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Abstract. Let µ : FX → X be a principal bundle of frames with the structure
group Gln(R). It is shown that the variational problem, defined by Gln(R)-invariant
Lagrangian on JrFX, can be equivalently studied on the associated space of connections
with some compatibility condition, which gives us order reduction of the corresponding
Euler-Lagrange equations.
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1. Introduction

In the Lagrange theory of the calculus of variations on fibred manifolds, it is

well known that the Euler-Lagrange equations are employed for finding the extremal

values of the corresponding variational function. In general, for variational problems

defined by Lagrangians of order r, the order of the Euler-Lagrange equations is 2r.

In the case when an underlying manifold has the structure of a principal fibre bundle

with the structure group G and G-invariant Lagrangians, the original system of the

Euler-Lagrange equations can be simplified.

The idea of reduction of the Euler-Lagrange equations originally comes from me-

chanics, whereG-invariant Lagrangian defined on the tangent bundle of a Lie groupG

is considered. The equations of new kind for the reduced Lagrangian are called the
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SK-CZ-0006-09), and to the Czech Grant Agency (Grant 201/09/0981).
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Euler-Poincaré equations (see, e.g., [14]). The extension of such mechanism to field

theory was done in [3], [4], [5], and is called the Euler-Poincaré reduction. In this

case, we consider a Lagrangian defined on the first jet prolongation J1P of a principal

fibre bundle P , invariant under the natural action induced by the structure group G

on J1P . The reduced variational problem, in the sense of Euler-Poincaré reduction,

is defined on the bundle of connections C(P ), which can be identified with (J1P )/G.

It was shown that locally there is an equivalence between the solutions of the Euler-

Lagrange equations for G-invariant Lagrangian on the one side, and the solutions

of the Euler-Poincaré equations for reduced Lagrangian plus the condition of flat

connection on the other side.

In this paper, we consider the same type of invariant variational problems defined

on frame bundles FX over an n-dimensional manifold X . Our aim is to generalize

the reduction problem to higher order cases, i.e., to variational problems on JrFX

defined by Gln(R)-invariant Lagrangians.

In Sections 2 and 3 we recall the basic notions from the variational theory on fibred

manifolds and frame bundles, respectively. Section 4 deals with the correspondence

between the sections of J1FX and C1X , where C1X is the bundle of linear con-

nections of X . Using this correspondence it is shown that the Gln(R)-invariant

variational problem on Jr+1FX can be alternatively studied as the reduced problem

on JrC1X , which gives us the order reduction of the variational equations for ex-

tremals. Again, the necessity of additional compatibility conditions for connections,

in the form of zero curvature, occurs. Having a solution of the reduced equations, the

compatibility conditions ensure the existence of the associated extremal frame field,

because they correspond to the conditions of complete integrability of the arising sys-

tem of first order equations. In Section 5 we give explicit expressions of the reduced,

first order equations for connections, which replace the second order Euler-Lagrange

equations for the associated frame field.

For reduction of the solution of the Euler-Lagrange equations defined by higher

order invariant Lagrangians it is also possible to use the corresponding bundles of

higher order connections CrX = JrFX/Gln(R) (see [1]).

2. Preliminaries

Y is a fibred manifold with an oriented base manifold X and a projection π. We

denote n = dimX , m = dimY − n. JrY is the r-jet prolongation of Y . The r-jet of

a section γ of Y at a point x ∈ X is denoted by Jr
xγ; and x 7→ Jrγ(x) = Jr

xγ is the

r-jet prolongation of γ. If Jr
xγ ∈ JrY , the canonical jet projections πr,0 : JrY →

Y (the target projection), πr : JrY → X (the source projection), are defined by

πr,0(Jr
xγ) = γ(x), and πr(Jr

xγ) = x, respectively.
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Any fibred chart (V, ψ), ψ = (xi, yσ), on Y , where 1 6 i 6 n, 1 6 σ 6 m,

induces the associated charts on X and on JrY , (U,ϕ), ϕ = (xi), and (V r, ψr),

ψr = (xi, yσ, yσ
j1
, yσ

j1j2
, . . . , yσ

j1j2...jr
), respectively; here V r = (πr,0)−1(V ), and U =

π(V ). For functions on V r, we define the formal derivative operator (with respect

to the fibred chart (V, ψ)) by

dp =
∂

∂xp
+ yσ

p

∂

∂yσ
+ yσ

i1p

∂

∂yσ
i1

+ . . .+ yσ
i1i2...irp

∂

∂yσ
i1i2...ir

.

