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Abstract. For any x ∈ [0, 1), let x = [ε1, ε2, . . . , ] be its dyadic expansion. Call rn(x) :=
max{j > 1: εi+1 = . . . = εi+j = 1, 0 6 i 6 n − j} the n-th maximal run-length function
of x. P. Erdös and A.Rényi showed that lim

n→∞
rn(x)/log2 n = 1 almost surely. This paper

is concentrated on the points violating the above law. The size of sets of points, whose run-
length function assumes on other possible asymptotic behaviors than log2 n, is quantified
by their Hausdorff dimension.
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1. Introduction

Let X(k)(t) = (X1(t), . . . , Xk(t)) denote a k-vector of i.i.d. random variables, each

taking the values 1 or 0 with respective probabilities p and 1 − p. A lot of classical

results in probability theory, for instance the strong law of large numbers, the law

of iterated logarithm, and so on, concern almost-sure properties of sequences {Xn}
of i.i.d. random variables. As a process indexed by non-negative t, I. Benjamini et

al. proved that X
(k)(t) is strong Markov with invariant measure ((1 − p)δ0 + pδ1)

k.

For the dynamical walk Sn(t) = X1(t)+ . . . +Xn(t) (t > 0, n > 1), they proved that

the law of large numbers and the law of iterated logarithm are dynamically stable

while run tests are dynamically sensitive; also, they obtain multi-fractal analysis

of exceptional times for run lengths and for prediction [2]. Subsequently, Davar

Khoshnevisan et al. showed that in the case that Xi(0)’s are standard normal, the

classical integer test is not dynamically stable [4]. Then in [5], they extended a result
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of [2] by proving that if Xi(0)’s are lattice, mean-zero and variance-one, and process

(2 + ε) finite absolute moments for some ε > 0, then the recurrence of the origin is

dynamically stable. Also, they studied some properties of the set of times t when

n 7→ Sn(t) exceeds a given envelope infinitely often, they proved that the infinite-

dimensional process t 7→ Sxn•y(t)/
√

n converges weakly in D[0, 1]. At the same time,

the Bescovitch-Hausdorff dimension of the of set of those points which violate the

corresponding law of the iterated logrithm were investigated. In [6], D. Khoshnevisan,

D.A. Levin estimated the probability that X1(t)+ . . .+Xk(t) = k− l for some t ∈ F ,

where F ⊆ [0, 1] is nonrandom and compact.

The run-length function rn was introduced for the first time in a mathematical

experiment of cion tossing, which measures the length of consecutive terms of ‘heads’

in n times’ experiment. The run-length function has been extensively studied and

used in probability theory and other subjects, such as in the DNA string machine [1].

For a brief introduction of the run-length function, one can refer to P.Révész’s book

[8] and references therein.

It is also well known that every x ∈ [0, 1) corresponds to a unique infinite sequence

[ε1, ε2, . . .] with εn ∈ {0, 1} for all n > 1 and εn = 0 for infinitely many n’s, in the

sense that

x =

∞∑

n=1

εn

2n

is the dyadic expansion of x. Naturally, the maximal run-length function rn(x), for

x ∈ [0, 1), can be defined as the length of the longest run of 1’s in [ε1(x), . . . , εn(x)],

that is

rn(x) = max{j > 1: εi+1 = . . . = εi+j = 1, 0 6 i 6 n − j}.

For the asymptotic behavior of rn, P.Erdös and A.Rényi showed that, almost

surely,

lim
n→∞

rn(x)

log2 n
= 1.

Nevertheless, the points that violate the above law are visible, in the sense that they

carry full Hausdorff dimension [7]. But the above results provide no information

about whether there exist points whose run-length function can obey other asymp-

totic behavior than log2 n. This motivates us to investigate the set of points with

other given asymptotic characters of their run-length function.

Given a nondecreasing integer sequence {δn}∞n=1, set

E({δn}∞n=1) =
{
x ∈ [0, 1): lim

n→∞

rn(x)

δn

= 1
}
,

F ({δn}∞n=1) =
{
x ∈ [0, 1): lim sup

n→∞

rn(x)

δn

= 1
}
.
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It is natural to ask whether E({δn}∞n=1) and F ({δn}∞n=1) are always nonempty. Unex-

pectedly, it is not the case for E({δn}∞n=1), even if {δn}∞n=1 satisfies 0 6 δn+1−δn 6 1

for all n > 1 (See Section 2). So, to guaranteeE({δn}∞n=1) 6= ∅, some extra conditions
must be assumed on {δn}∞n=1.

Since the sets in question are all of null Lebesgue measure, Hausdorff dimension

is used to quantify their size. In this note, we in particular prove

Theorem 1.1. Let {δn}∞n=1 be a nondecreasing integer sequence with δn → ∞
as n → ∞ and lim

n→∞
δn+δn

/δn = 1. Then dimH E({δn}∞n=1) = 1.

Theorem 1.2. Let {δn}∞n=1 be an integer sequence with δn → ∞ as n → ∞.
Then dimH F ({δn}∞n=1) = max{0, 1 − lim inf

n→∞
δn/n}.

