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INVARIANT VARIATIONAL PROBLEMS ON PRINCIPAL
BUNDLES AND CONSERVATION LAWS

Ján Brajerčík

Abstract. In this work, we consider variational problems defined byG-invariant
Lagrangians on the r-jet prolongation of a principal bundle P , where G is the
structure group of P . These problems can be also considered as defined on the
associated bundle of the r-th order connections. The correspondence between
the Euler-Lagrange equations for these variational problems and conservation
laws is discussed.

1. Introduction

The order reduction of the Euler-Lagrange equations of invariant variational
functionals on principal bundles belongs to basic problems of the calculus of
variations on these spaces. There are several approaches to this problem. One of
them is the Euler-Poincaré reduction. Let π : P → X be a principal G-bundle, and
let J1P denote the first jet prolongation of P . In [5], [4], [6], G-invariant variational
problem on J1P is represented as a reduced variational problem on the bundle of
connections C(P ) = (J1P )/G with constraints on the space of possible variations.
Moreover, reduced equations correspond to the Noether’s conservation laws plus
an additional condition of zero curvature of connection.

For frame bundles, this theory was generalized for higher order invariant variatio-
nal problems in [2]. It was shown that the variational problem, defined by invariant
Lagrangian of any order r, can be equivalently studied on the associated space of
connections with some compatibility condition, which gives us order reduction of
the corresponding Euler-Lagrange equations.

Another possibility of reduction is presented in [1], where the variational problems
defined by the first and the second order invariant Lagrangians on the frame bundles
are considered. Using the Noether’s theorem, the system of the Euler-Lagrange
equations is equivalent to the system of the same number of lower order equations
which come from the corresponding Noether’s currents.

In this paper, our aim is to extend this theory for higher order G-invariant
variational problems on any principal bundle. For this purpose, in Section 3, we
introduce the bundle CrP of the r-th order connections of a principal bundle
P , which has auxiliary character in this work. With its help, a condition for a
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Lagrangian on JrP to be G-invariant is stated. Our main result is presented in
Section 4. The equivalence between the system of the Euler-Lagrange equations
on one side, and the system of conservation laws on the other side is proved. This
gives us an order reduction for solving of these equations. Section 5 is devoted to
an illustration of presented theory for the first prolongation of frame bundle.

2. Preliminaries and notation

In this section we briefly recall basic notions and objects of presented theory.
Our main reference concerning the calculus of variations on fibred manifolds is [3];
we also use some results contained in [9], [10], [11], and [13]. All manifolds and
mappings in this work are considered to be smooth.

For the formulation of variational principles on fibred manifolds we use the
following notation. Let Y be a fibred manifold with oriented base manifold X
and projection π. We denote n = dimX, m = dimY − n. JrY denotes r-jet
prolongation of Y . The r-jet of a section γ of Y at a point x ∈ X, is denoted
by Jrxγ; and x 7→ Jrγ(x) = Jrxγ is the r-jet prolongation of γ. If Jrxγ ∈ JrY , the
canonical jet projections πr,s : JrY → JsY , 1 ≤ s ≤ r, πr,0 : JrY → Y (the target
projection), πr : JrY → X (the source projection), are defined by πr,s(Jrxγ) = Jsxγ,
πr,0(Jrxγ) = γ(x), and πr(Jrxγ) = x, respectively.

Any fibred chart (V, ψ), ψ = (xi, yσ), on Y , where 1 ≤ i ≤ n, 1 ≤ σ ≤ m,
induces the associated charts on X and on JrY , (U,ϕ), ϕ = (xi), and (V r, ψr),
ψr = (xi, yσ, yσj1

, yσj1j2
, . . . , yσj1j2...jr

), respectively; here U = π(V ), and V r =
(πr,0)−1(V ).

For any open set W ⊂ Y , Ωr
0W denotes the ring of smooth functions on W r.

The Ωr0W -module of differential q-forms on W r is denoted by ΩrqW . The concept
of horizontalization, as the exterior algebra morphism h : ΩrW → Ωr+1W , allows
us to define a form η to be contact by condition hη = 0. For any fibred chart
(V, ψ), ψ = (xi, yσ), we can introduce examples of contact 1-forms ωσj1j2...jl

=
dyσj1j2...jl

− yσj1j2...jlk
dxk, where 1 ≤ l ≤ r − 1.

