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Abstract. Let p: FX — X be a principal bundle of frames with the structure
group Glp(R). It is shown that the variational problem, defined by Gl,(R)-invariant
Lagrangian on J" F' X, can be equivalently studied on the associated space of connections
with some compatibility condition, which gives us order reduction of the corresponding
Euler-Lagrange equations.
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1. INTRODUCTION

In the Lagrange theory of the calculus of variations on fibred manifolds, it is
well known that the Euler-Lagrange equations are employed for finding the extremal
values of the corresponding variational function. In general, for variational problems
defined by Lagrangians of order r, the order of the Euler-Lagrange equations is 2r.
In the case when an underlying manifold has the structure of a principal fibre bundle
with the structure group G and G-invariant Lagrangians, the original system of the
Euler-Lagrange equations can be simplified.

The idea of reduction of the Euler-Lagrange equations originally comes from me-
chanics, where G-invariant Lagrangian defined on the tangent bundle of a Lie group G
is considered. The equations of new kind for the reduced Lagrangian are called the
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SK-CZ-0006-09), and to the Czech Grant Agency (Grant 201/09/0981).

1063



Euler-Poincaré equations (see, e.g., [14]). The extension of such mechanism to field
theory was done in [3], [4], [5], and is called the Euler-Poincaré reduction. In this
case, we consider a Lagrangian defined on the first jet prolongation J' P of a principal
fibre bundle P, invariant under the natural action induced by the structure group G
on J'P. The reduced variational problem, in the sense of Euler-Poincaré reduction,
is defined on the bundle of connections C(P), which can be identified with (JP)/G.
It was shown that locally there is an equivalence between the solutions of the Euler-
Lagrange equations for G-invariant Lagrangian on the one side, and the solutions
of the Euler-Poincaré equations for reduced Lagrangian plus the condition of flat
connection on the other side.

In this paper, we consider the same type of invariant variational problems defined
on frame bundles F'X over an n-dimensional manifold X. Our aim is to generalize
the reduction problem to higher order cases, i.e., to variational problems on J"FX
defined by Gl, (R)-invariant Lagrangians.

In Sections 2 and 3 we recall the basic notions from the variational theory on fibred
manifolds and frame bundles, respectively. Section 4 deals with the correspondence
between the sections of J'FX and C'X, where C'X is the bundle of linear con-
nections of X. Using this correspondence it is shown that the Gl,(R)-invariant
variational problem on J" ' F X can be alternatively studied as the reduced problem
on J"C'X, which gives us the order reduction of the variational equations for ex-
tremals. Again, the necessity of additional compatibility conditions for connections,
in the form of zero curvature, occurs. Having a solution of the reduced equations, the
compatibility conditions ensure the existence of the associated extremal frame field,
because they correspond to the conditions of complete integrability of the arising sys-
tem of first order equations. In Section 5 we give explicit expressions of the reduced,
first order equations for connections, which replace the second order Euler-Lagrange
equations for the associated frame field.

For reduction of the solution of the Euler-Lagrange equations defined by higher
order invariant Lagrangians it is also possible to use the corresponding bundles of
higher order connections C"X = J"FX/Gl,(R) (see [1]).

2. PRELIMINARIES

Y is a fibred manifold with an oriented base manifold X and a projection w. We
denote n =dim X, m =dimY —n. J"Y is the r-jet prolongation of Y. The r-jet of
a section v of Y at a point « € X is denoted by JIv; and x — J"y(z) = JILv is the
r-jet prolongation of v. If Jlvy € J"Y, the canonical jet projections 7™°: J'Y —
Y (the target projection), 7": J"Y — X (the source projection), are defined by
a"0(Jry) = (), and 7" (J5v) = z, respectively.

1064



= (2%), and (V",9"),
Yr = (xi,y",yjl,yjlh, - sY% 4o i), respectively; here V7" (79 ~H(V), and U =
m(V'). For functions on V", we define the formal derivative operator (with respect
to the fibred chart (V,)) by

Any fibred chart (V,v), ¥ = (2*,y°), on Y, where 1 < i < n, 1 < o < m,
induces the associated charts on X and on J'Y, (U, ), ¢ d

9] s 0 s 0 o 9]
= opp Y gge T yilpayz to.oF yiliz...i,,.pW

d
b (‘)ya 112 0y

A Lagrangian (of order r) for Y is any n"-horizontal n-form on some W" C J"Y.
If, in a fibred chart (V,1), ¥ = (2%, 47), we denote wg = do! Ada? A ... Adz", then
a Lagrangian, defined on V" = (7™9)~1(V), has in this chart an expression

A= ;C(U(),

where £: V" — R is a function (the Lagrange function associated with A and (V)).

