Czechoslovak Mathematical Journal

Ján Brajerčík

Order reduction of the Euler-Lagrange equations of higher order invariant variational problems on frame bundles

Czechoslovak Mathematical Journal, Vol. 61 (2011), No. 4, 1063-1076

Persistent URL: http://dml.cz/dmlcz/141807

Terms of use:

© Institute of Mathematics AS CR, 2011

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ORDER REDUCTION OF THE EULER-LAGRANGE EQUATIONS OF HIGHER ORDER INVARIANT VARIATIONAL PROBLEMS ON FRAME BUNDLES

JÁn Brajerčík, Prešov

(Received September 14, 2010)

Abstract

Let $\mu: F X \rightarrow X$ be a principal bundle of frames with the structure group $\mathrm{Gl}_{n}(\mathbb{R})$. It is shown that the variational problem, defined by $\mathrm{Gl}_{n}(\mathbb{R})$-invariant Lagrangian on $J^{r} F X$, can be equivalently studied on the associated space of connections with some compatibility condition, which gives us order reduction of the corresponding Euler-Lagrange equations.

Keywords: Frame bundle, Euler-Lagrange equations, invariant Lagrangian, EulerPoincaré reduction

MSC 2010: 53C05, 53C10, 58A20, 58E30

1. Introduction

In the Lagrange theory of the calculus of variations on fibred manifolds, it is well known that the Euler-Lagrange equations are employed for finding the extremal values of the corresponding variational function. In general, for variational problems defined by Lagrangians of order r, the order of the Euler-Lagrange equations is $2 r$. In the case when an underlying manifold has the structure of a principal fibre bundle with the structure group G and G-invariant Lagrangians, the original system of the Euler-Lagrange equations can be simplified.

The idea of reduction of the Euler-Lagrange equations originally comes from mechanics, where G-invariant Lagrangian defined on the tangent bundle of a Lie group G is considered. The equations of new kind for the reduced Lagrangian are called the

The author is grateful to the Ministry of Education of the Slovak Republic (Grant VEGA 1/0577/10), to the Slovak Research and Development Agency (Grant MVTS SK-CZ-0006-09), and to the Czech Grant Agency (Grant 201/09/0981).

Euler-Poincaré equations (see, e.g., [14]). The extension of such mechanism to field theory was done in [3], [4], [5], and is called the Euler-Poincaré reduction. In this case, we consider a Lagrangian defined on the first jet prolongation $J^{1} P$ of a principal fibre bundle P, invariant under the natural action induced by the structure group G on $J^{1} P$. The reduced variational problem, in the sense of Euler-Poincaré reduction, is defined on the bundle of connections $C(P)$, which can be identified with $\left(J^{1} P\right) / G$. It was shown that locally there is an equivalence between the solutions of the EulerLagrange equations for G-invariant Lagrangian on the one side, and the solutions of the Euler-Poincaré equations for reduced Lagrangian plus the condition of flat connection on the other side.

In this paper, we consider the same type of invariant variational problems defined on frame bundles $F X$ over an n-dimensional manifold X. Our aim is to generalize the reduction problem to higher order cases, i.e., to variational problems on $J^{r} F X$ defined by $\mathrm{Gl}_{n}(\mathbb{R})$-invariant Lagrangians.

In Sections 2 and 3 we recall the basic notions from the variational theory on fibred manifolds and frame bundles, respectively. Section 4 deals with the correspondence between the sections of $J^{1} F X$ and $C^{1} X$, where $C^{1} X$ is the bundle of linear connections of X. Using this correspondence it is shown that the $\mathrm{Gl}_{n}(\mathbb{R})$-invariant variational problem on $J^{r+1} F X$ can be alternatively studied as the reduced problem on $J^{r} C^{1} X$, which gives us the order reduction of the variational equations for extremals. Again, the necessity of additional compatibility conditions for connections, in the form of zero curvature, occurs. Having a solution of the reduced equations, the compatibility conditions ensure the existence of the associated extremal frame field, because they correspond to the conditions of complete integrability of the arising system of first order equations. In Section 5 we give explicit expressions of the reduced, first order equations for connections, which replace the second order Euler-Lagrange equations for the associated frame field.

For reduction of the solution of the Euler-Lagrange equations defined by higher order invariant Lagrangians it is also possible to use the corresponding bundles of higher order connections $C^{r} X=J^{r} F X / \mathrm{Gl}_{n}(\mathbb{R})$ (see [1]).

2. Preliminaries

Y is a fibred manifold with an oriented base manifold X and a projection π. We denote $n=\operatorname{dim} X, m=\operatorname{dim} Y-n . J^{r} Y$ is the r-jet prolongation of Y. The r-jet of a section γ of Y at a point $x \in X$ is denoted by $J_{x}^{r} \gamma$; and $x \mapsto J^{r} \gamma(x)=J_{x}^{r} \gamma$ is the r-jet prolongation of γ. If $J_{x}^{r} \gamma \in J^{r} Y$, the canonical jet projections $\pi^{r, 0}: J^{r} Y \rightarrow$ Y (the target projection), $\pi^{r}: J^{r} Y \rightarrow X$ (the source projection), are defined by $\pi^{r, 0}\left(J_{x}^{r} \gamma\right)=\gamma(x)$, and $\pi^{r}\left(J_{x}^{r} \gamma\right)=x$, respectively.

Any fibred chart $(V, \psi), \psi=\left(x^{i}, y^{\sigma}\right)$, on Y, where $1 \leqslant i \leqslant n, 1 \leqslant \sigma \leqslant m$, induces the associated charts on X and on $J^{r} Y,(U, \varphi), \varphi=\left(x^{i}\right)$, and $\left(V^{r}, \psi^{r}\right)$, $\psi^{r}=\left(x^{i}, y^{\sigma}, y_{j_{1}}^{\sigma}, y_{j_{1} j_{2}}^{\sigma}, \ldots, y_{j_{1} j_{2} \ldots j_{r}}^{\sigma}\right)$, respectively; here $V^{r}=\left(\pi^{r, 0}\right)^{-1}(V)$, and $U=$ $\pi(V)$. For functions on V^{r}, we define the formal derivative operator (with respect to the fibred chart $(V, \psi))$ by

$$
d_{p}=\frac{\partial}{\partial x^{p}}+y_{p}^{\sigma} \frac{\partial}{\partial y^{\sigma}}+y_{i_{1} p}^{\sigma} \frac{\partial}{\partial y_{i_{1}}^{\sigma}}+\ldots+y_{i_{1} i_{2} \ldots i_{r} p}^{\sigma} \frac{\partial}{\partial y_{i_{1} i_{2} \ldots i_{r}}^{\sigma}} .
$$