A Lagrangian (of order r) for Y is any πr-horizontal n-form on some W r ⊂ JrY .

If, in a fibred chart (V, ψ), ψ = (xi, yσ), we denote ω0 = dx1 ∧ dx2 ∧ . . . ∧ dxn, then

a Lagrangian, defined on V r = (πr,0)−1(V ), has in this chart an expression

λ = Lω0,

where L : V r → R is a function (the Lagrange function associated with λ and (V, ψ)).

The Euler-Lagrange form Eλ, associated with a Lagrangian λ of order r, is a π
2r,0-

horizontal (n+ 1)-form, in fibred chart defined by

Eλ = Eσ(L)ωσ ∧ ω0,

where

Eσ(L) =

r
∑

k=0

(−1)kdi1di2 . . . dik

∂L

∂yσ
i1i2...ik

are the Euler-Lagrange expressions associated with λ.

Let Ω be a piece of X (a compact, n-dimensional submanifold of X with bound-

ary ∂Ω), let ΓΩ,W (π) be the set of smooth sections γ over Ω such that γ(Ω) ⊂W . If

we have a Lagrangian λ of order r defined onW r, the variational function associated

with λ over Ω is the mapping ΓΩ,W (π) ∋ γ → λΩ(γ) ∈ R defined by

λΩ(γ) =

∫

Ω

Jrγ∗λ.

Let ξ be a π-projectable vector field on Y , and let ∂Jrξλ denote the Lie derivative

of λ by the r-jet prolongation Jrξ of ξ. The number

(∂Jrξλ)Ω(γ) =

∫

Ω

Jrγ∗∂Jrξλ

is the variation of the variational function λΩ at γ, induced by the vector field ξ.

We say that a section γ ∈ ΓΩ,W (π) is stable with respect to a variation ξ of γ, if

1065



(∂Jrξλ)Ω(γ) = 0. If γ is stable with respect to all ξ with support contained in π−1(Ω),

we say that γ is an extremal of λΩ. A section γ which is an extremal of every λΩ is

called an extremal of λ. A section γ is an extremal of a Lagrangian λ of order r if

and only if, for every fibred chart on Y , γ satisfies the system of partial differential

equations

Eσ(L) ◦ J2rγ = 0.

For more detailed exposition of the variational theory on fibred spaces, including

local variational principles, see [2], [11].

3. Frame bundles and their prolongations

In this section we recall the basic notions from the theory of frame bundles; the

reader can also consult [1], [9], [13].

Henceforth, instead of Y , let us consider the frame bundle µ : FX → X over

an n-dimensional manifold X , which has the structure of a principal fiber bundle

with the structure group Gln(R). A frame at a point x ∈ X is a pair Ξ = (x, ζ),

where ζ = (ζ1, ζ2, . . . , ζn) is an ordered basis of the tangent space TxX . For every

chart (U,ϕ), ϕ = (xi), on X , the associated chart (V, ψ), ψ = (xi, xi
j), on FX , is

defined by V = µ−1(U), and

xi(Ξ) = xi(µ(Ξ)), ζj = xi
j(Ξ)

( ∂

∂xi

)

x
,

where Ξ ∈ V . We denote by yj
k the inverse matrix of x

i
j .