It is known that a form η ∈ ΩrkW has a unique decomposition

(1) (πr+1,r)∗η = hη + p1η + p2η + · · ·+ pkη ,

such that piη contains, in any fibred chart, exactly i exterior factors ωσj1j2...jl
,

1 ≤ l ≤ r.
hη (piη) is the horizontal (i-th contact) component of η. The decomposition (1)

is invariant, and is called the canonical decomposition of η. η is πr-horizontal if
and only if (πr+1,r)∗η = hη. We say that η is k-contact, if (πr+1,r)∗η = pkη; in this
case k is the order of contactness of η. We say that the order of contactness of η is
≤ l (≥ l), if pl+1η = pl+2η = . . . = pkη = 0 (hη = p1η = . . . = pl−1η = 0).

A Lagrangian (of order r) for Y is any πr-horizontal n-form on some W r ⊂ JrY .
Its chart expression is

λ = Lω0 ,

where ω0 = dx1 ∧ dx2 ∧ . . . ∧ dxn, and L : V r → R is a Lagrange function. The
corresponding variational functional is a real-valued function ΓΩ(π) 3 γ → λΩ(γ) ∈
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R, defined by

λΩ(γ) =
∫
Ω

Jrγ∗λ ,

where Ω ⊂ X is a compact, n-dimensional submanifold with boundary, and ΓΩ(π)
is the set of sections of Y defined on Ω.

The Euler-Lagrange form Eλ, associated with a Lagrangian λ of order r, is
π2r,0-horizontal (n+ 1)-form, in fibred chart defined by

Eλ = Eσ(L)ωσ ∧ ω0 ,

where

Eσ(L) =
r∑

k=0
(−1)kdi1di2 . . . dik

∂L
∂yσi1i2...ik

are the Euler-Lagrange expressions associated with λ.
A section γ is an extremal of a Lagrangian λ of order r, if and only if, for every

fibred chart on Y , γ satisfies the system of partial differential equations

Eσ(L) ◦ J2rγ = 0 .

A differential form ρ ∈ ΩsnW is called a Lepage form, if p1dρ is πs+1,0-horizontal
(n+1)-form. A Lepage form ρ is a Lepage equivalent of a Lagrangian λ ∈ Ωrn,XW , if
hρ = λ (possibly up to a jet projection). Now we recall a theorem on the structure
of Lepage forms on higher order jet prolongations of fibred manifold ([11]). Let
W ⊂ Y be an open set, (V, ψ), ψ = (xi, yσ), a fibred chart on Y such that V ⊂W ,
and let λ ∈ Ωrn,XW be a Lagrangian expressed by λ = Lω0. A Lepage equivalent
ρ ∈ ΩsnW of a Lagrangian λ has the chart expression

(πs+1,s)∗ρ = Θλ + dτ + ν ,

where its principal component Θλ is given by

(2) Θλ = Lω0 +
r−1∑
k=0

( r−1−k∑
l=0

(−1)ldi1di2 . . . dil
∂L

∂yσi1i2...ilj1j2...jki

)
ωσj1j2...jk

∧ ωi ,

τ is a contact (n− 1)-form, order of contactness of an n-form ν is at least 2, and
we denote ωi1i2...ik = i∂/∂xik . . . i∂/∂xi2 i∂/∂xi1ω0.

An example of a Lepage equivalent is the well-known Poincaré-Cartan form for
the first order variational problem. It is a unique Lepage equivalent of a first order
Lagrangian λ whose order of contactness is ≤ 1. If λ is expressed in a fibred chart
by λ = Lω0, then

(3) Θλ = Lω0 + ∂L
∂yσi

ωσ ∧ ωi .

An analogous example can be given for second order Lagrangian. We have

(4) Θλ = Lω0 +
( ∂L
∂yσi
− dp

∂L
∂yσpi

)
ωσ ∧ ωi + ∂L

∂yσji
ωσj ∧ ωi
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(see [9]). Expression (4) defines a differential form on J3Y . We note that for higher
order Lagrangians (r ≥ 3), there is no global Lepage equivalents analogous to (3)
and (4).

By an automorphism of Y we mean a diffeomorphism α : W → Y , where W ⊂ Y
is an open set, for which there exists a diffeomorphism α0 : π(W )→ X such that
πα = α0π. The r-jet prolongation of α is an automorphism Jrα : W r → JrY of
JrY , defined by

Jrα(Jrxγ) = Jrα0(x)(αγα
−1
0 ) .

Using this concept, we can introduce the r-jet prolongation of any vector field ξ,
whose 1-parameter group is formed by automorphisms of Y ; such vector fields are
called projectable. The r-jet prolongation of ξ is denoted by Jrξ.

An automorphism α : W → Y is said to be an invariant transformation of a
form η ∈ ΩspW , if

Jsα∗η = η .