A Lagrangian (of order r) for Y is any π^{r}-horizontal n-form on some $W^{r} \subset J^{r} Y$. If, in a fibred chart $(V, \psi), \psi=\left(x^{i}, y^{\sigma}\right)$, we denote $\omega_{0}=\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \ldots \wedge \mathrm{~d} x^{n}$, then a Lagrangian, defined on $V^{r}=\left(\pi^{r, 0}\right)^{-1}(V)$, has in this chart an expression

$$
\lambda=\mathcal{L} \omega_{0}
$$

where $\mathcal{L}: V^{r} \rightarrow \mathbb{R}$ is a function (the Lagrange function associated with λ and (V, ψ)).
The Euler-Lagrange form E_{λ}, associated with a Lagrangian λ of order r, is a $\pi^{2 r, 0_{-}}$ horizontal $(n+1)$-form, in fibred chart defined by

$$
E_{\lambda}=E_{\sigma}(\mathcal{L}) \omega^{\sigma} \wedge \omega_{0}
$$

where

$$
E_{\sigma}(\mathcal{L})=\sum_{k=0}^{r}(-1)^{k} d_{i_{1}} d_{i_{2}} \ldots d_{i_{k}} \frac{\partial \mathcal{L}}{\partial y_{i_{1} i_{2} \ldots i_{k}}^{\sigma}}
$$

are the Euler-Lagrange expressions associated with λ.
Let Ω be a piece of X (a compact, n-dimensional submanifold of X with boundary $\partial \Omega)$, let $\Gamma_{\Omega, W}(\pi)$ be the set of smooth sections γ over Ω such that $\gamma(\Omega) \subset W$. If we have a Lagrangian λ of order r defined on W^{r}, the variational function associated with λ over Ω is the mapping $\Gamma_{\Omega, W}(\pi) \ni \gamma \rightarrow \lambda_{\Omega}(\gamma) \in \mathbb{R}$ defined by

$$
\lambda_{\Omega}(\gamma)=\int_{\Omega} J^{r} \gamma^{*} \lambda
$$

Let ξ be a π-projectable vector field on Y, and let $\partial_{J^{r} \xi} \lambda$ denote the Lie derivative of λ by the r-jet prolongation $J^{r} \xi$ of ξ. The number

$$
\left(\partial_{J^{r} \xi} \lambda\right)_{\Omega}(\gamma)=\int_{\Omega} J^{r} \gamma^{*} \partial_{J^{r} \xi} \lambda
$$

is the variation of the variational function λ_{Ω} at γ, induced by the vector field ξ. We say that a section $\gamma \in \Gamma_{\Omega, W}(\pi)$ is stable with respect to a variation ξ of γ, if
$\left(\partial_{J^{r} \xi} \lambda\right)_{\Omega}(\gamma)=0$. If γ is stable with respect to all ξ with support contained in $\pi^{-1}(\Omega)$, we say that γ is an extremal of λ_{Ω}. A section γ which is an extremal of every λ_{Ω} is called an extremal of λ. A section γ is an extremal of a Lagrangian λ of order r if and only if, for every fibred chart on Y, γ satisfies the system of partial differential equations

$$
E_{\sigma}(\mathcal{L}) \circ J^{2 r} \gamma=0 .
$$

For more detailed exposition of the variational theory on fibred spaces, including local variational principles, see [2], [11].

3. Frame bundles and their prolongations

In this section we recall the basic notions from the theory of frame bundles; the reader can also consult [1], [9], [13].

Henceforth, instead of Y, let us consider the frame bundle $\mu: F X \rightarrow X$ over an n-dimensional manifold X, which has the structure of a principal fiber bundle with the structure group $\mathrm{Gl}_{n}(\mathbb{R})$. A frame at a point $x \in X$ is a pair $\Xi=(x, \zeta)$, where $\zeta=\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)$ is an ordered basis of the tangent space $T_{x} X$. For every chart $(U, \varphi), \varphi=\left(x^{i}\right)$, on X, the associated chart $(V, \psi), \psi=\left(x^{i}, x_{j}^{i}\right)$, on $F X$, is defined by $V=\mu^{-1}(U)$, and

$$
x^{i}(\Xi)=x^{i}(\mu(\Xi)), \quad \zeta_{j}=x_{j}^{i}(\Xi)\left(\frac{\partial}{\partial x^{i}}\right)_{x}
$$

where $\Xi \in V$. We denote by y_{k}^{j} the inverse matrix of x_{j}^{i}.
Let us denote by $J^{r} F X$ an r-jet prolongation of $F X$. With any chart (U, φ), $\varphi=\left(x^{i}\right)$, on X, we also associate a chart $\left(V^{r}, \psi^{r}\right)$ on $J^{r} F X$, where $V^{r}=\left(\mu^{r}\right)^{-1}(U)$ and $\psi^{r}=\left(x^{i}, x_{j}^{i}, x_{j, k_{1}}^{i}, x_{j, k_{1} k_{2}}^{i}, \ldots, x_{j, k_{1} k_{2} \ldots k_{r}}^{i}\right)$.

The right action $(\Xi, A) \mapsto \Xi \cdot A \equiv R_{A}(\Xi)$ of $\mathrm{Gl}_{n}(\mathbb{R})$ on $F X$ is expressed, in a chart $(U, \varphi), \varphi=\left(x^{i}\right)$, on X, by the equations

$$
\bar{x}^{i}=x^{i} \circ R_{A}=x^{i}, \quad \bar{x}_{j}^{i}=x_{j}^{i} \circ R_{A}=x_{k}^{i} a_{j}^{k},
$$

where a_{j}^{k} are the canonical coordinates on $\mathrm{Gl}_{n}(\mathbb{R})$. This action can be canonically prolonged to the action of $\mathrm{Gl}_{n}(\mathbb{R})$ on $J^{r} F X$. If $A \in \mathrm{Gl}_{n}(\mathbb{R}), J_{x}^{r} \gamma \in J^{r} F X$, we define

$$
\left(J_{x}^{r} \gamma, A\right) \mapsto J_{x}^{r} \gamma \cdot A \equiv J^{r} R_{A}\left(J_{x}^{r} \gamma\right)=J_{x}^{r}\left(R_{A} \circ \gamma\right) .
$$

In the associated charts on $F X$ and $J^{r} F X$, we have

$$
\begin{aligned}
\bar{x}^{i} & =x^{i} \circ J^{r} R_{A}=x^{i} \\
\bar{x}_{j, k_{1} k_{2} \ldots k_{m}}^{i} & =x_{j, k_{1} k_{2} \ldots k_{m}}^{i} \circ J^{r} R_{A}=x_{l, k_{1} k_{2} \ldots k_{m}}^{i} a_{j}^{l}, \quad 0 \leqslant m \leqslant r
\end{aligned}
$$

A form η on $J^{r} F X$ is invariant with respect to the action of $\mathrm{Gl}_{n}(\mathbb{R})$ (or, $\mathrm{Gl}_{n}(\mathbb{R})$ invariant), if

$$
\left(J^{r} R_{A}\right)^{*} \eta=\eta
$$

holds for all $A \in \mathrm{Gl}_{n}(\mathbb{R})$. In particular, a function f on $J^{r} F X$ is $\mathrm{Gl}_{n}(\mathbb{R})$-invariant if $\left(J^{r} R_{A}\right)^{*} f=f \circ J^{r} R_{A}=f$ for all $A \in \mathrm{Gl}_{n}(\mathbb{R})$.