Let us denote by JrFX an r-jet prolongation of FX . With any chart (U,ϕ),

ϕ = (xi), on X , we also associate a chart (V r, ψr) on JrFX , where V r = (µr)−1(U)

and ψr = (xi, xi
j , x

i
j,k1

, xi
j,k1k2

, . . . , xi
j,k1k2...kr

).

The right action (Ξ, A) 7→ Ξ · A ≡ RA(Ξ) of Gln(R) on FX is expressed, in

a chart (U,ϕ), ϕ = (xi), on X , by the equations

x̄i = xi ◦RA = xi, x̄i
j = xi

j ◦RA = xi
ka

k
j ,

where ak
j are the canonical coordinates on Gln(R). This action can be canonically

prolonged to the action of Gln(R) on JrFX . If A ∈ Gln(R), Jr
xγ ∈ JrFX , we define

(Jr
xγ,A) 7→ Jr

xγ · A ≡ JrRA(Jr
xγ) = Jr

x(RA ◦ γ).

In the associated charts on FX and JrFX , we have

x̄i = xi ◦ JrRA = xi,

x̄i
j,k1k2...km

= xi
j,k1k2...km

◦ JrRA = xi
l,k1k2...km

al
j , 0 6 m 6 r.
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A form η on JrFX is invariant with respect to the action of Gln(R) (or, Gln(R)-

invariant), if

(JrRA)∗η = η

holds for all A ∈ Gln(R). In particular, a function f on JrFX is Gln(R)-invariant if

(JrRA)∗f = f ◦ JrRA = f for all A ∈ Gln(R).

The functions

(3.1) Γi
k1k2...kmp = −yl

px
i
l,k1k2...km

,

defined for 1 6 m 6 r, are examples of Gln(R)-invariant functions on JrFX . Note

that the functions Γi
k1k2...kmp are symmetric in k1, k2, . . . , km.

Let (V r, ψr) be any fibred chart on JrFX . Setting Ψr = (xi, xi
p,Γ

i
k1p,Γ

i
k1k2p, . . . ,

Γi
k1k2...krp), we obtain the associated chart (V r,Ψr) on JrFX , which is said to be

Gln(R)-adapted.

For r > 1, let us denote

CrX = JrFX/Gln(R).

The quotient projection µ(r) : JrFX → CrX is in Gln(R)-adapted coordinates ex-

pressed as

µ(r) : (xi, xi
j ,Γ

i
k1j ,Γ

i
k1k2j , . . . ,Γ

i
k1k2...krj) → (xi,Γi

k1j ,Γ
i
k1k2j , . . . ,Γ

i
k1k2...krj).

Let {V r
α ,Ψ

r
α}α∈A be a covering of J

rFX by Gln(R)-adapted charts. For each α ∈

A, we set W r
α = µ(r)(V r

α ), and define the system of coordinate functions χr
α by

χr
α ◦ µ(r) = Ψr

α. Then {W r
α, χ

r
α}α∈A is a covering of C

rX consisting of the fibred

charts and CrX is the fibred manifold over X with the projection κr : CrX → X , in

the corresponding coordinates defined by κr : (xi,Γi
k1j ,Γ

i
k1k2j , . . . ,Γ

i
k1k2...krj) → (xi).

Lemma 3.1. JrFX has the structure of a right principal Gln(R)-bundle over

CrX such that the diagram

JrFX
µ(r)

//

µr,0

��

CrX

κr

��
FX

µ // X

commutes.

For r = 1, the space C1X = J1FX/Gln(R) can be identified with the bundle of

linear connections (García Pérez [7], Krupka [12]). In the case r > 1, the space CrX

is said to be the bundle of an rth order connections (Kolář [10]).
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Lemma 3.2.

(a) A function on JrFX is Gln(R)-invariant if and only if it depends, locally, on

the coordinates (xi,Γi
k1p,Γ

i
k1k2p, . . . ,Γ

i
k1k2...krp) on C

rX only.

