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Berezin transform for non-scalar

holomorphic discrete series

Benjamin Cahen

Abstract. Let M = G/K be a Hermitian symmetric space of the non-compact
type and let π be a discrete series representation of G which is holomorphically
induced from a unitary irreducible representation ρ of K. In the paper [B. Cahen,
Berezin quantization for holomorphic discrete series representations: the non-

scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have
introduced a notion of complex-valued Berezin symbol for an operator acting
on the space of π. Here we study the corresponding Berezin transform and we
show that it can be extended to a large class of symbols. As an application, we
construct a Stratonovich-Weyl correspondence associated with π.

Keywords: Berezin quantization, Berezin symbol, Stratonovich-Weyl correspon-
dence, discrete series representation, Hermitian symmetric space of the non-
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kernel, adjoint orbit
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1. Introduction

Let G be a connected semi-simple non-compact Lie group with finite center.
Let K be a maximal compact subgroup of G. We assume that the center of K
has positive dimension. Then the Hermitian symmetric space of the non-compact
type G/K is diffeomorphic to a bounded symmetric domain D. We consider
a discrete series representation π of G which is holomorphically induced from
a unitary irreducible representation ρ of K. The space of ρ is then a finite-
dimensional complex vector space V and π can be realized in a Hilbert space H
of holomorphic functions on D with values in V .

When ρ is a unitary character of K, we can directly define the Berezin symbol
S(A) of an operator A on H as a complex-valued function on D and the map
S : A → S(A) is a bounded operator from L2(D, µ), where µ is an invariant
measure on D, to the space L2(H) of the Hilbert-Schmidt operators on H, see
for instance [29]. The Berezin transform is then the map B := SS∗, which plays
an important role in quantization on symmetric domains [5], [6]. In that case,
Berezin transforms have been intensively studied (see in particular [29], [27], [16],
[33] and [34]).

In the general case, we have constructed in [13] a Berezin map S : A → S(A)
from a class of operators acting on H to a space of complex-valued functions on
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G/K× o, where o denotes the coadjoint orbit of K associated with ρ. The map S
has some nice properties (symmetry, covariance . . . ) and then can be considered
as the natural generalization of the Berezin calculus to the non-scalar case.

In the present paper, we introduce and study the Berezin transform B corre-
sponding to the map S. In particular, we show that B extends to a bounded oper-
ator acting on a space of square-integrable functions on G/K×o (Proposition 5.2).
This generalizes some well-known results on the usual Berezin transform, see for
instance [29, 1.19]. Moreover, we study the functions S(dπ(X1X2 · · ·Xq)) for
X1, X2, . . . , Xq in the Lie algebra of G and we prove that B can be also extended
to these functions, generalizing the results of [12]. As an application, we construct
a Stratonovich-Weyl correspondence associated with π (see Section 7 for a precise
definition).

This paper is organized as follows. In Section 2, we introduce some notation
on Hermitian symmetric spaces and holomorphic discrete series. In Section 3, we
recall the results of [13] about the construction of the map S and its properties.
In Section 4, we introduce the Berezin transform B and we show that B is an in-
tegral operator. The Sections 5 and 6 are devoted to the study and the extension
of B. Our main results are then Proposition 5.2 (L2-extension of B) and Propo-
sition 6.5 (extension of B to the symbols of some differential operators). Finally,
in Section 7, we construct a Stratonovich-Weyl correspondence associated with π.

2. Preliminaries

In this section, we introduce the notation and we collect some facts on Her-
mitian symmetric spaces of the non-compact type and holomorphic discrete series
representations. Our main references are [21, Chapter VIII], [26, Chapter XII],
[23, Chapter 6], [17] and [31].

Let G be a connected semi-simple non-compact real Lie group with finite center
and let K be a maximal compact subgroup of G. We assume that the center of the
Lie algebra of K is non-trivial. Then the homogeneous space G/K is a Hermitian
symmetric space of the non-compact type.

Let g and k be the Lie algebras of G and K, respectively. Let gc and kc be the
complexifications of g and k and Gc, Kc the corresponding complex Lie groups
containing G and K, respectively. We denote by β the Killing form of gc, that is,
β(X,Y ) = Tr(adX adY ) for X, Y ∈ gc. Let p be the ortho-complement of k in g
with respect to β. Then g = k⊕ p is a Cartan decomposition of g.

We fix a Cartan subalgebra h of k. Then h is also a Cartan subalgebra of g. We
denote by hc the complexification of h. Let ∆ be the root system of gc relative
to hc and let gc = hc ⊕∑α∈∆ gα be the root space decomposition of gc. Then
we have the direct decompositions kc = hc ⊕∑α∈∆c

gα and pc =
∑
α∈∆n

gα
where pc denotes the complexification of p and ∆c (resp. ∆n) denotes the set
of compact (resp. non-compact) roots. We choose an ordering on ∆ as in [21,
p. 384] and we denote by ∆+, ∆+

c and ∆+
n the corresponding sets of positive

roots, positive compact roots and positive non-compact roots, respectively. We
set p+ =

∑
α∈∆+

n
gα and p− =

∑
α∈∆+

n
g−α. Then we have [kc , p±] ⊂ p± and
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p+ and p− are abelian subalgebras [21, Proposition 7.2]. Since [p, p] ⊂ k, we also
have [p+, p−] ⊂ kc. We denote by P+ and P− the analytic subgroups of Gc with
Lie algebras p+ and p−, respectively.

For each µ ∈ (hc)∗, we denote by Hµ the element of hc satisfying β(H,Hµ) =
µ(H) for all H ∈ hc. Note that if µ is real-valued on ih then iHµ ∈ g. For
µ, ν ∈ (hc)∗, we set (µ, ν) := β(Hµ, Hν).