The functions

$$
\begin{equation*}
\Gamma_{k_{1} k_{2} \ldots k_{m} p}^{i}=-y_{p}^{l} x_{l, k_{1} k_{2} \ldots k_{m}}^{i} \tag{3.1}
\end{equation*}
$$

defined for $1 \leqslant m \leqslant r$, are examples of $\mathrm{Gl}_{n}(\mathbb{R})$-invariant functions on $J^{r} F X$. Note that the functions $\Gamma_{k_{1} k_{2} \ldots k_{m} p}^{i}$ are symmetric in $k_{1}, k_{2}, \ldots, k_{m}$.

Let $\left(V^{r}, \psi^{r}\right)$ be any fibred chart on $J^{r} F X$. Setting $\Psi^{r}=\left(x^{i}, x_{p}^{i}, \Gamma_{k_{1} p}^{i}, \Gamma_{k_{1} k_{2} p}^{i}, \ldots\right.$, $\Gamma_{k_{1} k_{2} \ldots k_{r} p}^{i}$), we obtain the associated chart $\left(V^{r}, \Psi^{r}\right)$ on $J^{r} F X$, which is said to be $\mathrm{Gl}_{n}(\mathbb{R})$-adapted.

For $r \geqslant 1$, let us denote

$$
C^{r} X=J^{r} F X / \mathrm{Gl}_{n}(\mathbb{R})
$$

The quotient projection $\mu^{(r)}: J^{r} F X \rightarrow C^{r} X$ is in $\mathrm{Gl}_{n}(\mathbb{R})$-adapted coordinates expressed as

$$
\mu^{(r)}:\left(x^{i}, x_{j}^{i}, \Gamma_{k_{1} j}^{i}, \Gamma_{k_{1} k_{2} j}^{i}, \ldots, \Gamma_{k_{1} k_{2} \ldots k_{r} j}^{i}\right) \rightarrow\left(x^{i}, \Gamma_{k_{1} j}^{i}, \Gamma_{k_{1} k_{2} j}^{i}, \ldots, \Gamma_{k_{1} k_{2} \ldots k_{r} j}^{i}\right)
$$

Let $\left\{V_{\alpha}^{r}, \Psi_{\alpha}^{r}\right\}_{\alpha \in \mathcal{A}}$ be a covering of $J^{r} F X$ by $\mathrm{Gl}_{n}(\mathbb{R})$-adapted charts. For each $\alpha \in$ \mathcal{A}, we set $W_{\alpha}^{r}=\mu^{(r)}\left(V_{\alpha}^{r}\right)$, and define the system of coordinate functions χ_{α}^{r} by $\chi_{\alpha}^{r} \circ \mu^{(r)}=\Psi_{\alpha}^{r}$. Then $\left\{W_{\alpha}^{r}, \chi_{\alpha}^{r}\right\}_{\alpha \in \mathcal{A}}$ is a covering of $C^{r} X$ consisting of the fibred charts and $C^{r} X$ is the fibred manifold over X with the projection $\kappa^{r}: C^{r} X \rightarrow X$, in the corresponding coordinates defined by $\kappa^{r}:\left(x^{i}, \Gamma_{k_{1} j}^{i}, \Gamma_{k_{1} k_{2} j}^{i}, \ldots, \Gamma_{k_{1} k_{2} \ldots k_{r} j}^{i}\right) \rightarrow\left(x^{i}\right)$.

Lemma 3.1. $J^{r} F X$ has the structure of a right principal $\mathrm{Gl}_{n}(\mathbb{R})$-bundle over $C^{r} X$ such that the diagram

commutes.
For $r=1$, the space $C^{1} X=J^{1} F X / \mathrm{Gl}_{n}(\mathbb{R})$ can be identified with the bundle of linear connections (García Pérez [7], Krupka [12]). In the case $r>1$, the space $C^{r} X$ is said to be the bundle of an r th order connections (Koláŕr [10]).

Lemma 3.2.

(a) A function on $J^{r} F X$ is $\mathrm{Gl}_{n}(\mathbb{R})$-invariant if and only if it depends, locally, on the coordinates ($x^{i}, \Gamma_{k_{1} p}^{i}, \Gamma_{k_{1} k_{2} p}^{i}, \ldots, \Gamma_{k_{1} k_{2} \ldots k_{r} p}^{i}$) on $C^{r} X$ only.
(b) A k-form η on $J^{r} F X$ is $\mathrm{Gl}_{n}(\mathbb{R})$-invariant if and only if in any chart on X,

$$
\begin{aligned}
\eta= & \Delta_{0}+y_{s_{1}}^{q_{1}} d x_{q_{1}}^{p_{1}} \wedge \Delta_{p_{1}}^{s_{1}}+y_{s_{1}}^{q_{1}} y_{s_{2}}^{q_{2}} d x_{q_{1}}^{p_{1}} \wedge d x_{q_{2}}^{p_{2}} \wedge \Delta_{p_{1} p_{2}}^{s_{1} s_{2}} \\
& +\ldots+y_{s_{1}}^{q_{1}} y_{s_{2}}^{q_{2}} \ldots y_{s_{k}}^{q_{k}} d x_{q_{1}}^{p_{1}} \wedge d x_{q_{2}}^{p_{2}} \ldots \wedge d x_{q_{k}}^{p_{k}} \wedge \Delta_{p_{1} p_{2} \ldots p_{k}}^{s_{2} s_{2} \ldots s_{k}},
\end{aligned}
$$

where $\Delta_{0}, \Delta_{p_{1}}^{s_{1}}, \Delta_{p_{1} p_{2}}^{s_{1} s_{2}}, \ldots, \Delta_{p_{1} p_{2} \ldots p_{k}}^{s_{1} s_{2} \ldots s_{k}}$ are arbitrary forms defined on $C^{r} X$.
(c) Let f be a $\mathrm{Gl}_{n}(\mathbb{R})$-invariant function on $J^{r} F X$. Then the p th formal derivative $d_{p} f$ is again a $\mathrm{Gl}_{n}(\mathbb{R})$-invariant function on $J^{r+1} F X$, and in the corresponding adapted chart it can be expressed as

$$
\begin{equation*}
d_{p} f=\frac{\partial f}{\partial x^{p}}+\sum_{s=1}^{r} \sum_{k_{1} \leqslant k_{2} \leqslant \ldots \leqslant k_{s}} \frac{\partial f}{\partial \Gamma_{k_{1} k_{2} \ldots k_{s} j}^{i}}\left(\Gamma_{k_{1} k_{2} \ldots k_{s} p j}^{i}+\Gamma_{k_{1} k_{2} \ldots k_{s} q}^{i} \Gamma_{p j}^{q}\right) . \tag{3.2}
\end{equation*}
$$

Note that the operator d_{p} introduced in (3.2), restricted to the invariant functions on $J^{r} F X$, corresponds to the operator of the formal derivative of any function on $C^{r} X$.