The Euler-Lagrange form E, associated with a Lagrangian A of order r, is a 72"0-

horizontal (n + 1)-form, in fibred chart defined by
Ey = E,,(E)w” N wo,

where

- oL
EU(E) = Z(_l)kdildiQ .. dikagi
k=0 yilig...’ik

are the FEuler-Lagrange expressions associated with .

Let Q be a piece of X (a compact, n-dimensional submanifold of X with bound-
ary 09Q), let I'g w () be the set of smooth sections y over Q such that y(Q2) C W. If
we have a Lagrangian A of order r defined on W7, the variational function associated
with A over Q is the mapping I'g w(7) > v — Aq(7) € R defined by

)\Q('y):/QJ”'y*)\.

Let £ be a m-projectable vector field on Y, and let 0;-¢A denote the Lie derivative
of X\ by the r-jet prolongation J"¢ of £. The number

(8J7EA)Q(7):/JT’y*8J7§)\
Q

is the wariation of the variational function Aq at v, induced by the vector field &.
We say that a section v € I'g w () is stable with respect to a variation & of +, if

1065



(DyreN)a(y) = 0. If v is stable with respect to all ¢ with support contained in 7~1(£2),
we say that v is an extremal of \g. A section v which is an extremal of every Aq is
called an ezxtremal of A. A section -« is an extremal of a Lagrangian A of order r if
and only if, for every fibred chart on Y, v satisfies the system of partial differential
equations

E, (L) o J* v =0.

For more detailed exposition of the variational theory on fibred spaces, including
local variational principles, see [2], [11].

3. FRAME BUNDLES AND THEIR PROLONGATIONS

In this section we recall the basic notions from the theory of frame bundles; the
reader can also consult [1], [9], [13].

Henceforth, instead of Y, let us consider the frame bundle p: FX — X over
an n-dimensional manifold X, which has the structure of a principal fiber bundle
with the structure group Gl,(R). A frame at a point x € X is a pair E = (z,(),
where ¢ = ((1,(2,...,(n) is an ordered basis of the tangent space T, X. For every
chart (U, p), ¢ = (2%), on X, the associated chart (V,1), ¢ = (xz,x;), on FX, is
defined by V = u~}(U), and

PE) =2 W@, G =@ (p).
where = € V. We denote by yi the inverse matriz of x;

Let us denote by J"FX an r-jet prolongation of FX. With any chart (U, ),
¢ = (), on X, we also associate a chart (V",9") on J"FX, where V" = (u")~}(U)
and ¢ = (2, 25, 2% ) 2k s T gk k)

The right action (2,A) — Z-A = Ra(E) of Gl,(R) on FX is expressed, in
a chart (U, ), ¢ = (2%), on X, by the equations

i

i i I A i _ ik
T'=x'"o Ry =2a', T} ijRA—a:kaj,

where a? are the canonical coordinates on Gl,(R). This action can be canonically

prolonged to the action of Gl,,(R) on J"FX. If A € Gl,(R), JIv € J FX, we define

(Jgv, A) = Jpy - A= T Ra(Jgy) = Jp(Ra o).

x

In the associated charts on FFX and J"F X, we have

T'=2'0J Ry =21,

i o o !
TS jikodom = Tjrka.dom O BA =T kg ke @y O S<m <1

1066



A form n on J"FX is invariant with respect to the action of Gl,(R) (or, Gl,(R)-
invariant), if
(J"Ra)'m =1
holds for all A € Gl,(R). In particular, a function f on J"FX is Gl,(R)-invariant if
(JTRA)*f = foJ Ry = f for all A € Gl,(R).
The functions

7 . L 1
(3.1) Dhika kmp = “YpTlks ko ko

defined for 1 < m < r, are examples of Gl,,(R)-invariant functions on J"FX. Note
that the functions I‘,ilkzmkmp are symmetric in ki, ko, ..., kn.