We also say that η is invariant with respect to α. Let ξ be a π-projectable vector
field on Y . We say that ξ is the generator of invariant transformations of η, if

∂Jsξη = 0 ,

where ∂Jsξ denotes Lie derivative by s-jet prolongation of a vector field ξ. In this
case η is said to be invariant with respect to ξ. These definitions also include the
notion of invariance of Lagrangians.

Let λ ∈ Ωr
n,XW be a Lagrangian, and let ρ ∈ Ωs

nW be a Lepage equivalent of
λ. By the Noether’s current associated with a Lepage equivalent ρ and a vector
field ξ we mean the (n− 1)-form Ψρ,ξ = iJsξρ. The Noether theorem (see, e.g., [13])
says that if ξ leaves invariant the Lagrangian λ, then for every extremal γ,

dJsγ∗Ψρ,ξ = 0 .

3. Prolongations of principal bundles

Let P be a (right) principal fibre bundle with n-dimensional base X and structure
group G and let π : P → X be its projection. The right action R : P ×G→ P of
G on P , will be written as

(5) R(u, g) ≡ Rg(u) ≡ Ru(g) ≡ ug ,

for all u ∈ P , g ∈ G. This action can be canonically prolonged to the action
JrR : JrP ×G→ JrP on r-jet prolongation JrP of P by

(6) JrR(Jrxγ, g) ≡ (JrR)g(Jrxγ) = Jrx(Rg ◦ γ) ,

for all Jrxγ ∈ JrP , g ∈ G. We define

(7) CrP = (JrP )/G

to be the set of orbits of (6). JrP is the fibre bundle over X with standard fibre
Jr0 (Rn, G) of all jets with source in 0 ∈ Rn and target in G. Since the projection
πr : JrP → X is G-invariant, we have the projection κr : CrP → X. The smooth
structure on JrP induces the smooth structure on CrP such that CrP becomes
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the fibre bundle over X with standard fiber Jr(0,e)(Rn, G), of all jets with source in
0 ∈ Rn and target in identity element e ∈ G, and the canonical projection

(8) π(r) : JrP → CrP

becomes a surjective submersion (see [8]). Moreover, JrP is a fibre bundle over
CrP with standard fibre G.

For r = 1, the bundle C1P can be identified with the bundle of (principal)
connections of P , and for r > 1, CrP is called the bundle of r-th order connections.
We have the following

Theorem 1. JrP is a right principal G-bundle over CrP such that the diagram

(9)

JrP CrP

P X-

-

? ?

π(r)

π

πr,0 κr

commutes.

Proof. The proof is based on a verification of the definition of a principal G-bundle.
Relation (JrR)g(Jrxγ) = Jrxγ for some Jrxγ ∈ JrP implies (Rg ◦ γ)(x) = γ(x),

which gives us g = e, and the action (6) of G on JrP is free.
Since π : P → X is a principal bundle with structure group G, every x ∈ X

has a neighborhood U ∈ X, for which there is a diffeomorphism φ : π−1(U) →
U ×G such that φ(u) = (π(u), χ(u)), where a mapping χ : π−1(U)→ G satisfies
χ(Rg(u)) = χ(u) · g for all u ∈ π−1(U) and g ∈ G ("·" denotes the operation in G).

Let us denote W r = (κr)−1(U) ⊂ CrP , and consider a bijective smooth mapping
θ : (π(r))−1(W r) → W r × G, defined by Jrxγ 7→ ((JrR)g−1(Jrxγ), ν(Jrxγ)), where
ν(Jrxγ) = χ(γ(x)) ≡ g. The inverse θ−1 : W r × G → (π(r))−1(W r) is defined by
θ−1 : (Jrxγ, h) 7→ (JrR)h(Jrxγ). We have

ν((JrR)g(Jrxγ)) = ν(Jrx(Rg ◦ γ)) = χ(Rg(γ(x)) = χ(γ(x)) · g = ν(Jrxγ) · g

for all Jrxγ ∈ (π(r))−1(W r), g ∈ G, which gives us the local trivialization of the
principal bundle π(r) : JrP → CrP , associated with the local trivialization φ of
π : P → X.

Commuting of the diagram (9) is obvious. �

Consider the canonical jet projections πs,s−1 : JsP → Js−1P (κs,s−1 : CsP →
Cs−1P ), and the canonical quotient projections π(s) : JsP → CsP , given by (8),
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for every s, 1 ≤ s ≤ r. Then we have the commutative diagram

JrP

?