The functions (3.1) can be rewritten in another form. By (3.2),

$$
\Gamma_{k l j}^{i}=d_{l} \Gamma_{k j}^{i}-\Gamma_{k s}^{i} \Gamma_{l j}^{s}=d_{k} \Gamma_{l j}^{i}-\Gamma_{l s}^{i} \Gamma_{k j}^{s},
$$

where the functions $\Gamma_{k j}^{i}$ and their formal derivatives $d_{l} \Gamma_{k j}^{i}$ satisfy the compatibility condition

$$
\begin{equation*}
d_{l} \Gamma_{k j}^{i}-d_{k} \Gamma_{l j}^{i}+\Gamma_{l s}^{i} \Gamma_{k j}^{s}-\Gamma_{k s}^{i} \Gamma_{l j}^{s}=0 \tag{3.3}
\end{equation*}
$$

Analogously,

$$
\begin{aligned}
\Gamma_{k_{1} k_{2} k_{3} j}^{i} & =d_{k_{3}} \Gamma_{k_{1} k_{2} j}^{i}-\Gamma_{k_{1} k_{2} s}^{i} \Gamma_{k_{3} j}^{s} \\
& =d_{k_{2}} \Gamma_{k_{1} k_{3} j}^{i}-\Gamma_{k_{1} k_{3} s}^{i} \Gamma_{k_{2} j}^{s}=d_{k_{1}} \Gamma_{k_{2} k_{3} j}^{i}-\Gamma_{k_{2} k_{3} s}^{i} \Gamma_{k_{1} j}^{s} \\
& \vdots \\
\Gamma_{k_{1} k_{2} \ldots k_{r} j}^{i} & =d_{k_{r}} \Gamma_{k_{1} k_{2} \ldots k_{r-1} j}^{i}-\Gamma_{k_{1} k_{2} \ldots k_{r-1} s}^{i} \Gamma_{k_{r} j}^{s} \\
& =d_{k_{r-1}} \Gamma_{k_{1} k_{2} \ldots k_{r-2} k_{r} j}^{i}-\Gamma_{k_{1} k_{2} \ldots k_{r-2} k_{r} s}^{i} \Gamma_{k_{r-1} j}^{s} \\
& =\ldots \\
& =d_{k_{1}} \Gamma_{k_{2} k_{3} \ldots k_{r} j}^{i}-\Gamma_{k_{2} k_{3} \ldots k_{r} s}^{i} \Gamma_{k_{1} j}^{s},
\end{aligned}
$$

and we have the corresponding compatibility conditions

$$
\begin{aligned}
d_{k_{1}} \Gamma_{k_{2} k_{3} p}^{i}-\Gamma_{k_{2} k_{3} s}^{i} \Gamma_{k_{1} p}^{s} & =d_{k_{2}} \Gamma_{k_{1} k_{3} p}^{i}-\Gamma_{k_{1} k_{3} s}^{i} \Gamma_{k_{2} p}^{s} \\
& =d_{k_{3}} \Gamma_{k_{1} k_{2} p}^{i}-\Gamma_{k_{1} k_{2} s}^{i} \Gamma_{k_{3} p}^{s} \\
& \vdots \\
d_{k_{1}} \Gamma_{k_{2} k_{3} \ldots k_{r} p}^{i}-\Gamma_{k_{2} k_{3} \ldots k_{r} s}^{i} \Gamma_{k_{1} p}^{s} & =d_{k_{2}} \Gamma_{k_{1} k_{3} \ldots k_{r} p}^{i}-\Gamma_{k_{1} k_{3} \ldots k_{r} s}^{i} \Gamma_{k_{2} p}^{s} \\
& =\ldots \\
& =d_{k_{r-1}} \Gamma_{k_{1} k_{2} \ldots k_{r-2} k_{r} p}^{i}-\Gamma_{k_{1} k_{2} \ldots k_{r-2} k_{r} s}^{i} \Gamma_{k_{r-1} p}^{s} \\
& =d_{k_{r}} \Gamma_{k_{1} k_{2} \ldots k_{r-1} p}^{i}-\Gamma_{k_{1} k_{2} \ldots k_{r-1} s}^{i} \Gamma_{k_{r} p}^{s}
\end{aligned}
$$

Let λ be a Lagrangian on $J^{r} F X$. Recall that the coordinate expression of λ in any $\mathrm{Gl}_{n}(\mathbb{R})$-adapted chart is $\lambda=\mathcal{L} \omega_{0}$, where $\mathcal{L}: V^{r} \rightarrow \mathbb{R}$ is the associated Lagrange function.

Lemma 3.3. The Euler-Lagrange form E_{λ}, associated with the $\mathrm{Gl}_{n}(\mathbb{R})$-invariant Lagrangian λ on $J^{r} F X$, is $\mathrm{Gl}_{n}(\mathbb{R})$-invariant.

Corollary 3.1.

(a) A Lagrangian λ on $J^{r} F X$ is $\mathrm{Gl}_{n}(\mathbb{R})$-invariant if and only if in any $\mathrm{Gl}_{n}(\mathbb{R})$ adapted chart, the associated Lagrange function \mathcal{L} is $\mathrm{Gl}_{n}(\mathbb{R})$-invariant.
(b) The coordinate expression of the Euler-Lagrange form E_{λ}, associated with $\mathrm{Gl}_{n}(\mathbb{R})$-invariant Lagrangian λ on $J^{r} F X$, is

$$
E_{\lambda}=F_{i}^{l}(\mathcal{L}) y_{l}^{j} \mathrm{~d} x_{j}^{i} \wedge \omega_{0}
$$

where $F_{i}^{l}(\mathcal{L})$ are $\mathrm{Gl}_{n}(\mathbb{R})$-invariant functions.

Corollary 3.2. A Lagrangian λ on $J^{r} F X$ is $\mathrm{Gl}_{n}(\mathbb{R})$-invariant if and only if there exists a Lagrangian $\tilde{\lambda}$ on $C^{r} X$ such that $\lambda=\left(\mu^{(r)}\right)^{*} \tilde{\lambda}$.

Finally, we prove an auxiliary assertion.
Lemma 3.4. In a $\mathrm{Gl}_{n}(\mathbb{R})$-adapted chart $\left(V^{r}, \Psi^{r}\right), \Psi^{r}=\left(x^{i}, x_{j}^{i}, \Gamma_{p_{1} j}^{i}, \Gamma_{p_{1} p_{2} j}^{i}, \ldots\right.$, $\left.\Gamma_{p_{1} p_{2} \ldots p_{r} j}^{i}\right)$, on $J^{r} F X, r>2$,

$$
\Gamma_{p_{1} p_{2} \ldots p_{m} k l j}^{i}-\Gamma_{p_{1} p_{2} \ldots p_{m} l k j}^{i}=-\Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i}\left(\Gamma_{k l j}^{q}-\Gamma_{l k j}^{q}\right)
$$

holds for all $1 \leqslant m \leqslant r-2$.