Let θ denote the conjugation induced by the real form g of gc. For X ∈ gc,
we set X∗ = −θ(X). We denote by g → g∗ the involutive anti-automorphism
of Gc which is obtained by exponentiating X → X∗ to Gc. Recall that the
multiplication map (z, k, y) → zky is a diffeomorphism from P+ × Kc × P−

onto an open submanifold of Gc containing G [21, Lemma 7.9]. Following [26,
p. 497], we introduce the projections ζ : P+KcP− → P+, κ : P+KcP− →
Kc and η : P+KcP− → P−. Then the map gK → log ζ(g) from G/K to
p+ induces a diffeomorphism from G/K onto a bounded domain D ⊂ p+ [21,
p. 392]. The natural action of G on G/K corresponds to the action of G on
D given by g · Z = log ζ(g expZ). The G-invariant measure on D is dµ(Z) =
χ0(κ(expZ

∗ expZ)) dµL(Z) where χ0 is the character on Kc defined by χ0(k) =
Detp+(Ad k) and dµL(Z) is a Lebesgue measure on D [26, p. 538].

Note that by fixing an Iwasawa decomposition G = NAK, we get a smooth
section G/K → NA ⊂ G. Then we obtain a smooth section D → G, Z → gZ ,
that is, we have gZ · 0 = Z for Z ∈ D.

Now, let (ρ, V ) be a unitary irreducible representation ofK with highest weight
λ (relative to ∆+

c ). We also denote by ρ the extension of ρ to Kc. Let H be the
Hilbert space of all holomorphic functions on D with values in V such that

‖f‖2 :=
∫

D
〈K(Z,Z)−1f(Z), f(Z)〉V dµ(Z) < +∞

where K(Z,W ) := ρ(κ(expW ∗ expZ))−1 for Z, W ∈ D.
For g ∈ G and Z ∈ D, we set J(g, Z) := ρ(κ(g expZ)).

Proposition 2.1 ([26, p. 542], [17]). The space H is non-zero if and only if
(λ + δ, α) < 0 for each non-compact positive root α, where δ stands for half of
the sum of the positive roots. In that case, H contains all V -valued polynomials.
Moreover, the action of G on H defined by

π(g)f(Z) = J(g−1, Z)−1 f(g−1 · Z)

is a unitary irreducible representation of G which belongs to the holomorphic
discrete series of G.

In the rest of the paper, we assume that the condition of the preceding propo-
sition is fulfilled.

The evaluation maps KZ : H → V , f → f(Z) are continuous [26, p. 539]. The
generalized coherent states of H are the maps EZ = K∗

Z : V → H defined by
〈f(Z), v〉V = 〈f,EZv〉 for f ∈ H and v ∈ V .

We have the following result, see [26, p. 540] and [17].



4 B. Cahen

Proposition 2.2. (1) There exists a constant cρ > 0 such that E∗
ZEW =

cρK(Z,W ) for each Z, W ∈ D.
(2) For g ∈ G and Z ∈ D, we have Eg·Z = π(g)EZJ(g, Z)

∗.

3. Berezin symbols

In this section, we first introduce the Berezin calculus associated with ρ, see
[4], [32] and [9].

Let λ ∈ h∗ be the highest weight of ρ relative to ∆+
c . Let ϕ0 ∈ h be such that

λ(H) = iβ(ϕ0, H) for each H ∈ h, that is, ϕ0 = −iHλ. In the rest of the paper,
we assume that ϕ0 is regular in the sense that α(ϕ0) 6= 0 for each α ∈ ∆. Then
the orbit o(ϕ0) of ϕ0 under the adjoint action of K is said to be associated with
ρ [8], [32].

Note that a complex structure on o(ϕ0) is then defined by the diffeomorphism
o(ϕ0) ≃ K/H ≃ Kc/HcN− where N− is the analytic subgroup of Kc with Lie
algebra

∑
α∈∆+

c
gα.

Without loss of generality, we can assume that V is a space of holomorphic
functions on o(ϕ0) as in [9]. Since V is finite-dimensional, for each ϕ ∈ o(ϕ0) there
exists a unique function eϕ ∈ V (called a coherent state) such that a(ϕ) = 〈a, eϕ〉V
for each a ∈ V . The Berezin calculus on o(ϕ0) associates with each operator B
on V the complex-valued function s(B) on o(ϕ0) defined by

s(B)(ϕ) =
〈Beϕ, eϕ〉V
〈eϕ, eϕ〉V

which is called the symbol of B.
The following properties of the Berezin calculus can be found in [14], [4] and [9].

Proposition 3.1. (1) The map B → s(B) is injective.

(2) For each operator B on V , we have s(B∗) = s(B).
(3) For ϕ ∈ o(ϕ0), k ∈ K and B ∈ End(V ), we have

s(B)(Ad(k)ϕ) = s(ρ(k)−1Bρ(k))(ϕ).

(4) For U ∈ k and ϕ ∈ o(ϕ0), we have s(dρ(U))(ϕ) = iβ(ϕ,U).

Now, in order to define the Berezin symbol S(A) of an operator A on H, we
first define the pre-symbol S0(A) of A as a End(V )-valued function on D.

Let H0 be the subspace of H generated by the functions EZv for Z ∈ D and
v ∈ V . Clearly, H0 is a dense subspace of H. Let C be the space consisting of
all operators A on H such that the domain of A contains H0 and the domain of
A∗ also contains H0. For Z ∈ D, we denote hZ := κ(gZ) ∈ Kc. We define the
pre-symbol S0(A) of A ∈ C by

S0(A)(Z) = c−1
ρ ρ(h−1

Z )E∗
ZAEZρ(h

−1
Z )∗
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and the Berezin symbol S(A) of A is then defined as the complex-valued function
on D × o(ϕ0) given by

S(A)(Z,ϕ) = s(S0(A)(Z))(ϕ).