(b) A k-form η on JrFX is Gln(R)-invariant if and only if in any chart on X ,

η = ∆0 + yq1
s1
dxp1

q1
∧ ∆s1

p1
+ yq1

s1
yq2

s2
dxp1

q1
∧ dxp2

q2
∧ ∆s1s2

p1p2

+ . . .+ yq1
s1
yq2

s2
. . . yqk

sk
dxp1

q1
∧ dxp2

q2
. . . ∧ dxpk

qk
∧ ∆s1s2...sk

p1p2...pk
,

where ∆0, ∆
s1
p1
, ∆s1s2

p1p2
, . . . , ∆s1s2...sk

p1p2...pk
are arbitrary forms defined on CrX .

(c) Let f be a Gln(R)-invariant function on JrFX . Then the pth formal deriva-

tive dpf is again a Gln(R)-invariant function on Jr+1FX , and in the corre-

sponding adapted chart it can be expressed as

(3.2) dpf =
∂f

∂xp
+

r
∑

s=1

∑

k16k26...6ks

∂f

∂Γi
k1k2...ksj

(Γi
k1k2...kspj + Γi

k1k2...ksqΓ
q
pj).

Note that the operator dp introduced in (3.2), restricted to the invariant func-

tions on JrFX , corresponds to the operator of the formal derivative of any function

on CrX .

The functions (3.1) can be rewritten in another form. By (3.2),

Γi
klj = dlΓ

i
kj − Γi

ksΓ
s
lj = dkΓi

lj − Γi
lsΓ

s
kj ,

where the functions Γi
kj and their formal derivatives dlΓ

i
kj satisfy the compatibility

condition

(3.3) dlΓ
i
kj − dkΓi

lj + Γi
lsΓ

s
kj − Γi

ksΓ
s
lj = 0.

Analogously,

Γi
k1k2k3j = dk3Γ

i
k1k2j − Γi

k1k2sΓ
s
k3j

= dk2Γ
i
k1k3j − Γi

k1k3sΓ
s
k2j = dk1Γ

i
k2k3j − Γi

k2k3sΓ
s
k1j ,

...

Γi
k1k2...krj = dkr

Γi
k1k2...kr−1j − Γi

k1k2...kr−1sΓ
s
krj

= dkr−1Γ
i
k1k2...kr−2krj − Γi

k1k2...kr−2krsΓ
s
kr−1j

= . . .

= dk1Γ
i
k2k3...krj − Γi

k2k3...krsΓ
s
k1j ,
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and we have the corresponding compatibility conditions

dk1Γ
i
k2k3p − Γi

k2k3sΓ
s
k1p = dk2Γ

i
k1k3p − Γi

k1k3sΓ
s
k2p

= dk3Γ
i
k1k2p − Γi

k1k2sΓ
s
k3p

...

dk1Γ
i
k2k3...krp − Γi

k2k3...krsΓ
s
k1p = dk2Γ

i
k1k3...krp − Γi

k1k3...krsΓ
s
k2p

= . . .

= dkr−1Γ
i
k1k2...kr−2krp − Γi

k1k2...kr−2krsΓ
s
kr−1p

= dkr
Γi

k1k2...kr−1p − Γi
k1k2...kr−1sΓ

s
krp.

Let λ be a Lagrangian on JrFX . Recall that the coordinate expression of λ in

any Gln(R)-adapted chart is λ = Lω0, where L : V r → R is the associated Lagrange

function.

Lemma 3.3. The Euler-Lagrange form Eλ, associated with the Gln(R)-invariant

Lagrangian λ on JrFX , is Gln(R)-invariant.

Corollary 3.1.

(a) A Lagrangian λ on JrFX is Gln(R)-invariant if and only if in any Gln(R)-

adapted chart, the associated Lagrange function L is Gln(R)-invariant.

(b) The coordinate expression of the Euler-Lagrange form Eλ, associated with

Gln(R)-invariant Lagrangian λ on JrFX , is

Eλ = F l
i (L)yj

l dxi
j ∧ ω0,

where F l
i (L) are Gln(R)-invariant functions.