Proof. According to (3.2), for adapted coordinates $\Gamma_{p_{1} p_{2} \ldots p_{m} j}^{i}, m \geqslant 1$ we have

$$
\begin{equation*}
\Gamma_{p_{1} p_{2} \ldots p_{m} k j}^{i}=d_{k} \Gamma_{p_{1} p_{2} \ldots p_{m} j}^{i}-\Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i} \Gamma_{k j}^{q} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{l} \Gamma_{p_{1} p_{2} \ldots p_{m} k j}^{i}=d_{l} d_{k} \Gamma_{p_{1} p_{2} \ldots p_{m} j}^{i}-d_{l} \Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i} \Gamma_{k j}^{q}-\Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i} d_{l} \Gamma_{k j}^{q} . \tag{3.5}
\end{equation*}
$$

Then, using (3.4) and (3.5), we obtain

$$
\begin{aligned}
\Gamma_{p_{1} p_{2} \ldots p_{m} k l j}^{i} & -\Gamma_{p_{1} p_{2} \ldots p_{m} l k j}^{i} \\
= & d_{l} \Gamma_{p_{1} p_{2} \ldots p_{m} k j}^{i}-\Gamma_{p_{1} p_{2} \ldots p_{m} k t}^{i} \Gamma_{l j}^{t}-d_{k} \Gamma_{p_{1} p_{2} \ldots p_{m} l j}^{i}+\Gamma_{p_{1} p_{2} \ldots p_{m} l t}^{i} \Gamma_{k j}^{t} \\
= & d_{l} d_{k} \Gamma_{p_{1} p_{2} \ldots p_{m} j}^{i}-d_{l} \Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i} \Gamma_{k j}^{q}-\Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i} d_{l} \Gamma_{k j}^{q} \\
& -d_{k} \Gamma_{p_{1} p_{2} \ldots p_{m} t}^{i} \Gamma_{l j}^{t}+\Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i} \Gamma_{k t}^{q} \Gamma_{l j}^{t} \\
& -d_{k} d_{l} \Gamma_{p_{1} p_{2} \ldots p_{m} j}^{i}+d_{k} \Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i} \Gamma_{l j}^{q}+\Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i} d_{k} \Gamma_{l j}^{q} \\
& +d_{l} \Gamma_{p_{1} p_{2} \ldots p_{m} t}^{i} \Gamma_{k j}^{t}-\Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i} \Gamma_{l t}^{q} \Gamma_{k j}^{t} \\
= & -\Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i}\left(d_{l} \Gamma_{k j}^{q}-d_{k} \Gamma_{l j}^{q}+\Gamma_{l t}^{q} \Gamma_{k j}^{t}-\Gamma_{k t}^{q} \Gamma_{l j}^{t}\right) \\
= & -\Gamma_{p_{1} p_{2} \ldots p_{m} q}^{i}\left(\Gamma_{k l j}^{q}-\Gamma_{l k j}^{q}\right) .
\end{aligned}
$$

4. Variational problems defined by higher order InVARIANT Lagrangians

First we discuss relations between linear connections on X and sections of the fibred manifold $J^{1} F X$ (see [15]).

Lemma 4.1. Equations

$$
\begin{equation*}
\mu^{1,0} \circ w=\operatorname{id}_{\mu^{-1}(U)}, \quad \mu^{(1)} \circ w=\Gamma \circ \mu \tag{4.1}
\end{equation*}
$$

define a bijective correspondence between the connections Γ, defined on open sets $U \subset X$, and the $\mathrm{Gl}_{n}(\mathbb{R})$-equivariant sections w of $J^{1} F X$, defined on open, μ saturated sets $V=\mu^{-1}(U) \subset F X$.

If $w: V \rightarrow J^{1} F X$ is the $\mathrm{Gl}_{n}(\mathbb{R})$-equivariant section, then the connection Γ, defined by (4.1), is said to be associated with w. The diagram

also induces the natural correspondence between the sections of $J^{1} F X$ over X, and the sections of $C^{1} X$: if δ is a section of $J^{1} F X$, then $\Gamma=\mu^{(1)} \circ \delta$ is a section of $C^{1} X$ over the same domain of definition. Conversely, given Γ, one can construct, for every chart $(U, \varphi), \varphi=\left(x^{i}\right)$, on X, a section $\delta: U \rightarrow J^{1} F X$. We choose any frame field $\gamma: U \rightarrow F X$, and then define $\delta: U \rightarrow J^{1} F X$ by setting $x_{j}^{i} \circ \delta=x_{j}^{i} \circ \gamma$, $x_{j, k}^{i} \circ \delta=-\left(x_{j}^{l} \circ \gamma\right) \cdot \Gamma_{k l}^{i}$. If

$$
\Gamma=\mu^{(1)} \circ \delta
$$

over an open set U, we say that δ generates Γ on U.
Consider the restriction of the correspondence $\delta \rightarrow \mu^{(1)} \circ \delta$ to holonomic sections, i.e., to sections δ of the form $\delta=J^{1} \gamma$, where γ is a section of $F X$. If

$$
\Gamma=\mu^{(1)} \circ J^{1} \gamma
$$

for some frame field γ, we say that γ generates Γ on U. If every point of X has a neighborhood U such that $\Gamma=\mu^{(1)} \circ J^{1} \gamma$ for some frame field γ, we say that Γ is locally generated by frame fields.

Lemma 4.2. The following conditions are equivalent.
(a) Γ is locally generated by frame fields.
(b) Γ is flat.

Proof. Let Γ be a linear connection on X. Denote by

$$
\begin{equation*}
R_{l k j}^{i}=\frac{\partial \Gamma_{k j}^{i}}{\partial x^{l}}-\frac{\partial \Gamma_{l j}^{i}}{\partial x^{k}}+\Gamma_{l s}^{i} \Gamma_{k j}^{s}-\Gamma_{k s}^{i} \Gamma_{l j}^{s} \tag{4.2}
\end{equation*}
$$

the components of the curvature tensor of Γ in a chart $(U, \varphi), \varphi=\left(x^{i}\right)$, on X (see [8]).
(a) \Rightarrow (b): Assume that the first condition holds. Then there exists a system of functions $x_{j}^{i}: U \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\frac{\partial x_{j}^{i}}{\partial x^{k}}=-x_{j}^{l} \Gamma_{k l}^{i} . \tag{4.3}
\end{equation*}
$$

