x, ξ) is a complex-valued continuous function defined on ([a, c) ∪ (c, b]) × C,

and such that for each ξ0 ∈ C there exist finite limits

lim
(x,ξ)→(c,ξ0)

x<c

f(x, ξ) = f(c−, ξ0) and lim
(x,ξ)→(c,ξ0)

x>c

f(x, ξ) = f(c+, ξ0).

(H4) The linear homogeneous BVPI

−[p(x)y′]′ + q(x)y = 0, x ∈ [a, c) ∪ (c, b],(24)

y(c−) = d1y(c+), y[1](c−) = d2y
[1](c+),(25)

y(a) = y(b), y[1](a) = y[1](b),(26)

has only the trivial solution y(x) ≡ 0.

R em a r k 3. If p(x) > 0, q(x) > 0, q(x) is not identically zero, d1 > 0, d2 > 0,

and d1 + d2 > 1 + d1d2, then the condition (H4) is satisfied, see [12].

Let u(x) and v(x) be solutions of (24)–(25) satisfying the initial conditions (15)

and (16), respectively, and let D be defined by (18). Then the condition (H4) is

equivalent to the condition that D 6= 0. Define G(x, s) by (20) for x, s ∈ [a, c)∪(c, b].

Then the nonlinear BVPI (21)–(23) is equivalent, by Theorem 1, to the integral

equation

(27) y(x) =

∫ b

a

G(x, s)f(s, y(s)) ds, x ∈ [a, c) ∪ (c, b].

We will investigate the equation (27) in the Banach space B of all complex-valued

continuous functions y(x) on [a, c)∪ (c, b] for which the finite values y(c−) and y(c+)

exist, with the norm

‖y‖ = sup|y(x)|, x ∈ [a, c) ∪ (c, b].

If we define the operator A : B → B by

(28) (Ay)(x) =

∫ b

a

G(x, s)f(s, y(s)) ds, x ∈ [a, c) ∪ (c, b],
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then the equation (27) can be written as

y = Ay, y ∈ B.

Therefore, solving the equation (27) is equivalent to finding fixed points of the op-

erator A.

4. Existence and uniqueness of solutions

We will use the following well-known ContractionMapping Theorem also called the

Banach Fixed Point Theorem: Let B be a Banach space and S be a nonempty closed

subset of B. Assume A : S → S is a contraction, i.e., there exists a λ, 0 < λ < 1,

such that ‖Au − Av‖ 6 λ‖u − v‖ for all u, v in S. Then A has a unique fixed point

in S, that is, there is a unique element u0 in S such that Au0 = u0.

If the function f(x, ξ) satisfies the Lipschitz condition

|f(x, ξ1) − f(x, ξ2)| 6 K|ξ1 − ξ2|, x ∈ [a, c) ∪ (c, b], ξ1, ξ2 ∈ C,

then for the operator A : B → B defined by (28) we easily get

‖Ay − Az‖ 6 λ‖y − z‖,

where

λ = K sup
x∈[a,c)∪(c,b]

∫ b

a

|G(x, s)| ds.

Therefore, if λ < 1, then A is a contraction mapping and hence, the BVPI (21)–(23)

has a unique solution.

In the next theorem the function f(x, ξ) satisfies a Lipschitz condition not on the

whole C but only on a subset.

Theorem 4. Assume that the conditions (H1), (H2), and (H4) are satisfied. Let

the function f(x, ξ) satisfy the following Lipschitz condition: for a number R > 0,

(29) |f(x, ξ1) − f(x, ξ2)| 6 K|ξ1 − ξ2|

for all x ∈ [a, c) ∪ (c, b] and all ξ1, ξ2 in the disc {ξ ∈ C : |ξ| 6 R}, where K > 0 is a

constant which may depend on R. If

(30) sup
x∈[a,c)∪(c,b]

∫ b

a

|G(x, s)| ds · sup
(s,ξ)∈ΩR

|f(s, ξ)| 6 R,
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where ΩR = {(s, ξ) : s ∈ [a, c) ∪ (c, b], ξ ∈ C, |ξ| 6 R}, and if

(31) K · sup
x∈[a,c)∪(c,b]

∫ b

a

|G(x, s)| ds < 1,

then the BVPI (21)–(23) has a unique solution y(x) such that

|y(x)| 6 R for x ∈ [a, c) ∪ (c, b].

P r o o f. Let us set S = {y ∈ B : ‖y‖ 6 R}. Obviously, S is a closed subset of B.