In [13], we proved the following properties of S.

Proposition 3.2. (1) The map A→ S(A) is injective on C.
(2) For each A ∈ C, we have S(A∗) = S(A).
(3) We have S(I) = 1.
(4) For each A ∈ C, g ∈ G, Z ∈ D and ϕ ∈ o(ϕ0), we have

S(A)(g · Z,ϕ) = S(π(g)−1Aπ(g))(Z,Ad(k(g, Z))ϕ)

where k(g, Z) := h−1
Z κ(g expZ)−1hg·Z is an element of K.

(5) For each X ∈ gc, Z ∈ D and ϕ ∈ o(ϕ0), we have

S(dπ(X))(Z,ϕ) = iβ(Ad(gZ)ϕ,X).

LetO(ϕ0) be the orbit of ϕ0 under the adjoint action ofG on g. In [13], we have
also proved that the map Ψ : D × o(ϕ0) → O(ϕ0) defined by Ψ(Z,ϕ) = Ad(gZ)ϕ
is a diffeomorphism such that

(3.1) Ad(g)Ψ(Z,ϕ) = Ψ(g · Z,Ad(k(g, Z))−1ϕ)

for g ∈ G, Z ∈ D and ϕ ∈ o(ϕ0).
We fix a K-invariant measure ν on o(ϕ0) normalized as in [9, Section 2]. Then

the measure µ̃ := µ ⊗ ν on D × o(ϕ0) is invariant under the action of G on
D × o(ϕ0) given by g · (Z,ϕ) := (g · Z,Ad(k(g, Z))−1ϕ). Moreover, the measure
µO(ϕ0) := (Ψ−1)∗(µ̃) is a G-invariant measure on O(ϕ0).

4. The Berezin transform

We denote by L2(H) (respectively L2(V )) the space of Hilbert-Schmidt opera-
tors on H (respectively V ) endowed with the Hilbert-Schmidt norm ‖ · ‖2 defined
by ‖A‖22 = Tr(A∗A). Since V is finite-dimensional, we have L2(V ) = End(V ). We
denote by L2(D×o(ϕ0)) (respectively L

2(D), L2(o(ϕ0))) the space of functions on
D × o(ϕ0) (resp. D, o(ϕ0)) which are square-integrable with respect to the mea-
sure µ̃ (resp. µ, ν). We define similarly the spaces L1(D×o(ϕ0)), L

∞(D×o(ϕ0)),
etc.

In [11], we proved the following proposition.

Proposition 4.1. For each ϕ ∈ o(ϕ0), let pϕ denote the orthogonal projection of
V on the line generated by eϕ. Then the adjoint s∗ of the operator s : L2(V ) →
L2(o(ϕ0)) is given by

s∗(a) =
∫

o(ϕ0)

a(ϕ)pϕ dν(ϕ)

for each a ∈ L2(o(ϕ0)).
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Our aim is to obtain a similar result for S. To this goal, we introduce the
operator T defined by

T (f) =

∫

D×o(ϕ0)

PZ,ϕf(Z,ϕ) dµ(Z)dν(ϕ)

where PZ,ϕ := c−1
ρ EZρ(h

−1
Z )∗pϕρ(h

−1
Z )E∗

Z .

Proposition 4.2. (1) PZ,ϕ is the orthogonal projection of H on the line

generated by EZρ(h
−1
Z )∗eϕ.

(2) For each A ∈ L2(H), we have S(A) ∈ L∞(D × o(ϕ0)).
(3) For each f ∈ L1(D × o(ϕ0)), we have T (f) ∈ L2(H).
(4) For each A ∈ L2(H), we have Tr(APZ,ϕ) = S(A)(Z,ϕ).
(5) The operators S : L2(H) → L∞(D × o(ϕ0)) and T : L1(D × o(ϕ0)) →

L2(H) are adjoint in the sense that
∫

D×o(ϕ0)

S(A)(Z,ϕ)f(Z,ϕ) dµ(Z)dν(ϕ) = 〈A, T (f)〉2

for each A ∈ L2(H) and f ∈ L1(D × o(ϕ0)).

Proof: (1) Let Z ∈ D. We can decompose gZ as gZ = expZhZy where y ∈ P−.
Then we have e = g∗ZgZ = y∗h∗Z expZ∗ expZhZy where e is the unit element
of Gc. This implies that κ(expZ∗ expZ)−1 = hZh

∗
Z . Therefore, by applying (1)

of Proposition 2.2, we obtain

(4.1) E∗
ZEZ = cρρ(κ(expZ

∗ expZ))−1 = cρρ(hZh
∗
Z).

By using this equality, we immediately verify that P 2
Z,ϕ = PZ,ϕ. Moreover, it

is clear that P ∗
Z,ϕ = PZ,ϕ. Then PZ,ϕ is an orthogonal projection of H. Using

Equality (4.1) again, we get PZ,ϕEZρ(h
−1
Z )∗eϕ = EZρ(h

−1
Z )∗eϕ. Finally, since pϕ

is a rank one operator, we see that PZ,ϕ is also a rank one operator, hence the

orthogonal projection on the line generated by EZρ(h
−1
Z )∗eϕ.

(2) Let A ∈ L2(H). We have

‖S0(A)(Z)‖2 ≤ c−1
ρ ‖ρ(h−1

Z )E∗
Z‖op‖A‖2‖EZρ(h−1

Z )∗‖op.