This system satisfies

$$
\begin{aligned}
-\frac{\partial x_{j}^{s}}{\partial x^{l}} \Gamma_{k s}^{i}-x_{j}^{s} \frac{\partial \Gamma_{k s}^{i}}{\partial x^{l}} & =\frac{\partial}{\partial x^{l}}\left(-x_{j}^{s} \Gamma_{k s}^{i}\right)=\frac{\partial^{2} x_{j}^{i}}{\partial x^{l} \partial x^{k}} \\
& =\frac{\partial^{2} x_{j}^{i}}{\partial x^{k} \partial x^{l}}=\frac{\partial}{\partial x^{k}}\left(-x_{j}^{s} \Gamma_{l s}^{i}\right)=-\frac{\partial x_{j}^{s}}{\partial x^{k}} \Gamma_{l s}^{i}-x_{j}^{s} \frac{\partial \Gamma_{l s}^{i}}{\partial x^{k}},
\end{aligned}
$$

i.e.,

$$
-x_{j}^{t} \Gamma_{l t}^{s} \Gamma_{k s}^{i}+x_{j}^{s} \frac{\partial \Gamma_{k s}^{i}}{\partial x^{l}}+x_{j}^{t} \Gamma_{k t}^{s} \Gamma_{l s}^{i}-x_{j}^{s} \frac{\partial \Gamma_{l s}^{i}}{\partial x^{k}}=0
$$

Thus,

$$
\begin{equation*}
-\Gamma_{l j}^{s} \Gamma_{k s}^{i}+\frac{\partial \Gamma_{k j}^{i}}{\partial x^{l}}+\Gamma_{k j}^{s} \Gamma_{l s}^{i}-\frac{\partial \Gamma_{l j}^{i}}{\partial x^{k}}=0 \tag{4.4}
\end{equation*}
$$

or,

$$
R_{l k j}^{i}=0
$$

which means that Γ is flat.
(b) \Rightarrow (a): If Γ is a flat connection, it satisfies the system of equations (4.4). This system represents the conditions of complete integrability for the system (4.3), which means that Γ is locally generated by the frame fields (see [6]).

Note that the conditions of zero curvature (4.4) for a connection Γ to be locally generated by frame fields are equivalent to the compatibility conditions (3.3) (symmetry of $\Gamma_{k l j}^{i}$ in the indices k, l) for the associated section γ.

The correspondence between sections, as described above, allows us to consider a variational problem for a frame field $\gamma: X \rightarrow F X$ as a problem to find the corresponding linear connection $\Gamma: X \rightarrow C^{1} X$. For higher order variational problems on frame bundles we consider the commutative diagram

where $J^{r} \mu^{(1)}$ denotes the r-jet prolongation of the quotient projection $\mu^{(1)}$ (over X), and the canonical inclusions $C^{r+1} X \hookrightarrow J^{r+1} F X$, and $J^{r+1} F X \hookrightarrow J^{r} J^{1} F X$. The composed mapping

$$
\begin{equation*}
\nu: C^{r+1} X \rightarrow J^{r} C^{1} X \tag{4.5}
\end{equation*}
$$

has the expression

$$
\begin{align*}
x^{i} \circ \nu & =x^{i}, \tag{4.6}\\
\Gamma_{k j}^{i} \circ \nu & =\Gamma_{k j}^{i}, \\
\Gamma_{k j, l}^{i} \circ \nu & =d_{l} \Gamma_{k j}^{i}=\Gamma_{k l j}^{i}+\Gamma_{k s}^{i} \Gamma_{l j}^{s},
\end{align*}
$$

$$
\begin{aligned}
\Gamma_{k j, l_{1} l_{2}}^{i} \circ \nu= & d_{l_{2}} d_{l_{1}} \Gamma_{k j}^{i} \\
= & \Gamma_{k l_{1} l_{2} j}^{i}+\Gamma_{k l_{1} s}^{i} \Gamma_{l_{2} j}^{s}+\Gamma_{k l_{2} s}^{i} \Gamma_{l_{1} j}^{s}+\Gamma_{k s}^{i}\left(\Gamma_{l_{1} l_{2} j}^{s}+\Gamma_{l_{1} q}^{s} \Gamma_{l_{2} j}^{q}+\Gamma_{l_{2} q}^{s} \Gamma_{l_{1} j}^{q}\right), \\
& \ldots \\
\Gamma_{k j, l_{1} l_{2} \ldots l_{r}}^{i} \circ \nu= & d_{l_{r}} \ldots d_{l_{2}} d_{l_{1}} \Gamma_{k j}^{i} .
\end{aligned}
$$

To describe the image of ν in $J^{r} C^{1} X$, we denote by $\tau_{3}^{1} X$ the bundle of tensors of type $(1,3)$ over X, with induced coordinates $S_{l k j}^{i}$. We introduce the formal curvature tensor on $J^{r} C^{1} X$ (see [12]) as a morphism $\varrho: J^{r} C^{1} X \rightarrow \tau_{3}^{1} X$ expressed by

$$
S_{l k j}^{i} \circ \varrho=R_{l k j}^{i}=\Gamma_{k j, l}^{i}-\Gamma_{l j, k}^{i}+\Gamma_{l s}^{i} \Gamma_{k j}^{s}-\Gamma_{k s}^{i} \Gamma_{l j}^{s}
$$

(compare with (4.2)).
Consider the sequence

$$
0 \longrightarrow C^{r+1} X \xrightarrow{\nu} J^{r} C^{1} X \xrightarrow{\varrho} \tau_{3}^{1} X \longrightarrow 0
$$

of bundles over X. We have the following result.
Lemma 4.3. Let $J_{x}^{r} \Gamma \in J^{r} C^{1} X$. Then $\varrho\left(J_{x}^{r} \Gamma\right)=0$ if and only if there exists an element $\Delta \in C^{r+1} X$ such that $\nu(\Delta)=J_{x}^{r} \Gamma$.