CrP

-

-

Jr−1P

?

Cr−1P

-

-

· · ·

· · ·

-

-

J2P

?

C2P

-

-

J1P

?

C1P

-

-

P

?

X

We say that a form η on JrP is G-invariant if (JrR)∗gη = η holds for every
g ∈ G. According to the identification (7) and Theorem 1 we have

Lemma 1. A form η on JrP is G-invariant if and only if there exists a form η̃
on CrP such that η = (π(r))∗η̃.

This Lemma also covers G-invariant Lagrangians on JrP .

It is easy to determine the fundamental vector fields of the right action (5). Let
g be the Lie algebra of G. The fundamental vector field ξ on P , associated with an
element ξ0 ∈ g, is defined, for every u ∈ P , by the formula
(10) ξ(u) = TeR

u · ξ0
(see, e.g., [7], [12]).

By the same way, the r-jet prolongation of the right action of G on P (6)
generates the fundamental vector fields on JrP . The r-jet prolongation Jrξ of the
fundamental vector field ξ, defined by (10), on P , coincides with the fundamental
vector field on JrP , associated with ξ0.

The construction of a fundamental vector field on JrP gives us that ξ is a
generator of invariant transformations of differential forms which are invariant with
respect to the right action of G on JrP .

4. Invariant variational principles on principal bundles

Now we discuss consequences of G-invariance of the r-th order Lagrangians
on principal bundles for the Euler-Lagrange equations. Our basic tool is the first
variation formula (see [3], [11]).

We denote by Ψλ,ξ the Noether’s current associated with the principal component
Θλ (2), of a Lepage equivalent of a Lagrangian λ, and a vector field ξ, i.e.,

Ψλ,ξ = iJ2r−1ξΘλ .

Let P be a principal bundle over an n-dimensional manifold X, and let π be the
bundle projection. Suppose that we have a Lagrangian λ ∈ Ωrn,XP and a π-vertical
vector field ξ on P . Then in our standard notation
(11) ∂Jrξλ = iJ2rξEλ + hdiJ2r−1ξΘλ .

Theorem 2. Let λ ∈ Ωrn,XP be a G-invariant Lagrangian, let n ≥ 2, and let γ be
a section of P . The following conditions are equivalent:

(a) γ satisfies the Euler-Lagrange equations,
Eσ(L) ◦ J2rγ = 0 .
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(b) For any fundamental vector field ξ on P , γ satisfies the conservation law
d(J2r−1γ)∗iJ2r−1ξΘλ = 0 .

(c) For every x ∈ X there exist a neighborhood U of x and (n−2)-form η defined
on U such that

J2r−1γ∗(Ψλ,ξ − dη) = 0 .

Proof. By hypothesis, for any fundamental vector field ξ on P , ∂J2r−1ξλ = 0.
Consequently, since ξ is always π-vertical, the first variation formula (11) reduces
to
(12) iJ2rξEλ + hdΨλ,ξ = 0 .
Suppose that a section γ satisfies the Euler-Lagrange equations. Then the form
iJ2rξEλ vanishes along J2rγ, so we have J2rγ∗dΨλ,ξ = dJ2rγ∗Ψλ,ξ = 0. Integrating
we can find an (n− 2)-form η on U such that
(13) J2r−1γ∗Ψλ,ξ = dη .

Conversely, if a section γ satisfies condition (13), then by (12), γ is necessarily an
extremal. �

5. Example: First order invariant variational problem on frame
bundles

In this Section the consequences of the above stated theory for frame bundles
are shown. We recall some basic objects of the theory of frame bundles. For other
related notions we refer to [1], [7], and [12].

Let X be an n-dimensional smooth manifold, and let µ : FX → X be the frame
bundle over an n-dimensional manifold X, which has the structure of a principal
fiber bundle with the structure group Gln(R). A frame at a point x ∈ X is a
pair Ξ = (x, ζ), where ζ = (ζ1, ζ2, . . . , ζn) is an ordered basis of the tangent space
TxX. For every chart (U,ϕ), ϕ = (xi), on X, the associated chart on FX, (V, ψ),
ψ = (xi, xij), is defined by V = µ−1(U), and

xi(Ξ) = xi(µ(Ξ)), ζj = xij(Ξ)
( ∂

∂xi

)
x
,

where Ξ ∈ V . We denote by yjk the inverse matrix of xij . The right action FX ×
Gln(R) 3 (Ξ, A) 7→ RA(Ξ) ∈ FX is given by the equations