At the end, we give some examples of {δn}∞n=1 which can fulfil the assumptions of

Theorem 1.1:

• δn = β (log n)γ , β > 0, γ > 0,

• δn = βnγ , β > 0, 0 < γ < 1,

• δn = βn/(log n)γ , β > 0, γ > 0.

We also note that in the set E({δn}∞n=1), δn cannot take a large value such as

δn = n (see Proposition 2.2). The paper is organized as follows. In Section 2, some

intrinsic properties on rn are established, which will give reasons for the assumption

on δn in Theorem 1.1. Section 3 and 4 are devoted to presenting Theorem 1.1 and

Theorem 1.2 respectively.

2. Properties on run-length function

In this section, an intrinsic property shared by the run-length function is presented.

We will see that the assumption in Theorem 1.1 has close relations to this essential

feature of rn. Evidence is also given indicating that not all sequences can serve as

the asymptotic function of the run-length function.

Proposition 2.1. For any x ∈ [0, 1), rn+rn(x)(x) = rn(x) holds for infinitely

many n’s. Consequently,

(2.1) lim inf
n→∞

rn+rn

rn

= 1.

P r o o f. For any x ∈ [0, 1), write rn = rn(x) for brevity. By the requirement of

uniqueness of the dyadic expansion, we know that εn(x) = 0 for infinitely many n’s.
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However, when εn(x) = 0, then

rn+rn
= max{rn(ε1, . . . , εn), rrn

(εn+1, . . . , εn+rn
)} = max{rn, rn} = rn.

Thus we have, for any x ∈ [0, 1), rn+rn
= rn for infinitely many n’s. �

Proposition 2.2. For any 0 < β 6 1,

Ẽ(β) :=
{
x ∈ [0, 1): lim

n→∞

rn(x)

n
= β

}
= ∅.

P r o o f. (i) β = 1. For any x ∈ Ẽ(β) and 0 < ε < 1/4, there exists N > 2

such that for any n > N , rn(x) > (1 − ε)n. We will show that εn(x) = 1 for all

n > N . If this is not the case, we assume that εn(x) = 0, then r2n(x) 6 n. This

leads to a contradiction. Since there are infinitely many 0’s in the expansion of each

x ∈ [0, 1), we have Ẽ(β) = ∅.
(ii) 0 < β < 1. Let k = 1

2 ( 1
1−β

+ 1) and ε < min{ (k−1)β
k+1 , β(1−β)

2−β
}, which gives

k(β − ε) > β + ε and k − 1 < k(β − ε).

For any x ∈ Ẽ(β), there exists N ∈ N such that for any n > N ,

(β − ε)(n + 1) < rn(x) < (β + ε)n.

We claim that εn(x) = 1 for all n > N . If this is not the case for some n > N , then

r[kn] = max{rn(ε1, . . . , εn), r[kn]−n(εn+1, . . . , ε[kn])}
6 max{(β + ε)n, kn− n} < (β − ε)kn < (β − ε)([kn] + 1),

which leads to a contradiction. So, we get Ẽ(β) = ∅. �

3. Proof of theorem 1.2

Recall that

F ({δn}∞n=1) =
{
x ∈ [0, 1): lim sup

n→∞

rn(x)

δn

= 1
}
,

where {δn}∞n=1 is an integer sequence with δn → ∞ as n → ∞. Write β = lim inf
n→∞

δn/n

for simplicity.
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Lemma 3.1. dimH F ({δn}∞n=1) 6 max{0, 1 − β}.

P r o o f. When β > 1, then F ({δn}∞n=1) = ∅. So we restrict ourselves to
0 6 β 6 1. To get the desired result, it suffices to show that, for any ε > 0 and

s > 1 − (1 − ε)β, dimH F ({δn}∞n=1) 6 s.

Note that, for any ε > 0,

F ({δn}∞n=1) ⊂ {x ∈ [0, 1): rn(x) > (1 − ε)δn, i.o. n}.

So, for each N > 1, ⋃

n>N

⋃

(ε1,...,εn)∈Dn(ε)

In(ε1, . . . , εn)

is a cover of F ({δn}∞n=1), where

Dn(ε) = {(ε1, . . . , εn) ∈ {0, 1}n : rn(ε1, . . . , εn) > (1 − ε)δn}.

Then for any s > 1 − (1 − ε)β,

Hs(F ({δn}∞n=1)) 6 lim inf
N→∞

∞∑

n=N

∑

(ε1,...,εn)∈Dn(ε)

|In(ε1, . . . , εn)|s

= lim inf
N→∞

∞∑

n=N

♯Dn(ε)
1

2ns

6 lim inf
N→∞

∞∑

n=N

n2n−(1−ε)δn
1

2ns
6 1,

where the last assertion follows from the fact that whenever s > 1 − (1 − ε)β, then

1 − (1 − ε)δn/n < s for all n large enough. Hence dimH F ({δn}∞n=1) 6 s. �

Lemma 3.2.

dimH F ({δn}∞n=1) =

{
0, when β = 1;

1, when β = 0.