Since

‖ρ(h−1
Z )E∗

Z‖op‖EZρ(h−1
Z )∗‖op = ‖ρ(h−1

Z )E∗
ZEZρ(h

−1
Z )∗‖op = ‖cρidV ‖op = cρ,

we get ‖S0(A)(Z)‖2 ≤ ‖A‖2. Then we have

|S(A)(Z,ϕ)| ≤ ‖S0(A)(Z)‖op ≤ ‖S0(A)(Z)‖2 ≤ ‖A‖2.

Hence S(A) ∈ L∞(D × o(ϕ0)).
(3) Let f ∈ L1(D× o(ϕ0)). Since ‖PZ,ϕ‖2 = 1, we see that T (f) is well-defined

as a Bochner integral and that ‖T (f)‖2 ≤ ‖f‖1.
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(4) Let A ∈ L2(H). Recall that PZ,ϕ is the orthogonal projection on the line

generated by EZρ(h
−1
Z )∗eϕ. Then, by considering an orthonormal basis (hk)k≥1

of H such that h1 = ‖EZρ(h−1
Z )∗eϕ‖−1

2 EZρ(h
−1
Z )∗eϕ, we get

Tr(APZ,ϕ) =
〈AEZρ(h−1

Z )∗eϕ, EZρ(h
−1
Z )∗eϕ〉

〈EZρ(h−1
Z )∗eϕ, EZρ(h

−1
Z )∗eϕ〉

.

Thus, since we have

〈EZρ(h−1
Z )∗eϕ, EZρ(h

−1
Z )∗eϕ〉 = 〈ρ(h−1

Z )E∗
ZEZρ(h

−1
Z )∗eϕ, eϕ〉V = cρ〈eϕ, eϕ〉V ,

we find

Tr(APZ,ϕ) = c−1
ρ

〈ρ(h−1
Z )E∗

ZAEZρ(h
−1
Z )∗eϕ, eϕ〉V

〈eϕ, eϕ〉V
= s(S0(A)(Z))(ϕ) = S(A)(Z,ϕ).

(5) This is an immediate consequence of (4). �
Now, we can consider the Berezin transform B := ST as an operator from

L1(D× o(ϕ0)) to L
∞(D× o(ϕ0)). The following proposition shows that B can be

expressed as an integral operator.

Proposition 4.3. For each f ∈ L1(D × o(ϕ0)), we have

B(f)(Z,ψ) =

∫

D×o(ϕ0)

k(Z,W,ψ, ϕ) f(W,ϕ) dµ(W )dν(ϕ)

where

k(Z,W,ψ, ϕ) :=
|〈ρ(κ(g−1

Z gW ))−1eψ, eϕ〉V |2
〈eϕ, eϕ〉V 〈eψ, eψ〉V

.

Proof: We begin with the following remark. Let Z, W ∈ D. We can write
gZ = expZhZy and gW = expWhW y

′ where y, y′ ∈ P−. Then we have

expW ∗ expZ = h∗−1
W y′∗−1g∗W gZy

−1h−1
Z .

Hence we get κ(expW ∗ expZ) = h∗−1
W κ(g∗W gZ)h

−1
Z . Using this equality, we see

that

ρ(h−1
Z )E∗

ZEW ρ(h
−1
W )∗ = cρρ(h

−1
Z )ρ(κ(expW ∗ expZ))−1ρ(h−1

W )∗

= cρρ(κ(g
∗
W gZ))

−1.

Now, let f ∈ L1(D × o(ϕ0)). We have

S0(T (f))(Z) = c−1
ρ ρ(h−1

Z )E∗
ZT (f)EZρ(h

−1
Z )∗

= c−2
ρ

∫

D×o(ϕ0)

ρ(h−1
Z )E∗

ZEW ρ(h
−1
W )∗pϕρ(h

−1
W )E∗

WEZρ(h
−1
Z )∗ f(W,ϕ)dµ(W )dν(ϕ).



8 B. Cahen

By the preceding remark, we get

S0(T (f))(Z) =

∫

D×o(ϕ0)

ρ(κ(g∗W gZ))
−1pϕρ(κ(g

∗
W gZ)

−1)∗ f(W,ϕ) dµ(W )dν(ϕ).

Now we aim to compute S(T (f))(Z,ψ) = s(S0(T (f))(Z))(ψ). We note that,
putting h := κ(g∗ZgW ), we have

s(ρ(h−1)∗pϕρ(h
−1))(ψ) =

〈ρ(h−1)∗pϕρ(h−1)eψ, eψ〉V
〈eψ, eψ〉V

=
〈pϕρ(h−1)eψ, ρ(h

−1)eψ〉V
〈eψ, eψ〉V

=
|〈ρ(h−1)eψ, eϕ〉V |2
〈eψ, eψ〉V 〈eϕ, eϕ〉V

since

pϕρ(h
−1)eψ =

〈ρ(h−1)eψ, eϕ〉V
〈eϕ, eϕ〉V

eϕ.

Finally, we obtain

s(S0(T (f))(Z))(ψ) =

∫

D×o(ϕ0)

|〈ρ(h−1)eψ, eϕ〉V |2
〈eψ, eψ〉V 〈eϕ, eϕ〉V

f(W,ϕ) dµ(W )dν(ϕ)

as desired. �

5. Extension of the Berezin transform to L2-spaces

In this section, we show that the Berezin transform B := ST can be extended
to the space L2(D×o(ϕ0)). We retain the notation from Section 4. The first step
is to show that the integral

I(Z,ψ) :=

∫

D×o(ϕ0)

k(Z,W,ψ, ϕ) dµ(W )dν(ϕ)

is finite for each (Z,ψ) ∈ D× o(ϕ0). More precisely, we have the following result.

Lemma 5.1. For each (Z,ψ) ∈ D × o(ϕ0), we have I(Z,ψ) = c−1
ρ .