Corollary 3.2. A Lagrangian λ on JrFX is Gln(R)-invariant if and only if there

exists a Lagrangian λ̃ on CrX such that λ = (µ(r))∗λ̃.

Finally, we prove an auxiliary assertion.

Lemma 3.4. In a Gln(R)-adapted chart (V r,Ψr), Ψr = (xi, xi
j ,Γ

i
p1j ,Γ

i
p1p2j , . . . ,

Γi
p1p2...prj), on J

rFX , r > 2,

Γi
p1p2...pmklj − Γi

p1p2...pmlkj = −Γi
p1p2...pmq(Γ

q
klj − Γq

lkj)

holds for all 1 6 m 6 r − 2.
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P r o o f. According to (3.2), for adapted coordinates Γi
p1p2...pmj , m > 1 we have

(3.4) Γi
p1p2...pmkj = dkΓi

p1p2...pmj − Γi
p1p2...pmqΓ

q
kj

and

(3.5) dlΓ
i
p1p2...pmkj = dldkΓi

p1p2...pmj − dlΓ
i
p1p2...pmqΓ

q
kj − Γi

p1p2...pmqdlΓ
q
kj .

Then, using (3.4) and (3.5), we obtain

Γi
p1p2...pmklj − Γi

p1p2...pmlkj

= dlΓ
i
p1p2...pmkj − Γi

p1p2...pmktΓ
t
lj − dkΓi

p1p2...pmlj + Γi
p1p2...pmltΓ

t
kj

= dldkΓi
p1p2...pmj − dlΓ

i
p1p2...pmqΓ

q
kj − Γi

p1p2...pmqdlΓ
q
kj

− dkΓi
p1p2...pmtΓ

t
lj + Γi

p1p2...pmqΓ
q
ktΓ

t
lj

− dkdlΓ
i
p1p2...pmj + dkΓi

p1p2...pmqΓ
q
lj + Γi

p1p2...pmqdkΓq
lj

+ dlΓ
i
p1p2...pmtΓ

t
kj − Γi

p1p2...pmqΓ
q
ltΓ

t
kj

= − Γi
p1p2...pmq(dlΓ

q
kj − dkΓq

lj + Γq
ltΓ

t
kj − Γq

ktΓ
t
lj)

= − Γi
p1p2...pmq(Γ

q
klj − Γq

lkj).

�

4. Variational problems defined by higher order

invariant Lagrangians

First we discuss relations between linear connections on X and sections of the

fibred manifold J1FX (see [15]).

Lemma 4.1. Equations

(4.1) µ1,0 ◦ w = idµ−1(U), µ(1) ◦ w = Γ ◦ µ

define a bijective correspondence between the connections Γ, defined on open sets

U ⊂ X , and the Gln(R)-equivariant sections w of J1FX , defined on open, µ-

saturated sets V = µ−1(U) ⊂ FX .

If w : V → J1FX is the Gln(R)-equivariant section, then the connection Γ, defined

by (4.1), is said to be associated with w. The diagram

J1FX
µ(1)

// C1X

V

w

OO

µ // U
γ

oo

Γ

OO
δ

ddI
I

I

I

I

I

I

I

I

I
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also induces the natural correspondence between the sections of J1FX over X , and

the sections of C1X : if δ is a section of J1FX , then Γ = µ(1) ◦ δ is a section of

C1X over the same domain of definition. Conversely, given Γ, one can construct,

for every chart (U,ϕ), ϕ = (xi), on X , a section δ : U → J1FX . We choose any

frame field γ : U → FX , and then define δ : U → J1FX by setting xi
j ◦ δ = xi

j ◦ γ,

xi
j,k ◦ δ = −(xl

j ◦ γ) · Γ
i
kl. If

Γ = µ(1) ◦ δ

over an open set U , we say that δ generates Γ on U .