P r o o f. The first assertion follows from Lemma 3.1. When β = 0, note that

{
x ∈ [0, 1): sup

n>1
rn(x) < ∞

}
⊂ F ({δn}∞n=1).

For any M > 3, set

F =

{
fε2,...,εM−1

(x) =

M−1∑

n=2

εn

2n
+

x

2M
, εn ∈ {0, 1}, 1 < n < M

}
.
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Let FM be the attractor of the self-similar IFS F . It is easy to see that

dimH FM =
log 2M−2

log 2M
=

M − 2

M
.

Evidently, FM ⊂ {x ∈ [0, 1): sup
n>1

rn(x) < ∞}. �

In the sequel, we restrict ourselves to 0 < β < 1. Let βk be a sequence of rationals

decreasing to β. Choose a subsequence Nk of N satisfying, for each k > 1,

Nk >
8

β2
k

, Nk+1 > (k + 1)Nk, lim
k→∞

δNk

Nk

= β,

βk · Nk ∈ N, tk :=
Nk+1 − βk+1Nk+1 − Nk

βkNk

∈ N.

Set
L = {Nk + jkβkNk, 0 6 jk < tk, and Nk+1 − βk+1Nk+1 + 1,

Nk+1 − βk+1Nk+1 + 2, . . . , Nk+1 − 1, k > 1}.

Define a sequence {an}n∈L given as follows. When i 6 N1, set ai = 0. When k > 1

and 0 6 jk 6 tk, set

aNk+jkβkNk
= 0, aNk+1−βk+1Nk+1+1 = . . . = aNk+1−1 = 1.

For any n > 1, define

Dn = {(ε1, . . . , εn) ∈ {0, 1}n : εk = ak, for k ∈ L and 1 6 k 6 n}.

Define

E =

∞⋂

n=1

⋃

(ε1,...,εn)∈Dn

In(ε1, . . . , εn).

Proposition 3.1. E ⊂ F ({δn}∞n=1).

P r o o f. Fix x ∈ E. For any n > N1, let k > 1 be the integer such that

Nk 6 n < Nk+1.

C a s e (i). Nk 6 n < Nk+1 − βk+1Nk+1. In this case, rn(x) = βkNk − 1. Thus,

rn(x)

δn

6
βkNk − 1

δNk

.
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C a s e (ii). Nk+1 − βk+1Nk+1 6 n < Nk+1. Thus by the definition of E, we have

rn(x) = max{βkNk − 1, n − Nk+1 + βk+1Nk+1}. Thus

rn(x)

δn

6 max
{βkNk − 1

δNk

,
n − Nk+1 + βk+1Nk+1

n

n

δn

}

6 max
{βkNk − 1

δNk

,
Nk+1 − Nk+1 + βk+1Nk+1

Nk+1

n

δn

}
.

Thus, in general, for any x ∈ E, we have lim sup
n→∞

rn(x)/δn 6 1.

While, on the other hand, for any x ∈ E and k > 2 we have rNk
(x) = βkNk − 1,

thus, lim sup
n→∞

rn(x)/δn > 1. �

Lemma 3.3. dimH E = 1 − β.

P r o o f. We show dimH E > 1 − β only. First define a mass distribution

supported on E. For any n > 1 and (ε1, . . . , εn) ∈ Dn, set

µ(I(ε1, . . . , εn)) =
1

♯Dn

.

Then by Kolomogrov’s consistency theorem, µ can be extended to a probability

measure supported on E. In what follows, we estimate the measure µ(In(x)) for any

x ∈ E. Assume that Nk 6 n < Nk+1.

C a s e (i). Nk + jkβkNk 6 n < Nk + (jk + 1)βkNk. In this case,

µ(In(x)) =

( k−1∏

i=1

2Ni+1−βi+1Nj+1−Ni−ti · 2n−Nk−jk

)−1

.

Thus,

log µ(In(x))

−n log 2
>

n − Nk − jk +
∑k−1

i=1 (Ni+1 − βi+1Ni+1 − Ni − ti)

n

> 1 − Nk + jk − ∑k−1
i=1 (Ni+1 − βi+1Ni+1 − Ni − ti)

Nk + jkβkNk

> 1 − Nk − ∑k−1
i=1 (Ni+1 − βi+1Ni+1 − Ni − ti)

Nk

(increasing with respect to jk)

→ 1 − β, as k → ∞.

C a s e (ii). Nk+1 − βk+1Nk+1 6 n < Nk+1. In this case,

µ(In(x)) =

( k∏

i=1

2Ni+1−βi+1Ni+1−Ni−ti

)−1

.
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Thus,

log µ(In(x))

−n log 2
=

∑k
i=1(Ni+1 − βi+1Ni+1 − Ni − ti)

n

>

∑k
i=1(Ni+1 − βi+1Ni+1 − Ni − ti)

Nk+1

→ 1 − β, as k → ∞.

In general, we have

lim inf
n→∞

log µ(In(x))

log |In(x)| > 1 − β.

An application of Billingsley’ Theorem (see [3], p. 141, Theorem 14.1) yields

dimH E > 1 − β.
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