.Let (V7,4") be any fibred chart on J"FX. Setting U™ = (a?, xé,I‘,ﬁlp, I‘,ﬁlkw, ceey
Ly k. kyp)s We obtain the associated chart (V",¥") on J"FX, which is said to be
Gl,,(R)-adapted.

For r > 1, let us denote
C"X = J'FX/Gl,(R).

The quotient projection p("): J"FX — C"X is in Gl,,(R)-adapted coordinates ex-
pressed as

(r). (ni i T i i i i i i
pt (@ axjvrkljvrklkzjv"'7Fk1k2u.k,,.j) — (z 7Fk1jaFk1k2j7"'7Fk1k2u.k,,.j)'

Let {V7, U7 }oca be a covering of J"FX by Gl,(R)-adapted charts. For each o €
A, we set W7 = p(")(V7), and define the system of coordinate functions x% by
X5 o u™ = . Then {W7, X" }aca is a covering of C"X consisting of the fibred
charts and C" X is the fibred manifold over X with the projection k": C"X — X, in
the corresponding coordinates defined by x": (z?, TN V. 7F131k2...k,,j) — (z").

Lemma 3.1. J"FX has the structure of a right principal Gl,(R)-bundle over
C" X such that the diagram

commutes.

For r = 1, the space C'X = J'!FX/Gl,(R) can be identified with the bundle of
linear connections (Garcia Pérez [7], Krupka [12]). In the case r > 1, the space C"X
is said to be the bundle of an rth order connections (Kolar [10]).
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Lemma 3.2.

(a) A function on J"FX is Gl,(R)-invariant if and only if it depends, locally, on
the coordinates (¢*, T ,, Tt 4+ Tf k. x,p) o1 C"X only.

(b) A k-form n on J"FX is Gl,(R)-invariant if and only if in any chart on X,

n= AO + y(I1d$p1 A A91 gly(]2dl‘p1 A dmpg A AS1S2

P1p2
dk P1 P2 pk 5182..
+.ootyly® oydhdalt ANdal? AN dahe NATVE Ok
S1 S182 8182...8k 3 i
where Ao, Ajt, AJi22 ... Aj192--2k are arbitrary forms defined on C" X.

(c) Let f be a Gl,(R)-invariant function on J"FX. Then the pth formal deriva-
tive d,f is again a Gl,(R)-invariant function on J"T'FX, and in the corre-
sponding adapted chart it can be expressed as

of
(32) 83?1) Z Z ii(rkl ka...kspj + Fk1k2 ksqr;)zj).

s=1 k1 <ka<...<hs  Krka2...ksj

Note that the operator d, introduced in (3.2), restricted to the invariant func-
tions on J"F' X, corresponds to the operator of the formal derivative of any function
on C"X

The functions (3.1) can be rewritten in another form. By (3.2),
Flilj = dlr}ij - Flisrlsj = dkrlij - Flisrl:jv

where the functions I} ; and their formal derivatives d;I} g satisfy the compatibility
condition

(3.3) diT}; — dy T}, + TATY; — TETY = 0.
Analogously,

7 _ 7 7 s
Fk1k2k3j - dksrk1k2j - I‘klkgsrkgj

_ i ) s
= dk2rk1k3] Fkl ks Srkg_] dkl Fk2ksj Fk2k38Fk1j’

7 _ 7 7 s
Dtvkekers = ey en ko1~ Tk ko oy s D

_ 7 7 s
= dkr_lrklkz...k,,.,zk,,.j - Fklkz...k,,,zk,,srk,,.,lj

— i i s
- dklrkgk:;...krj - I‘kgk‘g...krsrklj7
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and we have the corresponding compatibility conditions

i I3 s I3 I3 s
dklrkzkgp - Fk}zkgSFklp - deFk1k3p - Fk}1k23SFk22p

— ) @ s
- dkBFklkzp - FklszFk3p

7 7 s _ 7 7 s
dklrkgkg...krp - I‘kgk‘:;...krs]‘—‘klp - dk2Fk‘1k3...krp - Fk‘lkg...krsrkgp

_ i i s
= dkr_lrkle...k,,.,zk,,.p - Fk1k2...k,,,zk,,srk,,.,lp

= dkrrlilkz.uk,,.,lp - F]zlkz...krflsrlj,.p'
Let A be a Lagrangian on J"FX. Recall that the coordinate expression of \ in

any Gl, (R)-adapted chart is A\ = Lwg, where £: V" — R is the associated Lagrange
function.