Let A : B → B be the operator defined by (28). For y and z in S we have |y(s)| 6 R,

|z(s)| 6 R for all s in [a, c) ∪ (c, b]. Therefore, taking into account (29) and (31),

we can easily get ‖Ay − Az‖ 6 λ‖y − z‖ for all y and z in S, where 0 < λ < 1. It

remains to show that A : S → S, that is, A transforms the set S into itself. For y

in S, we have

|(Ay)(x)| 6

∫ b

a

|G(x, s)||f(s, y(s))| ds

6 sup
(s,ξ)∈ΩR

|f(s, ξ)| · sup
x∈[a,c)∪(c,b]

∫ b

a

|G(x, s)| ds 6 R,

by (30). Hence, ‖Ay‖ 6 R and therefore, Ay ∈ S. Now the Contraction Mapping

Theorem can be applied to obtain a unique fixed point of A in S, and so the proof

is completed. �

5. Existence of solutions

An operator (nonlinear, in general) is called completely continuous if it is contin-

uous and maps bounded sets into relatively compact sets.

In this section, to get an existence theorem for solutions without uniqueness, we

will use the following Schauder Fixed Point Theorem: Let B be a Banach space and

S be a nonempty bounded, closed, and convex subset of B. Assume A : B → B is a

completely continuous operator. If the operator A leaves the set S invariant, i.e., if

A(S) ⊂ S then A has at least one fixed point in S.

Consider the BVPI (21)–(23) and let A : B → B be the operator defined by (28).

Lemma 5. A subset S of the space B is relatively compact if and only if the func-

tions belonging to S are equi-bounded and equi-continuous on each of the intervals

[a, c) and (c, b].
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P r o o f. Let S be relatively compact. Then provided that y(c) = y(c−) the set of

restrictions of functions y ∈ S to [a, c) will be a relatively compact set in the Banach

space C[a, c] of continuous functions on [a, c]. Also, provided that y(c) = y(c+) the

set of restrictions of functions y ∈ S to (c, b] will be a relatively compact set in

C[c, b]. Consequently, it follows from the well-known Arzela-Ascoli Theorem that

the functions belonging to S are equi-bounded and equi-continuous on each of the

intervals [a, c) and (c, b].

Conversely, let the functions belonging to S be equi-bounded and equi-continuous

on each of the intervals [a, c) and (c, b]. Take any sequence {yn(x)} of functions

yn ∈ S. We have to show that this sequence contains a convergent (in the metric

of B) subsequence. The functions yn(x) for x ∈ [a, c] provided that yn(c) = yn(c−)

are equi-bounded and equi-continuous on [a, c]. Therefore, by the Arzela-Ascoli

Theorem there is a subsequence {un(x)} of {yn(x)} that converges uniformly to a

continuous function u(x) on [a, c]. Next, the functions un(x) for x ∈ [c, b] provided

that un(c) = un(c+) are equi-bounded and equi-continuous on [c, b]. Therefore, again

by the Arzela-Ascoli Theorem, the sequence {un(x)} contains a subsequence {vn(x)}

that converges uniformly to a continuous function v(x) on [c, b]. Consequently, if we

define the function

y(x) =

{

u(x), x ∈ [a, c),

v(x), x ∈ (c, b],

then y ∈ B, and {vn(x)} (subsequence of {yn(x)}) converges to y(x) in the metric

of B. The lemma is proved. �

Note that the statement of Lemma 5 can be obtained also as a corollary of Propo-

sition 2.3 in [8].

Lemma 6. Suppose that the function f(x, ξ) satisfies the condition (H3) formu-

lated above. Then the operator A : B → B defined by (28) is completely continuous

in the space B.

P r o o f. Let us take any fixed element y0 ∈ B and show that A is continuous

at y0. Denote

M1 = sup
x∈[a,c)∪(c,b]

∫ b

a

|G(x, s)| ds and M2 = sup
x∈[a,c)∪(c,b]

|y0(x)| = ‖y0‖.

The function f(x, ξ) is continuous (admits continuous extension) on each of the

bounded and closed regions Ω1 = [a, c] × D and Ω2 = [c, b] × D, where

D = {ξ ∈ C : |ξ| 6 M2 + 1}.
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Therefore, it is uniformly continuous on each of Ω1 and Ω2. Hence, for a given ε > 0

there exists a δ > 0 such that

ξ1, ξ2 ∈ D and |ξ1 − ξ2| 6 δ imply |f(s, ξ1) − f(s, ξ2)| 6
ε

M1

for all s ∈ [a, c) ∪ (c, b]. Put δ1 = min{1, δ} and take any y ∈ B with ‖y − y0‖ 6 δ1.

Then we have

‖y‖ 6 ‖y0‖ + δ1 = M2 + δ1 6 M2 + 1

so that

y(s), y0(s) ∈ D and |y(s) − y0(s)| 6 δ1 6 δ for all s ∈ [a, c) ∪ (c, b].

Therefore,

|f(s, y(s)) − f(s, y0(s))| 6
ε

M1
for all s ∈ [a, c) ∪ (c, b].