Proof. \Rightarrow : Let $J_{x}^{r} \Gamma=\left(x^{i}, \Gamma_{k j}^{i}, \Gamma_{k j, l}^{i}, \Gamma_{k j, l_{1} l_{2}}^{i}, \ldots, \Gamma_{k j, l_{1} l_{2} \ldots l_{r}}^{i}\right)$ be the coordinates of $J_{x}^{r} \Gamma \in J^{r} C^{1} X$ with respect to a fibred coordinate system $\left(W^{r}, \chi^{r}\right)$ on $J^{r} C^{1} X$, associated with the coordinate system $(W, \chi), \chi=\left(x^{i}, \Gamma_{k j}^{i}\right)$ on $C^{1} X$, where Γ is a section of $C^{1} X$ defined in the neighborhood of $x \in X$. Let $\varrho\left(J_{x}^{r} \Gamma\right)=0$, i.e., the coordinates of $J_{x}^{r} \Gamma$ satisfy $\Gamma_{k j, l}^{i}-\Gamma_{l j, k}^{i}+\Gamma_{l s}^{i} \Gamma_{k j}^{s}-\Gamma_{k s}^{i} \Gamma_{l j}^{s}=0$. It means that $\Gamma_{k l j}^{i}=$ $\left(\Gamma_{k j, l}^{i}-\Gamma_{k s}^{i} \Gamma_{l j}^{s}\right) \circ \nu=\left(\Gamma_{l j, k}^{i}-\Gamma_{l s}^{i} \Gamma_{k j}^{s}\right) \circ \nu=\Gamma_{l k j}^{i}$, and $\Gamma_{k l j}^{i}$ are symmetric in k, l. Moreover, by (3.2), $\Gamma_{k l m j}^{i}=d_{m} \Gamma_{k l j}^{i}-\Gamma_{k l s}^{i} \Gamma_{m j}^{s}$, which gives us symmetry of $\Gamma_{k l m j}^{i}$ in k, l. According to Lemma 3.4, $\Gamma_{k l m j}^{i}-\Gamma_{k m l j}^{i}=-\Gamma_{k q}^{i}\left(\Gamma_{l m j}^{q}-\Gamma_{m l j}^{q}\right)=0$, which gives us symmetry of $\Gamma_{k l m j}^{i}$ in l, m. It means that $\Gamma_{k l m j}^{i}$ is symmetric in the indices k, l, m and these coordinates of Δ are well defined. Continuing in this way, suppose that the coordinates $\Gamma_{k l_{1} l_{2} \ldots l_{s-1} j}^{i}$ of Δ are defined. Again, by (3.2), $\Gamma_{k l_{1} l_{2} \ldots l_{s-1} l_{s} j}^{i}=d_{l_{s}} \Gamma_{k l_{1} l_{2} \ldots l_{s-1} j}^{i}-\Gamma_{k l_{1} l_{2} \ldots l_{s-1} q}^{i} \Gamma_{l_{s} j}^{q}$, and symmetry of $\Gamma_{k l_{1} l_{2} \ldots l_{s-1} j}^{i}$ in indices $k, l_{1}, l_{2}, \ldots, l_{s-1}$ ensures symmetry of $\Gamma_{k l_{1} l_{2} \ldots l_{s} j}^{i}$ in $k, l_{1}, l_{2}, \ldots, l_{s-1}$. According to Lemma 3.4, $\Gamma_{k l_{1} l_{2} \ldots l_{s-1} l_{s} j}^{i}-\Gamma_{k l_{1} l_{2} \ldots l_{s} l_{s-1} j}^{i}=-\Gamma_{k l_{1} l_{2} \ldots l_{s-1} q}^{i}\left(\Gamma_{l_{s-1} l_{s} j}^{q}-\Gamma_{l_{s} l_{s-1} j}^{q}\right)=0$, which gives us symmetry of $\Gamma_{k l_{1} l_{2} \ldots l_{s} j}^{i}$ in l_{s-1}, l_{s}. It means that $\Gamma_{k l_{1} l_{2} \ldots l_{s} j}^{i}$ is symmetric in the indices $k, l_{1}, l_{2}, \ldots, l_{s-1}, l_{s}$ and $\Delta=\left(x^{i}, \Gamma_{k j}^{i}, \Gamma_{k l j}^{i}, \Gamma_{k l_{1} l_{2} j}^{i}, \ldots, \Gamma_{k l_{1} l_{2} \ldots l_{r} j}^{i}\right)$ is well defined. By (4.6), we have $\nu(\Delta)=J_{x}^{r} \Gamma$.
\Leftarrow : Let there exist $\Delta=J_{x}^{r+1} \gamma \in C^{r+1} X$ such that $\nu\left(J_{x}^{r+1} \gamma\right)=J_{x}^{r} \Gamma$. Then for the adapted coordinates $\left(x^{i}, \Gamma_{k j}^{i}, \Gamma_{k l j}^{i}, \Gamma_{k l_{1} l_{2} j}^{i}, \ldots, \Gamma_{k l_{1} l_{2} \ldots l_{r} j}^{i}\right)$ of $J_{x}^{r+1} \gamma, \Gamma_{k l j}^{i}=\Gamma_{l k j}^{i}$ holds, which is equivalent to the relation $\Gamma_{k j, l}^{i}-\Gamma_{l j, k}^{i}+\Gamma_{l s}^{i} \Gamma_{k j}^{s}-\Gamma_{k s}^{i} \Gamma_{l j}^{s}=0$ for the coordinates of $J_{x}^{r} \Gamma$ and $\varrho\left(J_{x}^{r} \Gamma\right)=0$.

Let us denote by \mathcal{S} the submanifold of $J^{r} C^{1} X$ determined by $\mathcal{S}=\left\{\Lambda \in J^{r} C^{1} X\right.$: $\varrho(\Lambda)=0\}$. Lemma 4.3 shows that for $\Lambda \in \mathcal{S}$ the inverse

$$
\begin{equation*}
\sigma: \mathcal{S} \rightarrow C^{r+1} X \tag{4.7}
\end{equation*}
$$

of $\nu(4.5)$ is defined. In the corresponding coordinates,

$$
\begin{align*}
x^{i} \circ \sigma & =x^{i}, \tag{4.8}\\
\Gamma_{k j}^{i} \circ \sigma & =\Gamma_{k j}^{i}, \\
\Gamma_{k l j}^{i} \circ \sigma & =\Gamma_{k j, l}^{i}-\Gamma_{k s}^{i} \Gamma_{l j}^{s}, \\
\Gamma_{k l_{1} l_{2} j}^{i} \circ \sigma & =\tilde{d}_{l_{2}}\left(\Gamma_{k l_{1} j}^{i} \circ \sigma\right)-\left(\Gamma_{k l_{1} s}^{i} \circ \sigma\right) \Gamma_{l_{2} j}^{s} \\
& =\Gamma_{k j, l_{1} l_{2}}^{i}-\Gamma_{k s, l_{1}}^{i} \Gamma_{l_{2} j}^{s}-\Gamma_{k s, l_{2}}^{i} \Gamma_{l_{1} j}^{s}-\Gamma_{k s}^{i} \Gamma_{l_{1} j, l_{2}}^{s}+\Gamma_{k q}^{i} \Gamma_{l_{2} s}^{q} \Gamma_{p j}^{s}, \\
& \vdots \\
\Gamma_{k l_{1} l_{2} \ldots l_{r} j}^{i} \circ \sigma & =\tilde{d}_{l_{r}}\left(\Gamma_{k l_{1} l_{2} \ldots l_{r-1} j}^{i} \circ \sigma\right)-\left(\Gamma_{k l_{1} l_{2} \ldots l_{r-1} s}^{i} \circ \sigma\right) \Gamma_{l_{r} j}^{s} .
\end{align*}
$$

The operator \tilde{d}_{m} of formal derivative on $J^{r} C^{1} X$ corresponds to the operator of formal derivative d_{m} on $C^{r+1} X$, given by Lemma 3.2. More exactly, $\tilde{d}_{m}(f \circ \sigma)=$ $d_{m} f \circ \sigma$ for any function f on $C^{r+1} X$.

Using the mapping σ (4.7), it is possible to rewrite the Euler-Lagrange equations of the invariant variational problem, defined on $C^{r+1} X$ by a Lagrangian λ, as associated equations on $J^{r} C^{1} X$ for connections with compatibility conditions as constraints.