Lemma 3.3. The Euler-Lagrange form E), associated with the Gl,, (R)-invariant
Lagrangian A on J"FX, is Gl,,(R)-invariant.

Corollary 3.1.

(a) A Lagrangian X\ on J"FX is Gl,(R)-invariant if and only if in any Gl,(R)-
adapted chart, the associated Lagrange function L is Gl, (R)-invariant.

(b) The coordinate expression of the Euler-Lagrange form E), associated with
Gl,,(R)-invariant Lagrangian A on J"FX | is

E\= Ff(ﬁ)ylj da:;'» A wo,
where F'(L) are Gl,,(R)-invariant functions.

Corollary 3.2. A Lagrangian A on J"FX is Gl,,(R)-invariant if and only if there
exists a Lagrangian A on C" X such that A\ = (u(")*X.

Finally, we prove an auxiliary assertion.

Lemma 3.4. In a Gl,(R)-adapted chart (V",¥"), O = (2%, 2L, T . T¢ cee

7 jr P10 T p1p2g?

[ T
L ps prj)yon JTEX 7> 2,
i i _ i a4 _ 19
Fmpz---pmklj B Fp1p2...pmlkj - Fpmz...pmq(rklj Flkj)

holds forall 1 <m <r — 2.
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Proof. According to (3.2), for adapted coordinates I"! m > 1 we have

p1p2.--PmJ’
i _ i T q
(3'4) Fp1p2~~~pmkj - dkrplpzmpmj Fplpzupmquj
and
i _ i . i q 1 q
(3.5) dlrp1p2~..pmkj 7dldkrp1p2mpmj lep1p2---pm,quj Pplm...pqulrkj'

Then, using (3.4) and (3.5), we obtain

I‘\i Kij — F’L'

P1D2---Pm P1p2.-.-Pmlkj
= dlrlglpzmpmkj - F;lezmpmktrltj - dkrlz;lpzuéﬂmlj + Flz;lpzmpmltrlgj
= dldkr}glpzmpmj - dlr}ilpzmpmql—‘lgj - F;;lpzmpqulrlgj
- dkrzﬁlm...pmtrltj + inlpz..pmqugtrltj
- dkdlr}ilm---pmj + dkrzﬁlmmpmqu% + Félpa---pqukrl?
+ dlrélp%--pmtrlzj - F;)llpznpmqu(irlzj
== F;;lplnpmq(dlrgj - dkrl?‘ + Fl%FIzj - Flgtrltj)
= = P;npzmpmq(rlglj - Fl%cj)'

4. VARIATIONAL PROBLEMS DEFINED BY HIGHER ORDER
INVARIANT LAGRANGIANS

First we discuss relations between linear connections on X and sections of the
fibred manifold J'FX (see [15]).

Lemma 4.1. Equations
(4.1) W 0w =id, gy, pow=Top

define a bijective correspondence between the connections I', defined on open sets
U C X, and the Gl,(R)-equivariant sections w of J'FX, defined on open, u-
saturated sets V = pu~'(U) C FX.

If w: V — J'FX is the Gl, (R)-equivariant section, then the connection I', defined
by (4.1), is said to be associated with w. The diagram

e
J'FX —=(O'X

1N

v U
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also induces the natural correspondence between the sections of J'FX over X, and
the sections of C'X: if § is a section of J'FX, then I' = p(Y) 0§ is a section of
C'X over the same domain of definition. Conversely, given I', one can construct,
for every chart (U, ), ¢ = (2%), on X, a section 6: U — J'FX. We choose any
frame field v: U — FX, and then define §: U — J'FX by setting x; 0d = x; 07,
x;k 0d = —(a:é ov)-Tf,. If

= M(l) )

over an open set U, we say that § generates I' on U.
Consider the restriction of the correspondence § — p1) 0§ to holonomic sections,
i.e., to sections d of the form § = J!v, where v is a section of FX. If

T = M(l) o Jly

for some frame field v, we say that v generates I' on U. If every point of X has
a neighborhood U such that T' = u(M) o J'v for some frame field y, we say that T is
locally generated by frame fields.