Proof: First recall that for a ∈ V we have
∫

o(ϕ0)

|〈a, eϕ〉V |2‖eϕ‖2V dν(ϕ) = ‖a‖2V

(see [9]). Then

I(Z,ψ) =
1

‖eψ‖2V

∫

D
‖ρ(κ(g−1

Z gW ))−1eψ‖2V dµ(W ).
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Now we perform the change of variables W → gZ ·W in this integral. Remark
that, since (gZgW )−1ggZ ·W · 0 = 0, we have (gZgW )−1ggZ ·W ∈ KcP− ∩ G = K.

Denoting this element by k, we get κ(g−1
Z ggZ ·W ) = κ(gWk) = hW k. Then

‖ρ(κ(g−1
Z ggZ ·W ))−1eψ‖V = ‖ρ(k−1h−1

W )eψ‖V = ‖ρ(hW )−1eψ‖V .

Hence we obtain

I(Z,ψ) =
1

‖eψ‖2V

∫

D
‖ρ(hW )−1eψ‖2V dµ(W )

=
1

‖eψ‖2V

∫

D
〈K(W,W )−1eψ, eψ〉V dµ(W )

since we have ρ(hWh
∗
W ) = K(W,W ) by Equality (4.1).

On the other hand, recall the reproducing property

〈f(Z), v〉V = 〈f,EZv〉 =
∫

D
〈K(W,W )−1f(W ), (EZv)(W )〉V dµ(W ).

Applying this equality to the constant function f(W ) = v and evaluating at
Z = 0, we get

‖v‖2V =

∫

D
〈K(W,W )−1v, (E0v)(W )〉V dµ(W ).

Since we have (E0v)(W ) = E∗
WE0v = cρv, we obtain

‖v‖2V = cρ

∫

D
〈K(W,W )−1v, v〉V dµ(W ).

Finally, applying this equality to v = eψ, we obtain I(Z,ψ) = c−1
ρ . �

Proposition 5.2. (1) The map B := ST can be extended to a bounded
operator of L2(D × o(ϕ0)) and we have ‖B‖op ≤ c−1

ρ .

(2) T extends to a bounded operator from L2(D×o(ϕ0)) to L2(H), S extends
to a bounded operator from L2(H) to L2(D× o(ϕ0)) and these operators
are adjoint to each other.

Proof: (1) Let f ∈ L1(D× o(ϕ0))∩L2(D× o(ϕ0)). Then, using Lemma 5.1 and
the Cauchy-Schwarz inequality, we have

|B(f)(Z,ψ)|2

≤
∫

D×o(ϕ0)

k(Z,W,ψ, ϕ) dµ(W )dν(ϕ)

×
∫

D×o(ϕ0)

k(Z,W,ψ, ϕ)|f(W,ϕ)|2 dµ(W )dν(ϕ)

≤ c−1
ρ

∫

D×o(ϕ0)

k(Z,W,ψ, ϕ)|f(W,ϕ)|2 dµ(W )dν(ϕ).
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Integrating this inequality and using Lemma 5.1 again, we then obtain
∫

D×o(ϕ0)

|B(f)(Z,ψ)|2 dµ(Z)dν(ψ)

≤ c−1
ρ

∫

D×o(ϕ0)

k(Z,W,ψ, ϕ)|f(W,ϕ)|2 dµ(Z)dµ(W )dν(ϕ)dν(ψ)

≤ c−2
ρ

∫

D×o(ϕ0)

|f(W,ϕ)|2 dµ(W )dν(ϕ).

Therefore, the result follows.
(2) Let f ∈ L1(D× o(ϕ0))∩L2(D× o(ϕ0)). By applying (5) of Proposition 4.2

to A = T (f) and using (1), we get

‖T (f)‖22 ≤ 〈ST (f), f〉 ≤ ‖f‖2‖ST (f)‖2 ≤ c−1
ρ ‖f‖22.

This implies that T extends to an operator (also denoted by T ) from L2(D×o(ϕ0))
to L2(H). Let T ∗ : L2(H) → L2(D × o(ϕ0)) be the adjoint of T . Recall that we
have

〈S(A), f〉 = 〈A, T (f)〉2 = 〈T ∗(A), f〉
for each A ∈ L2(H) and each f ∈ L1(D × o(ϕ0)) ∩ L2(D × o(ϕ0)). This shows
that S extends to the operator T ∗ : L2(H) → L2(D × o(ϕ0)). �

Now we establish that B is G-covariant. We denote by τ the left-regular
representation of G on L2(D×o(ϕ0)) defined by (τ(g)(f))(Z,ϕ) = f(g−1 · (Z,ϕ)).
Then τ is unitary. We have the following proposition.

Proposition 5.3. For each f ∈ L2(D × o(ϕ0)) and each g ∈ G, we have
B(τ(g)f) = τ(g)(B(f)).

Proof: By (4) of Proposition 3.2, we have τ(g)S(A) = S(π(g)Aπ(g)−1) for each
A ∈ L2(H) and g ∈ G. Since τ is unitary, the corresponding property for T = S∗

is S∗(τ(g)f) = π(g)S∗(f)π(g)−1 for each f ∈ L2(D × o(ϕ0)) and g ∈ G. This
gives

SS∗(τ(g)f) = S(π(g)S∗(f)π(g)−1) = τ(g)SS∗(f)

for each f ∈ L2(D × o(ϕ0)), hence the result. �

6. Extension of the Berezin transform to symbols of differential ope-
rators

Let us introduce some additional notation as in [12, Section 4]. Let (Eα)α∈∆+
n

be a basis for p+ as in [21, Chapter VIII, Corollary 7.6]. In particular, we have
gα = CEα and [Eα, E−α] = 2

α(Hα)Hα for each α ∈ ∆+
n . Let α1, α2, . . . , αn be an

enumeration of ∆+
n . Let Z =

∑n
k=1 zkEαk

be the decomposition of Z ∈ p+ in
the basis (Eαk

). If f is a holomorphic function on D, then we denote by ∂kf
the partial derivative of f with respect to zk. We say that a function f(Z) on D
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is a polynomial of degree q in the variable Z if f(
∑n

k=1 zkEαk
) is a polynomial

of degree q in the variables z1, z2, . . . , zn. For Z, W ∈ D, we set lZ(W ) :=
log η(expZ∗ expW ) ∈ p−.