Consider the restriction of the correspondence δ → µ(1) ◦ δ to holonomic sections,

i.e., to sections δ of the form δ = J1γ, where γ is a section of FX . If

Γ = µ(1) ◦ J1γ

for some frame field γ, we say that γ generates Γ on U . If every point of X has

a neighborhood U such that Γ = µ(1) ◦ J1γ for some frame field γ, we say that Γ is

locally generated by frame fields.

Lemma 4.2. The following conditions are equivalent.

(a) Γ is locally generated by frame fields.

(b) Γ is flat.

P r o o f. Let Γ be a linear connection on X . Denote by

(4.2) Ri
lkj =

∂Γi
kj

∂xl
−
∂Γi

lj

∂xk
+ Γi

lsΓ
s
kj − Γi

ksΓ
s
lj

the components of the curvature tensor of Γ in a chart (U,ϕ), ϕ = (xi), on X

(see [8]).

(a) ⇒ (b): Assume that the first condition holds. Then there exists a system of

functions xi
j : U → R such that

(4.3)
∂xi

j

∂xk
= −xl

jΓ
i
kl.

This system satisfies

−
∂xs

j

∂xl
Γi

ks − xs
j

∂Γi
ks

∂xl
=

∂

∂xl
(−xs

jΓ
i
ks) =

∂2xi
j

∂xl∂xk

=
∂2xi

j

∂xk∂xl
=

∂

∂xk
(−xs

jΓ
i
ls) = −

∂xs
j

∂xk
Γi

ls − xs
j

∂Γi
ls

∂xk
,
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i.e.,

−xt
jΓ

s
ltΓ

i
ks + xs

j

∂Γi
ks

∂xl
+ xt

jΓ
s
ktΓ

i
ls − xs

j

∂Γi
ls

∂xk
= 0.

Thus,

(4.4) −Γs
ljΓ

i
ks +

∂Γi
kj

∂xl
+ Γs

kjΓ
i
ls −

∂Γi
lj

∂xk
= 0,

or,

Ri
lkj = 0,

which means that Γ is flat.

(b) ⇒ (a): If Γ is a flat connection, it satisfies the system of equations (4.4). This

system represents the conditions of complete integrability for the system (4.3), which

means that Γ is locally generated by the frame fields (see [6]). �

Note that the conditions of zero curvature (4.4) for a connection Γ to be locally

generated by frame fields are equivalent to the compatibility conditions (3.3) (sym-

metry of Γi
klj in the indices k, l) for the associated section γ.

The correspondence between sections, as described above, allows us to consider

a variational problem for a frame field γ : X → FX as a problem to find the corre-

sponding linear connection Γ: X → C1X . For higher order variational problems on

frame bundles we consider the commutative diagram

JrJ1FX
Jrµ(1)

//

��

JrC1X

��
J1FX

µ(1)

// C1X

where Jrµ(1) denotes the r-jet prolongation of the quotient projection µ(1) (over X),

and the canonical inclusions Cr+1X →֒ Jr+1FX , and Jr+1FX →֒ JrJ1FX . The

composed mapping

(4.5) ν : Cr+1X → JrC1X

has the expression

xi ◦ ν = xi,(4.6)

Γi
kj ◦ ν = Γi

kj ,

Γi
kj,l ◦ ν = dlΓ

i
kj = Γi

klj + Γi
ksΓ

s
lj ,
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Γi
kj,l1l2

◦ ν = dl2dl1Γ
i
kj

= Γi
kl1l2j + Γi

kl1sΓ
s
l2j + Γi

kl2sΓ
s
l1j + Γi

ks(Γ
s
l1l2j + Γs

l1qΓ
q
l2j + Γs

l2qΓ
q
l1j),

. . .

Γi
kj,l1l2...lr

◦ ν = dlr . . . dl2dl1Γ
i
kj .

To describe the image of ν in JrC1X , we denote by τ1
3X the bundle of tensors of

type (1, 3) overX , with induced coordinates Si
lkj . We introduce the formal curvature

tensor on JrC1X (see [12]) as a morphism ̺ : JrC1X → τ1
3X expressed by

Si
lkj ◦ ̺ = Ri

lkj = Γi
kj,l − Γi

lj,k + Γi
lsΓ

s
kj − Γi

ksΓ
s
lj

(compare with (4.2)).