Lemma 4.2. The following conditions are equivalent.

(a) T is locally generated by frame fields.
(b) T is flat.

Proof. Let T be a linear connection on X. Denote by

i 8I‘,ij 5Tfj i s i s
(42) ki = gt~ ppk T HsThy ~ TesTi
the components of the curvature tensor of T' in a chart (U,¢), ¢ = (z%), on X
(see [8]).

(a) = (b): Assume that the first condition holds. Then there exists a system of
functions x; : U — R such that

Oz} ! i
This system satisfies
oxs . or? o . 9%zt
J 1 s ks __ s _ J
"l e T 8 gt = g Tk = Faiger
_ J ST\ J e s ls
R o i e
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ie.,

s saris s T saris
—a3 0T + @5 3; + 2L, — af 3mlk =0
Thus,
RS Oat 7R Oxk
or,
;kj = Oa

which means that I is flat.

(b) = (a): If T is a flat connection, it satisfies the system of equations (4.4). This
system represents the conditions of complete integrability for the system (4.3), which
means that T is locally generated by the frame fields (see [6]). O

Note that the conditions of zero curvature (4.4) for a connection I' to be locally
generated by frame fields are equivalent to the compatibility conditions (3.3) (sym-
metry of F,ilj in the indices k,1) for the associated section ~.

The correspondence between sections, as described above, allows us to consider
a variational problem for a frame field v: X — FX as a problem to find the corre-
sponding linear connection I': X — C'X. For higher order variational problems on
frame bundles we consider the commutative diagram

JTp®

JIFX L~ jrotx

|

JIFX (0596

where J" (1) denotes the r-jet prolongation of the quotient projection u*) (over X),
and the canonical inclusions C"™'X — J™HFX, and J7V'FX — J J'FX. The
composed mapping

(4.5) v: C"TIX — JClx
has the expression

(4.6) riov =2
Flij ov= Flija

i _ ami i i s
Lpjov=dly; =y + T 05,
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i _ i
ij,lllg oV = dlzdllrkj

I ot 7 s 7 s i s s q s q

= Ditoy + Do sy + Thn s 1y + D (W + 00 0h s + 0h 1),

i _ i
ij,lllz...lr oV = dlr .. .dedllrkj.

To describe the image of v in J"C' X, we denote by 74 X the bundle of tensors of
type (1,3) over X, with induced coordinates S, ;- We introduce the formal curvature
tensor on J"C1X (see [12]) as a morphism g: J"C'X — 71X expressed by

i _pi i i i s i s
Sigjoo= Ry =Ty — U p + O — D15

(compare with (4.2)).
Consider the sequence

0—C X L Jotx Lrlx —o0
of bundles over X. We have the following result.

Lemma 4.3. Let J'T' € J'"C'X. Then o(JIT) = 0 if and only if there exists an
element A € C"T'X such that v(A) = JIT.

Proof. =: Let JIT = (xi,Féj,Féj’l,Féj’llb, . ,F,é‘j’lllzmlr) be the coordinates
of JIT € J"C'X with respect to a fibred coordinate system (W7",x") on J'C1X,
associated with the coordinate system (W, x), x = (xi,I‘,ij) on C'X, where T is
a section of C1X defined in the neighborhood of z € X. Let o(JIT') = 0, i.e., the
coordinates of JJI' satisfy I‘,ij’l - I‘lij’k + I‘lisI‘,fj - I‘,isflsj = 0. It means that I‘,ilj =
(Tgjr — TeeLyy) ov = (I, — TLLE;) ov = Ly, and Iy, are symmetric in k, [.
Moreover, by (3.2), T},,.;
in k, I. According to Lemma 3.4, I}

= dpnT}y; — T T > which gives us symmetry of Ty

kls™mj> ’ lmj
— Ty = —Ti, (T2, — T2,.) = 0, which

lmj kmlj
is symmetric in the

in I, m. It means that I}

. i
gives us symmetry of I} klmj

lmj
indices k, I, m and these coordinates of A are well defined. Continuing in this

way, suppose that the coordinates F,illb___l ; of A are defined. Again, by (3.2),
I} I ., and symmetry of Flilllz.“l - in the

i _ i _
Dettoeteateg = QD 1y, Lo ls—1q"1aj> a1]
indices k, 1, l2, ..., ls—1 ensures symmetry of I, ; ink,l1,ls,...,ls_1. According