Moreover, if L is a Lie group and X is an element of the Lie algebra of L then
we denote by X+ the right invariant vector field on L generated by X , that is,
X+(h) = d

dt(exp tX)h|t=0 for h ∈ L.
We first recall some useful results, in particular an explicit expression for the

derived representation dπ. Let pp+ , pkc and pp− be the projections of gc onto
p+, kc and p− associated with the direct decomposition gc = p+ ⊕ kc ⊕ p−. By
differentiating the multiplication map from P+ × Kc × P− onto P+KcP−, we
can easily prove the following result.

Lemma 6.1 ([10]). Let X ∈ gc and g = z k y where z ∈ P+, k ∈ Kc and y ∈ P−.
We have

(1) dζg(X
+(g)) = (Ad(z) pp+(Ad(z−1)X))+(z).

(2) dκg(X
+(g)) = (pkc(Ad(z

−1)X))+(k).
(3) dηg(X

+(g)) = (Ad(k−1) pp−(Ad(z−1)X))+(y).

From this result, we immediately deduce the following proposition (see [26,
Proposition XII.2.1] and also [10]).

Proposition 6.2. For X ∈ gc and f ∈ H, we have

dπ(X)f(Z) = dρ(pkc(Ad((expZ)
−1)X)) f(Z)− (df)Z

(
pp+(e− adZ X)

)
.

In particular, we have

(1) if X ∈ p+ then dπ(X)f(Z) = −(df)Z(X);
(2) if X ∈ kc then dπ(X)f(Z) = dρ(X)f(Z) + (df)Z([Z,X ]);
(3) if X ∈ p− then dπ(X)f(Z) = −dρ([Z,X ])f(Z)− 1

2 (df)Z([Z, [Z,X ]]).

Now, we study the form of the Berezin symbols of the operators dπ(X1X2

· · ·Xq) for X1, X2, . . . , Xq ∈ gc. The following lemma is the generalization of [12],
Lemma 4.1 and Lemma 4.2.

Lemma 6.3. (1) For each Z, W ∈ D, W ′ ∈ p+ and v ∈ V , we have

d

dt
(EZv)(W + tW ′)

∣∣
t=0

= −cρdρ([lZ(W ),W ′])ρ(κ(expZ∗ expW ))−1v.

(2) For Z, W ∈ D and W ′ ∈ p+, we have

d

dt
lZ(W + tW ′)

∣∣
t=0

=
1

2
[lZ(W ), [lZ(W ),W ′]].

(3) The function (∂k1∂k2 · · ·∂kq EZv)(W ) is of the form Q(lZ(W ))(EZv)(W )
where Q is a polynomial of degree ≤ q with values in End(V ).

(4) For each X1, X2, . . . , Xq ∈ gc, the operator dπ(X1X2 · · ·Xq) is a sum of
terms of the form P (Z)∂k1∂k2 · · · ∂kr where r ≤ q and P is a polynomial
of degree ≤ 2q with values in End(V ).
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(5) For each X1, X2, . . . , Xq ∈ gc, the pre-symbol S0(dπ(X1X2 · · ·Xq)) is
a sum of terms of the form ρ(hZ)

−1P (Z)Q(lZ(Z))ρ(hZ) where P is a
polynomial of degree ≤ 2q with values in End(V ) and Q is a polynomial
of degree ≤ q with values in End(V ).

Proof: The proof, based on Lemma 6.1 and Proposition 6.2, is similar to that
of [12, Lemma 4.1]. Note that (5) is an immediate consequence of (4). �

In the following lemma, we give some expressions for ‖ρ(hZ)‖op and ‖ρ(hZ)−1‖op
which will be needed in the proof of Proposition 6.5. Recall that we have denoted
by λ the highest weight of ρ relative to ∆+

c . We also denote the lowest weight
of ρ by λlw (see [30, p. 326]). Moreover, let γ1, γ2, . . . , γr be a subset of ∆+

n con-
sisting of strongly orthogonal roots (see for instance [21, p. 385]). We also set
Hs = [Eγs , E−γs ] for s = 1, 2, . . . , r.

Lemma 6.4. Let Z = Ad(k)(
∑r

s=1 tsEγs) where k ∈ K and 1 ≥ t1 ≥ t2 ≥
. . . ≥ tr ≥ 0. Then we have ‖ρ(hZ)‖2op =

∏r
s=1(1− t2s)

λlw(Hs) and ‖ρ(hZ)−1‖2op =∏r
s=1(1− t2s)

−λ(Hs).

Proof: If Z = Ad(k)(
∑r

s=1 tsEγs) where 1 ≥ t1 ≥ t2 ≥ . . . ≥ tr ≥ 0 then we
have κ(expZ∗ expZ) = k exp(−∑r

s=1 log(1−t2s)Hs)k
−1, see for instance [31, p. 3]

or [17, p. 231]. Hence the eigenvalues of

ρ(h∗Z)
−1ρ(hZ)

−1 = ρ(κ(expZ∗ expZ)) = exp
(
−

r∑

s=1

log(1− t2s)dρ(Hs)
)

are the exp(−∑r
s=1 log(1− t2s)µ(Hs)) for µ weight of ρ. Now, since

log
1

1− t21
≥ log

1

1− t22
≥ · · · log 1

1− t2r

we have

µ

(
r∑

s=1

log
1

1− t2s
Hs

)
≤ λ

(
r∑

s=1

log
1

1− t2s
Hs

)

for each weight µ of ρ, [22, p. 16]. This implies that

‖ρ(hZ)−1‖2op = exp

(
r∑

s=1

log
1

1− t2s
λ(Hs)

)
.