Then we have, for all x ∈ [a, c) ∪ (c, b],

|(Ay)(x) − (Ay0)(x)| 6

∫ b

a

|G(x, s)||f(s, y(s)) − f(s, y0(s))| ds

6
ε

M1

∫ b

a

|G(x, s)| ds 6
ε

M1
M1 = ε,

that is, ‖Ay − Ay0‖ 6 ε. This means that A is continuous at y0.

Next, let Y ⊂ B be a bounded set:

‖y‖ 6 M3 for all y ∈ Y.

We have to prove that the set A(Y ) is relatively compact in B. For this it is sufficient,

by Lemma 5, to show that the functions belonging to A(S) are equi-bounded and

equi-continuous on each of the intervals [a, c) and (c, b]. Let us set Ω = ([a, c) ∪

(c, b]) × {ξ ∈ C : |ξ| 6 M3} and

M4 = sup
(s,ξ)∈Ω

|f(s, ξ)|.

Then for an arbitrary y in Y and x in [a, c) ∪ (c, b], we have

|(Ay)(x)| 6

∫ b

a

|G(x, s)||f(s, y(s))| ds 6 M4

∫ b

a

|G(x, s)| ds 6 M4M1.

Hence, ‖Ay‖ 6 M4M1 for all y ∈ Y . Therefore, A(Y ) is a bounded set in B.
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Further, the function G(x, s) is uniformly continuous on each of the rectangles

[a, c)× [a, c), [a, c)× (c, b], (c, b]× [a, c), and (c, b]× (c, b]. Therefore, for a given ε > 0

we can find a δ > 0 such that if x1, x2 ∈ [a, c) or x1, x2 ∈ (c, b], and |x1 − x2| 6 δ,

and s is arbitrary in [a, c) ∪ (c, b], then

|G(x1, s) − G(x2, s)| 6
ε

M4(b − a)
.

Consequently, for arbitrary y in Y and x1, x2 as above, we have

|(Ay)(x1) − (Ay)(x2)| 6

∫ b

a

|G(x1, s) − G(x2, s)||f(s, y(s))| ds

6
ε

M4(b − a)

∫ b

a

|f(s, y(s))| ds

6
ε

M4(b − a)
M4(b − a) = ε.

This proves that the functions belonging to A(Y ) are equi-continuous. �

Theorem 7. In addition to the hypotheses (H1), (H2), (H3), and (H4), assume

that there exists a number R > 0 such that

(32) sup
x∈[a,c)∪(c,b]

∫ b

a

|G(x, s)| ds · sup
(s,ξ)∈ΩR

|f(s, ξ)| 6 R,

where ΩR = {(s, ξ) : s ∈ [a, c) ∪ (c, b], ξ ∈ C, |ξ| 6 R}. Then the BVPI (21)–(23)

has at least one solution y such that

|y(x)| 6 R for x ∈ [a, c) ∪ (c, b].

P r o o f. Let A : B → B be the operator defined by (28). It follows from Lemma 6

that A is completely continuous. Using (32), we can see, as in the proof of Theorem 4,

that A maps the set S = {y ∈ B : ‖y‖ 6 R} into itself. On the other hand, it is

obvious that the set S is bounded, closed, and convex. Therefore, the Schauder Fixed

Point Theorem can be applied to obtain a fixed point of A in S. This completes the

proof. �
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6. Examples

In this section, we discuss the condition (32) of Theorem 7 in some examples which

summarize the situation in three cases: sublinear, linear, and quadratic growth.

It follows from the formula (20) that the Green’s function G(x, s) is bounded for

x, s ∈ [a, c) ∪ (c, b]. Therefore, we can define a finite positive number g by

(33) g−1 = sup
x∈[a,c)∪(c,b]

∫ b

a

|G(x, s)| ds

and the condition (32) can be written as

(34) |f(x, ξ)| 6 gR for (x, ξ) ∈ ΩR,

that is, for x ∈ [a, c) ∪ (c, b] and ξ ∈ C with |ξ| 6 R.

1. If the function f(x, ξ) satisfies

|f(x, ξ)| 6 c1 + c2|ξ|
r for all x ∈ [a, c) ∪ (c, b] and ξ ∈ C,

where c1, c2, and r are some positive constants, then the condition (34) will be

satisfied if

(35) c1 + c2R
r

6 gR.

Obviously, the last inequality will hold if r < 1 and R is sufficiently large. We can

determine how large must R be. Indeed, rewriting the inequality (35) in the form

(36) R
(

g −
c2

R1−r

)

> c1,

we require that the inequality

g −
c2

R1−r
>

g

2
, that is, R >

(2c2

g

)1/(1−r)

be also satisfied. Then (36) yields

R >
2c1

g
.