(ry — Flils_lj) =0,

s—1lsJ
inls—1,ls. It means that I}, ,

s—1

daj

7 7 _ 7
to Lemma 3.4, Ty ;. 1 1 = Thitstiteoyj = ~Thintaetaig

which gives us symmetry of F,ill Iy, is symmet-

lsg sJ
ric in the indices k,l1, 1o, ..., ls—1,0s and A = (2", T T T i+ Tl 1) 18
well defined. By (4.6), we have v(A) = JIT.

<: Let there exist A = J 1y € C"*1 X such that v(J5T1y) = JIT. Then for the
adapted coordinates (xi,ng,F,ilj,Féllm, ... vrlilllb...lrj) Qf Jythy, Ty, = T holds,
which is equivalent to the relation I';; , =1y, , + I, Ty, — I T7% = 0 for the coordinates
of JIT' and o(J;I') = 0. O

1073



Let us denote by S the submanifold of J"C'X determined by S = {A € J"C'X:
o(A) = 0}. Lemma 4.3 shows that for A € S the inverse

(4.7) o: S—C"X
of v (4.5) is defined. In the corresponding coordinates,
(4.8) oo =a'
Iy 00 =T},
Flilj °00 = Flij,l - Flisrlsjv
Plillle 00 = cle (Fiizlj 00) — (Flills o U)FIZj

1 7 s 7 s 7 s 7 q s
- ij,lllQ - st,l1F12j - st,lgrllj - strllj,lg + qurlzsrpﬁ

i i i s
Fklllg...lrj oo =d, (Fklllg...lr_lj °0g) — (FklllQ...lr_ls © U)Flrj'

The operator dyn of formal derivative on J"C1X corresponds to the operator of
formal derivative d,, on C"t!1X, given by Lemma 3.2. More exactly, dp, (foo) =
dy f o o for any function f on C"t1X.

Using the mapping o (4.7), it is possible to rewrite the Euler-Lagrange equations of
the invariant variational problem, defined on C" T X by a Lagrangian ), as associated
equations on J"C'X for connections with compatibility conditions as constraints.

Theorem 4.1. Let A = Lwy be a Gl,,(R)-invariant Lagrangian on J?FX and let
E\ = Ff(ﬁ)yl] dxz» A wo be its associated Euler-Lagrange form. The system of n?
equations of order r + 1 for extremals of the given variational problem,

(4.9) F{(L)oJ 1y =0,
is equivalent to the system of n? rth order equations
(4.10) GYL)oJ'T =0,

where

Gi(L) = F{(£) o,
and o is defined by (4.8), together with the system of (%) - n* first order equations
in the form

(4.11) (Thy0 — D + DAL — TLTS) o J'T = 0.

Finding a solution I': X — C'X of (4.10), the corresponding solution v: X —
FX of (4.9) is then obtained by solving the system (4.3).

1074



5. EXAMPLE

Let X be a Gl,(R)-invariant Lagrangian on J!FX. The coordinate expression
of A, in the coordinates (mi,mé-,r;k) adapted to the action of Gl,(R) on J'FX, is
given by

A= Lwy, L=L(z" ;k)

The Euler-Lagrange form E) of X is expressed as
E\ = Ff(ﬁ)ylj da:;'» A wo,

where

oL oL O*L
FiL£)=-TP — +T! — =
&) " gty

2L
- +(TF 4Tk T
g worh T PIany, (

)
mpq. - msTpd 812’%(18%[
A section v: X — FX is an extremal of the first order variational problem defined
by A if and only if the system of second order partial differential equations

Fl(L)oJ?y=0

is satisfied.

According to Theorem 4.1, the problem of finding the extremal v can be also
represented as to find the corresponding section I': X — C'X which is the solution
of the system

GLUL) o JIT =0

of first order equations, where

o, oL 0L . 0L

rt 08, 0L oL
T vagri T gary, T mer grE oty

hL)y=-—1P—
Gz (’C) qu 811(;;

satisfying the additional conditions (4.11) for T'.
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