The second equality is proved similarly. �
Now we are in position to establish the main result of this section.

Proposition 6.5. Let λ0 := dχ0|hc and let qρ := Min1≤s≤r(− 3
2λ−λ0+ 1

2λlw)(Hs).
If q ≤ qρ then for each X1, X2, . . . , Xq ∈ gc, the Berezin transform of S(dπ(X1X2

· · ·Xq)) is well-defined.
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Proof: Let (Z,ψ) ∈ D × o(ϕ0). Fix g ∈ G such that g · (0, ϕ0) = (Z,ψ). Then,
by using Proposition 5.3, we see that

B(f)(Z,ψ) =

∫

D×o(ϕ0)

k(0,W, ϕ0, ϕ) f(g · (W,ϕ))χ0(κ(expW
∗ expW ))

dµL(W )dν(ϕ).

In particular, if f = S(dπ(X1X2 · · ·Xq)) then by (4) of Proposition 3.2 we have

f(g · (W,ϕ)) = S(π(g)−1dπ(X1X2 · · ·Xq)π(g))(W,ϕ) = S(dπ(Y1Y2 · · ·Yq))(W,ϕ)

where Yk = Ad(g−1)Xk for k = 1, 2, . . . , q.
Now assume that q ≤ qρ. In order to show that B(f)(Z,ψ) is well-defined, we

will prove that the integrand

J(W,ϕ) := k(0,W, ϕ0, ϕ)S(dπ(Y1Y2 · · ·Yq))(W,ϕ)χ0(κ(expW
∗ expW ))

is bounded hence integrable for the measure dµL(W )dν(ϕ) on D × o(ϕ0). We
begin by the following observations.

(1) We have

k(0,W, ϕ0, ϕ) =
|〈ρ(h−1

W )eϕ0 , eϕ〉V |2
‖eϕ0‖2V ‖eϕ‖2V

≤ ‖ρ(h−1
W )‖2V

for each W ∈ D and ϕ ∈ o(ϕ0).
(2) Recall that

S0(dπ(Y1Y2 · · ·Yq))(W ) =

l∑

i=1

ρ(hW )−1Pi(W )Qi(lW (W ))ρ(hW )

where the Pi are polynomials of degree ≤ 2q with values in End(V ) and the Qi
are polynomials of degree ≤ q with values in End(V ) for i = 1, 2, . . . , l. Then we
have

|S(dπ(Y1Y2 · · ·Yq))(W,ϕ)| ≤ ‖S0(dπ(Y1Y2 · · ·Yq))(W )‖op

≤ C ‖ρ(hW )−1‖op‖ρ(hW )‖op
l∑

i=1

‖Qi(lW (W ))‖op

where C is a constant (independent of W ).
(3) For each W ∈ D, we can write W = Ad(k)(

∑r
s=1 tsEγs) where k ∈ K and

1 ≥ t1 ≥ t2 ≥ . . . ≥ tr ≥ 0 as in Lemma 6.4, see [22, p. 16] and [25, Theorem 3].
Then we have

χ0

(
κ(expW ∗ expW )

)
= exp

(
r∑

s=1

log
1

1− t2s
λ0(Hs)

)



14 B. Cahen

and

log η(expW ∗ expW ) = Ad(k)

(
−

r∑

s=1

ts
1− t2s

E−γs

)
,

see for instance [17, p. 231].
Using these observations and Lemma 6.4, we obtain

|J(W,ϕ)| ≤ C ‖ρ(hW )−1‖3op‖ρ(hW )‖opχ0(κ(expW
∗ expW ))

l∑

i=1

‖Qi(lW (W ))‖op

≤ C′
l∏

i=1

(1− t2s)
qρ−q

where C′ is a constant. Hence the result follows. �

Example. In order to illustrate the previous proposition, we consider the case
G = SU(2, 1) and K = S(U(2) × U(1)) ≃ U(2). Then we have gc = sl(3,C)
and hc is the abelian subalgebra of gc consisting of the matrices Diag(a1, a2, a3)
where ai ∈ C for i = 1, 2, 3 and a1 + a2 + a3 = 0. The set of roots of hc on gc is
{λi−λj : 1 ≤ i 6= j ≤ 3} where λi(X) = ai for X ∈ hc as above. We take the set
of positive roots to be λ1 −λ2 (compact root), λ1 −λ3 and λ2 −λ3 (non-compact
roots). Hence the system of strongly orthogonal roots reduces to γ = λ1 − λ3.

Let H1 = Diag(1, 1,−2) and H2 = Diag(1,−1, 0) in hc. Let ρm be the unitary
irreducible representation of SU(2) of dimensionm+1. Here we consider SU(2) as

a subgroup ofK ≃ U(2). The highest weight λ̃m of ρm is defined by λ̃m(H2) = m.
Let S1 be the group of diagonal matrices of the form Diag(eiθ, eiθ, e−2iθ) where
θ ∈ R. Let n ∈ Z be such that m+n is even. Then ρm,n(ug) := unρm(g) is a uni-
tary irreducible representation ofK and all the unitary irreducible representations
of K are of this form [7, p. 87].

The highest weight λ of ρm,n is defined by λ(H1) = n and λ(H2) = m. More-
over, we have λlw(H1) = n and λlw(H2) = −m. Also, note that λ0(H1) = 2 and
λ0(H2) = 0 (see [26, p. 541]).