Consider the sequence

0 −→ Cr+1X
ν

−→ JrC1X
̺

−→ τ1
3X −→ 0

of bundles over X . We have the following result.

Lemma 4.3. Let Jr
xΓ ∈ JrC1X . Then ̺(Jr

xΓ) = 0 if and only if there exists an

element ∆ ∈ Cr+1X such that ν(∆) = Jr
xΓ.

P r o o f. ⇒: Let Jr
xΓ = (xi,Γi

kj ,Γ
i
kj,l,Γ

i
kj,l1l2

, . . . ,Γi
kj,l1l2...lr

) be the coordinates

of Jr
xΓ ∈ JrC1X with respect to a fibred coordinate system (W r, χr) on JrC1X ,

associated with the coordinate system (W,χ), χ = (xi,Γi
kj) on C

1X , where Γ is

a section of C1X defined in the neighborhood of x ∈ X . Let ̺(Jr
xΓ) = 0, i.e., the

coordinates of Jr
xΓ satisfy Γi

kj,l − Γi
lj,k + Γi

lsΓ
s
kj − Γi

ksΓ
s
lj = 0. It means that Γi

klj =

(Γi
kj,l − Γi

ksΓ
s
lj) ◦ ν = (Γi

lj,k − Γi
lsΓ

s
kj) ◦ ν = Γi

lkj , and Γi
klj are symmetric in k, l.

Moreover, by (3.2), Γi
klmj = dmΓi

klj − Γi
klsΓ

s
mj , which gives us symmetry of Γi

klmj

in k, l. According to Lemma 3.4, Γi
klmj − Γi

kmlj = −Γi
kq(Γ

q
lmj − Γq

mlj) = 0, which

gives us symmetry of Γi
klmj in l, m. It means that Γi

klmj is symmetric in the

indices k, l, m and these coordinates of ∆ are well defined. Continuing in this

way, suppose that the coordinates Γi
kl1l2...ls−1j of ∆ are defined. Again, by (3.2),

Γi
kl1l2...ls−1lsj = dlsΓ

i
kl1l2...ls−1j − Γi

kl1l2...ls−1qΓ
q
lsj , and symmetry of Γ

i
kl1l2...ls−1j in the

indices k, l1, l2, . . . , ls−1 ensures symmetry of Γ
i
kl1l2...lsj in k, l1, l2, . . . , ls−1. According

to Lemma 3.4, Γi
kl1l2...ls−1lsj − Γi

kl1l2...lsls−1j = −Γi
kl1l2...ls−1q(Γ

q
ls−1lsj − Γq

lsls−1j) = 0,

which gives us symmetry of Γi
kl1l2...lsj in ls−1, ls. It means that Γi

kl1l2...lsj is symmet-

ric in the indices k, l1, l2, . . . , ls−1, ls and ∆ = (xi,Γi
kj ,Γ

i
klj ,Γ

i
kl1l2j , . . . ,Γ

i
kl1l2...lrj) is

well defined. By (4.6), we have ν(∆) = Jr
xΓ.

⇐: Let there exist ∆ = Jr+1
x γ ∈ Cr+1X such that ν(Jr+1

x γ) = Jr
xΓ. Then for the

adapted coordinates (xi,Γi
kj ,Γ

i
klj ,Γ

i
kl1l2j , . . . ,Γ

i
kl1l2...lrj) of J

r+1
x γ, Γi

klj = Γi
lkj holds,

which is equivalent to the relation Γi
kj,l−Γi

lj,k +Γi
lsΓ

s
kj−Γi

ksΓ
s
lj = 0 for the coordinates

of Jr
xΓ and ̺(Jr

xΓ) = 0. �
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Let us denote by S the submanifold of JrC1X determined by S = {Λ ∈ JrC1X :