Theorem 4.1. Let $\lambda=\mathcal{L} \omega_{0}$ be a $\mathrm{Gl}_{n}(\mathbb{R})$-invariant Lagrangian on $J^{q} F X$ and let $E_{\lambda}=F_{i}^{l}(\mathcal{L}) y_{l}^{j} \mathrm{~d} x_{j}^{i} \wedge \omega_{0}$ be its associated Euler-Lagrange form. The system of n^{2} equations of order $r+1$ for extremals of the given variational problem,

$$
\begin{equation*}
F_{i}^{l}(\mathcal{L}) \circ J^{r+1} \gamma=0 \tag{4.9}
\end{equation*}
$$

is equivalent to the system of $n^{2} r$ th order equations

$$
\begin{equation*}
G_{i}^{l}(\mathcal{L}) \circ J^{r} \Gamma=0, \tag{4.10}
\end{equation*}
$$

where

$$
G_{i}^{l}(\mathcal{L})=F_{i}^{l}(\mathcal{L}) \circ \sigma,
$$

and σ is defined by (4.8), together with the system of $\binom{n}{2} \cdot n^{2}$ first order equations in the form

$$
\begin{equation*}
\left(\Gamma_{k j, l}^{i}-\Gamma_{l j, k}^{i}+\Gamma_{l s}^{i} \Gamma_{k j}^{s}-\Gamma_{k s}^{i} \Gamma_{l j}^{s}\right) \circ J^{1} \Gamma=0 \tag{4.11}
\end{equation*}
$$

Finding a solution $\Gamma: X \rightarrow C^{1} X$ of (4.10), the corresponding solution $\gamma: X \rightarrow$ $F X$ of (4.9) is then obtained by solving the system (4.3).

5. Example

Let λ be a $\mathrm{Gl}_{n}(\mathbb{R})$-invariant Lagrangian on $J^{1} F X$. The coordinate expression of λ, in the coordinates $\left(x^{i}, x_{j}^{i}, \Gamma_{j k}^{i}\right)$ adapted to the action of $\mathrm{Gl}_{n}(\mathbb{R})$ on $J^{1} F X$, is given by

$$
\lambda=\mathcal{L} \omega_{0}, \quad \mathcal{L}=\mathcal{L}\left(x^{i}, \Gamma_{j k}^{i}\right)
$$

The Euler-Lagrange form E_{λ} of λ is expressed as

$$
E_{\lambda}=F_{i}^{l}(\mathcal{L}) y_{l}^{j} \mathrm{~d} x_{j}^{i} \wedge \omega_{0}
$$

where

$$
F_{i}^{l}(\mathcal{L})=-\Gamma_{q i}^{p} \frac{\partial \mathcal{L}}{\partial \Gamma_{q l}^{p}}+\Gamma_{p q}^{l} \frac{\partial \mathcal{L}}{\partial \Gamma_{p q}^{i}}+\frac{\partial^{2} \mathcal{L}}{\partial x^{p} \partial \Gamma_{p l}^{i}}+\left(\Gamma_{m p q}^{k}+\Gamma_{m s}^{k} \Gamma_{p q}^{s}\right) \frac{\partial^{2} \mathcal{L}}{\partial \Gamma_{m q}^{k} \partial \Gamma_{p l}^{i}}
$$

A section $\gamma: X \rightarrow F X$ is an extremal of the first order variational problem defined by λ if and only if the system of second order partial differential equations

$$
F_{i}^{l}(\mathcal{L}) \circ J^{2} \gamma=0
$$

is satisfied.
According to Theorem 4.1, the problem of finding the extremal γ can be also represented as to find the corresponding section $\Gamma: X \rightarrow C^{1} X$ which is the solution of the system

$$
G_{i}^{l}(\mathcal{L}) \circ J^{1} \Gamma=0
$$

of first order equations, where

$$
G_{i}^{l}(\mathcal{L})=-\Gamma_{q i}^{p} \frac{\partial \mathcal{L}}{\partial \Gamma_{q l}^{p}}+\Gamma_{p q}^{l} \frac{\partial \mathcal{L}}{\partial \Gamma_{p q}^{i}}+\frac{\partial^{2} \mathcal{L}}{\partial x^{p} \partial \Gamma_{p l}^{i}}+\Gamma_{m q, p}^{k} \frac{\partial^{2} \mathcal{L}}{\partial \Gamma_{m q}^{k} \partial \Gamma_{p l}^{i}},
$$

satisfying the additional conditions (4.11) for Γ.

References

[1] J. Brajerčik: $\mathrm{Gl}_{n}(\mathbb{R})$-invariant variational principles on frame bundles. Balkan J. Geom. Appl. 13 (2008), 11-19.
[2] J. Brajerčík, D. Krupka: Variational principles for locally variational forms. J. Math. Phys. 46 (2005), 1-15.
[3] M. Castrillón López, P. L. García Pérez, T. S. Ratiu: Euler-Poincaré reduction on principal bundles. Lett. Math. Phys. 58 (2001), 167-180.
[4] M. Castrillón López, P. L. García Pérez, C. Rodrigo: Euler-Poincaré reduction in principal fibre bundles and the problem of Lagrange. Differ. Geom. Appl. 25 (2007), 585-593.
[5] M. Castrillón López, T.S. Ratiu, S. Shkoller: Reduction in principal fiber bundles: Covariant Euler-Poincaré equations. Proc. Am. Math. Soc. 128 (2000), 2155-2164.
[6] J. Dieudonné: Treatise on Analysis. Vol. I. Academic Press, New York-London, 1969.
[7] P. L. García Pérez: Connections and 1-jet fiber bundles. Rend. Sem. Mat. Univ. Padova 47 (1972), 227-242.
[8] G. Giachetta, L. Mangiarotti, G. Sardanashvily: New Lagrangian and Hamiltonian Methods in Field Theory. World Scientific, Singapore, 1997.
[9] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. Vol. 1. Interscience Publishers/John Wiley \& Sons, New York/London, 1963.
[10] I. Kolář: On the torsion of spaces with connection. Czech. Math. J. 21 (1971), 124-136.
[11] D. Krupka: A geometric theory of ordinary first order variational problems in fibered manifolds. II. Invariance. J. Math. Anal. Appl. 49 (1975), 469-476.
[12] D. Krupka: Local invariants of a linear connection. In: Differential Geometry. Colloq. Math. Soc. János Bolyai, Budapest, 1979, Vol. 31. North Holland, Amsterdam, 1982, pp. 349-369.
[13] D. Krupka, J. Janyška: Lectures on Differential Invariants. Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Mathematica 1. University J. E. Purkyně, Brno, 1990.
[14] J. E. Marsden, T.S. Ratiu: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts Applied Mathematics, Vol. 17. Springer, New York, 1994.
[15] D. J. Saunders: The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series Vol. 142. Cambridge University Press, Cambridge, 1989.

Author's address: Ján Brajerčík, Department of Physics, Mathematics and Technology, University of Prešov, ul. 17. novembra 1, 08116 Prešov, Slovak Republic, e-mail: jan.brajercik@unipo.sk.