Therefore, if

R > max
{2c1

g
,
(2c2

g

)1/(1−r)}

,

then the inequality (35) will be satisfied.
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2. Let

|f(x, ξ)| 6 c1 + c2|ξ| for all x ∈ [a, c) ∪ (c, b] and ξ ∈ C,

where c1, c2 are some positive constants. Then the condition (34) will be satisfied if

the positive number R can be chosen so that

c1 + c2R 6 gR.

This will hold if

c2 < g and R >
c1

g − c2
.

3. Let

|f(x, ξ)| 6 c1 + c2|ξ|
2 for all x ∈ [a, c) ∪ (c, b] and ξ ∈ C,

where c1, c2 are some positive constants. Then the condition (34) will be satisfied if

the positive number R can be chosen so that

c1 + c2R
2 6 gR,

that is,

(37) c2R
2 − gR + c1 6 0.

The quadratic function c2λ
2 − gλ + c1 has two distinct real zeros

λ1 =
g −

√

g2 − 4c1c2

2c2
and λ2 =

g +
√

g2 − 4c1c2

2c2

if 4c1c2 < g2, and for any R satisfying

λ1 6 R 6 λ2

the inequality (37) will be satisfied.
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7. Concluding remarks

1. The condition (34) involves the number g defined by (33). Therefore, in order

to make this condition explicit we need to calculate the number g explicitly or to get

at least an explicit positive lower bound for g.

In the case of p(x) ≡ 1, q(x) ≡ α2 (α > 0), a = 0, d1 = d2 = 1, where α is

constant, the problem (21)–(23) takes the form

−y′′ + α2y = f(x, y), x ∈ [0, b],

y(0) = y(b), y′(0) = y′(b).

The associated Green’s functionG(x, s) is given in Remark 2 made above in Section 2.

A straightforward calculation shows that

∫ b

0

|G(x, s)| ds =

∫ b

0

G(x, s) ds = α−2

for all x ∈ [0, b], and hence g = α2.

In the case of p(x) ≡ 1, q(x) ≡ 1, a = −1, c = 0, b = 1, the problem (21)–(23)

takes the form

−y′′ + y = f(x, y), x ∈ [−1, 0) ∪ (0, 1],

y(0−) = d1y(0+), y′(0−) = d2y
′(0+),

y(−1) = y(1), y′(−1) = y′(1).

Suppose that

(38) d1 > 0, d2 > 0, and d1 + d2 > 1 + d1d2.

In this case the following can be shown.

(a) If d1 = 1 and d2 > 0 is arbitrary (such d1 and d2 satisfy (38)), then g = 1.

(b) If d2 = e2 and 0 < d1 6 1 (such d1 and d2 satisfy (38)), then

g−1 = 1 +
e−2(d1 − 1)(1 − e4)

1 + (e2 − e−2)d1 − e4
.

(c) If d2 = e−2 and d1 > 1 (such d1 and d2 satisfy (38)), then

g−1 = 1 +
(d1 − 1)(1 − e−4)

1 − (e2 − e−2)d1 − e−4
.
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2. Theorem 7 yields a periodic solution of the corresponding perodic impulsive

nonlinear differential equation on the whole real axis as follows. Let ω > 0 be a fixed

real number and 0 < c < ω. Let us set ci = c + iω for i ∈ Z, where Z denotes the

set of all integers. Consider the periodic impulsive problem

−[p(x)y′]′ + q(x)y = f(x, y), x ∈ R \ {ci : i ∈ Z},(39)

y(c−i ) = d1y(c+
i ), y[1](c−i ) = d2y

[1](c+
i ), i ∈ Z,(40)

where we assume that the following periodicity conditions are satisfied:

(H5) p(x + ω) = p(x), q(x + ω) = q(x), x ∈ R \ {ci : i ∈ Z},

(H6) f(x + ω, ξ) = f(x, ξ), x ∈ R \ {ci : i ∈ Z}, ξ ∈ C.

We are interested in the existence of ω-periodic (i.e. periodic with period ω) so-

lutions of the problem (39)–(40). Together with the problem (39)–(40) consider the

BVPI (21)–(23) with a = 0 and b = ω. If the conditions (H5) and (H6) are satisfied,

then every solution of the BVPI (21)–(23) with a = 0 and b = ω, extended from

[a, c) ∪ (c, b] to R \ {ci : i ∈ Z} as an ω-periodic function, will be a solution of the

problem (39)–(40). Therefore, Theorem 7 yields the following result: Assume that

the conditions of Theorem 7 with a = 0 and b = ω, and (H5), (H6) are satisfied.

Then the problem (39)–(40) has at least one ω-periodic solution y(x) such that

|y(x)| 6 R for x ∈ R \ {ci : i ∈ Z}.
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