̺(Λ) = 0}. Lemma 4.3 shows that for Λ ∈ S the inverse

(4.7) σ : S → Cr+1X

of ν (4.5) is defined. In the corresponding coordinates,

xi ◦ σ = xi,(4.8)

Γi
kj ◦ σ = Γi

kj ,

Γi
klj ◦ σ = Γi

kj,l − Γi
ksΓ

s
lj ,

Γi
kl1l2j ◦ σ = d̃l2(Γ

i
kl1j ◦ σ) − (Γi

kl1s ◦ σ)Γs
l2j

= Γi
kj,l1l2

− Γi
ks,l1

Γs
l2j − Γi

ks,l2
Γs

l1j − Γi
ksΓ

s
l1j,l2

+ Γi
kqΓ

q
l2sΓ

s
pj ,

...

Γi
kl1l2...lrj ◦ σ = d̃lr (Γ

i
kl1l2...lr−1j ◦ σ) − (Γi

kl1l2...lr−1s ◦ σ)Γs
lrj .

The operator d̃m of formal derivative on J
rC1X corresponds to the operator of

formal derivative dm on C
r+1X , given by Lemma 3.2. More exactly, d̃m(f ◦ σ) =

dmf ◦ σ for any function f on Cr+1X .

Using the mapping σ (4.7), it is possible to rewrite the Euler-Lagrange equations of

the invariant variational problem, defined on Cr+1X by a Lagrangian λ, as associated

equations on JrC1X for connections with compatibility conditions as constraints.

Theorem 4.1. Let λ = Lω0 be a Gln(R)-invariant Lagrangian on JqFX and let

Eλ = F l
i (L)yj

l dxi
j ∧ ω0 be its associated Euler-Lagrange form. The system of n

2

equations of order r + 1 for extremals of the given variational problem,

(4.9) F l
i (L) ◦ Jr+1γ = 0,

is equivalent to the system of n2 rth order equations

(4.10) Gl
i(L) ◦ JrΓ = 0,

where

Gl
i(L) = F l

i (L) ◦ σ,

and σ is defined by (4.8), together with the system of
(

n
2

)

· n2 first order equations

in the form

(4.11) (Γi
kj,l − Γi

lj,k + Γi
lsΓ

s
kj − Γi

ksΓ
s
lj) ◦ J

1Γ = 0.

Finding a solution Γ: X → C1X of (4.10), the corresponding solution γ : X →

FX of (4.9) is then obtained by solving the system (4.3).
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5. Example

Let λ be a Gln(R)-invariant Lagrangian on J1FX . The coordinate expression

of λ, in the coordinates (xi, xi
j ,Γ

i
jk) adapted to the action of Gln(R) on J1FX , is

given by

λ = Lω0, L = L(xi,Γi
jk).

The Euler-Lagrange form Eλ of λ is expressed as

Eλ = F l
i (L)yj

l dxi
j ∧ ω0,

where

F l
i (L) = −Γp

qi

∂L

∂Γp
ql

+ Γl
pq

∂L

∂Γi
pq

+
∂2L

∂xp∂Γi
pl

+ (Γk
mpq + Γk

msΓ
s
pq)

∂2L

∂Γk
mq∂Γi

pl

.

A section γ : X → FX is an extremal of the first order variational problem defined

by λ if and only if the system of second order partial differential equations

F l
i (L) ◦ J2γ = 0

is satisfied.

According to Theorem 4.1, the problem of finding the extremal γ can be also

represented as to find the corresponding section Γ: X → C1X which is the solution

of the system

Gl
i(L) ◦ J1Γ = 0

of first order equations, where

Gl
i (L) = −Γp

qi

∂L

∂Γp
ql

+ Γl
pq

∂L

∂Γi
pq

+
∂2L

∂xp∂Γi
pl

+ Γk
mq,p

∂2L

∂Γk
mq∂Γi

pl

,

satisfying the additional conditions (4.11) for Γ.
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