x̄i = xi ◦RA = xi, x̄ij = xij ◦RA = xika
k
j ,

where A = (aij) is an element of the group Gln(R).
For the formulation of variational principles defined by a first order Lagrangian

on the frame bundles we use the manifolds J1FX and J2FX. To the charts (U,ϕ),
and (V, ψ), introduced above, we associate a chart (V 2, ψ2), ψ2 = (xi, xij , xij,k, xij,kl),
on J2FX, defined in a standard way. The general linear group acts on J2FX on
the right by the formula J2FX ×Gln(R) 3 (J2

xγ,A) 7→ J2
x(RA ◦ γ) ∈ J2FX; the

action is expressed by the equations
(14) x̄i = xi , x̄ij = xika

k
j , x̄ij,k = xim,ka

m
j , x̄ij,kl = xim,kla

m
j .
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It is easy to determine the orbits of this action. Denoting

(15) Γikp = −ymp xim,k, Γiklp = −ymp xim,kl ,

we obtain Gln(R)-invariant functions on J2FX, and equations of Gln(R)-orbits
are

Γikp = cikp, Γiklp = ciklp ,

where cikp, ciklp ∈ R are arbitrary numbers. The functions Γiklp are symmetric in k, l.
We have the following results.

Lemma 2. Every Gln(R)-invariant function on J2FX depends on xi, Γikp, Γiklp.

In other words Lemma 2 says that Gln(R)-invariant functions coincide with
the functions on the bundle of second order connections C2FX = (J2FX)/Gln(R)
over X.

From equations (14) we can obtain an extension of Lemma 2 to differential
forms.

Lemma 3. A k-form η on J2FX is Gln(R)-invariant if and only if it has an
expression

η = ∆0 + yq1
r1
dxp1

q1
∧∆r1

p1
+ yq1

r1
yq2
r2
dxp1

q1
∧ dxp2

q2
∧∆r1r2

p1p2

+ · · ·+ yq1
r1
yq2
r2
. . . yqkrkdx

p1
q1
∧ dxp2

q2
· · · ∧ dxpkqk ∧∆r1r2...rk

p1p2...pk
,

where ∆0, ∆r1
p1

, ∆r1r2
p1p2

, . . ., ∆r1r2...rk
p1p2...pk

are arbitrary forms defined on C2FX.

Further, we need expressions for the fundamental vector fields. Let

ξ0 = ξij

( ∂

∂aij

)
e

be a vector belonging to the Lie algebra gln(R) of Gln(R). Then the corresponding
fundamental vector field of the action (14), on J2FX, is given by

ξ = ξis

(
xti

∂

∂xts
+ xti,k

∂

∂xts,k
+ xti,kl

∂

∂xts,kl

)
.

For the following results we use Gln(R)-adapted chart (V 2,Ψ2), Ψ2 = (xi, xij ,
Γikp,Γiklp), on J2FX, associated with a chart (V 2, ψ2), where coordinate functions
are defined by (15). We also denote ωij = dxij − xij,kdxk.

Lemma 4. (a) A Lagrangian λ = Lω0 is Gln(R)-invariant if and only if L depends
on xi, Γikj only.

(b) The Euler-Lagrange form of a Gln(R)-invariant Lagrangian has an expression
Eλ = yjlE

l
i(L)ωij ∧ ω0, where

(16) Eli(L) = −Γpqi
∂L
∂Γpql

+ Γlpq
∂L
∂Γipq

+ ∂2L
∂xp∂Γipl

+ (Γkmpr + ΓkmqΓqpr)
∂2L

∂Γkmr∂Γipl
.
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(c) If λ is Gln(R)-invariant, then the Noether’s current associated with the
Poincaré-Cartan form Θλ and any fundamental vector field ξ is given by

Ψλ,ξ = −ξmj y
j
l x
i
m

∂L
∂Γikl

ωk .

Using the Noether’s theorem we get the following correspondence between two
sets of equations for the sections of FX.

Theorem 3. Let λ ∈ Ω1
n,XFX be a Gln(R)-invariant Lagrangian, n ≥ 2, and let

γ be a section of FX. The following conditions are equivalent:
(a) γ satisfies the Euler-Lagrange equations,

Eli(L) ◦ J2γ = 0 .
(b) For any fundamental vector field ξ on FX, γ satisfies the conservation law

d(J1γ)∗iJ1ξΘλ = 0 .
(c) For any chart (U,ϕ), ϕ = (xi), on X, and all j, k, there exist (n− 2)-forms

ηjk such that

J1γ∗
(
yjl x

i
k

∂L
∂Γiml

ωm − dηjk
)

= 0 .
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