Then the condition of Proposition 2.1 is n + 2 < m < −n − 4. Furthermore,
since we have [Eγ , E−γ ] = 2

γ(Hγ)
Hγ where Hγ = Diag(16 , 0,− 1

6 ), we easily obtain

that qρ = − 1
2n−m− 3.

7. Stratonovich-Weyl correspondence

In this section, we construct a Stratonovich-Weyl correspondence associated
with π by using the method of [19], [11] and [12]. Recall that the notion of
Stratonovich-Weyl correspondence was introduced in [28] as a natural generaliza-
tion of the classical Weyl correspondence [1], [18]. Stratonovich-Weyl correspon-
dences were systematically studied, especially by J.M. Gracia-Bond̀ıa, J.C. Vàrilly
and their co-workers, see in particular [19], [15] and [20] (see also the work of
J. Arazy and H. Upmeier on invariant symbolic calculi [2], [3]).
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Definition 7.1. Let G0 be a Lie group and π0 a unitary representation of G0

on a Hilbert space H0. Let M be a homogeneous G0-space and let µ0 be a
(suitably normalized) G0-invariant measure on M . Then a Stratonovich-Weyl
correspondence for the triple (G0, π0,M) is an isomorphism W from a vector
space of operators on H0 to a space of functions on M satisfying the following
properties:

(1) the function W (A∗) is the complex-conjugate of W (A);
(2) Covariance: we have W (π0(g)Aπ0(g)

−1)(x) =W (A)(g−1 · x);
(3) Traciality: we have

∫

M

W (A)(x)W (B)(x) dµ(x) = Tr(AB).

The previous definition is adapted from [15, p. 906]. Note that here we have
dropped the requirement that W maps the identity operator I of H0 to the con-
stant function 1 since it is not adapted to the present situation where I is not
Hilbert-Schmidt. However, in general, this requirement should hold in some gen-
eralized sense, up to a suitable normalization of µ, see [15].

The basic example is the case when G0 is the (2n+1)-dimensional Heisenberg
group Hn which acts on R2n by translations and π0 is the Schrödinger represen-
tation of Hn on L2(Rn). In that case, the classical Weyl correspondence gives a
Stratonovich-Weyl correspondence for the triple (Hn, π0,R2n) [18], [20].

When G0 is a compact semi-simple Lie group, π0 a unitary irreducible repre-
sentation of G0 and M the coadjoint orbit of G0 which is associated with π0 by
the Kostant-Kirillov method of orbits [24], a Stratonovich-Weyl correspondence
for (G0, π0,M) was constructed in [19] and [11] by a taking the isometric part
in the polar decomposition of the Berezin calculus on M . The same method
also works for the holomorphic discrete series representations of scalar type of
a semi-simple Lie group, see [12]. Now, we will apply this method to construct
a Stratonovich-Weyl correspondence associated with π as an application of the
results of Section 5.

We introduce the polar decomposition of S : L2(H) → L2(D × o(ϕ0)). We
have S = (SS∗)1/2W = B1/2W where W = B−1/2S is a unitary operator from
L2(H) onto L2(D × o(ϕ0)). Then we have the following proposition.

Proposition 7.2. (1) The map W : L2(H) → L2(D × o(ϕ0)) is a Stratono-
vich-Weyl correspondence for the triple (G, π,D × o(ϕ0)).

(2) The map W from L2(H) to L2(O(ϕ0), µO(ϕ0)) defined by W(f) =W (f ◦
Ψ) is a Stratonovich-Weyl correspondence for the triple (G, π,O(ϕ0)).

Proof: (1) Since W is unitary, we have just to verify that the properties (1)

and (2) of Definition 7.1 are satisfied. Since we have the properties S(A∗) = S(A)

and S∗(f) = (S∗f)∗, we see that B hence B−1/2 commute with complex conju-
gation. This gives Property (1). Finally, Property (2) is a consequence of the
covariance properties of S, S∗ and B, see (4) of Proposition 3.2 and Proposi-
tion 5.3.
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(2) This is an immediate consequence of (1). �
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[19] Figueroa H., Gracia-Bond̀ıa J.M., Vàrilly J.C., Moyal quantization with compact symmetry
groups and noncommutative analysis, J. Math. Phys. 31 (1990), 2664-2671.

[20] Gracia-Bond̀ıa J.M., Generalized Moyal quantization on homogeneous symplectic spaces,
Deformation Theory and Quantum Groups with Applications to Mathematical Physics
(Amherst, MA, 1990), Contemp. Math., 134, American Mathematical Society, Providence,
RI, 1992, pp. 93-114.

[21] Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies
in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001.

[22] Herb R.A., Wolf J.A., Wave packets for the relative discrete series I. The holomorphic
case, J. Funct. Anal. 73 (1987), 1–37.



Berezin transform for non-scalar holomorphic discrete series 17

[23] Knapp A.W., Representation Theory of Semi-simple Groups. An Overview Based on Ex-
amples, Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986.

[24] Kirillov A.A., Lectures on the Orbit Method , Graduate Studies in Mathematics, 64, Ame-
rican Mathematical Society, Providence, Rhode Island, 2004.

[25] Moore C.C., Compactifications of symmetric spaces II: The Cartan domains, Amer. J.
Math. 86 (1964), no. 2, 358–378.

[26] Neeb K.-H., Holomorphy and Convexity in Lie Theory , de Gruyter Expositions in Mathe-
matics, 28, Walter de Gruyter, Berlin, New York, 2000.

[27] Ørsted B., Zhang G., Weyl quantization and tensor products of Fock and Bergman spaces,
Indiana Univ. Math. J. 43 (1994), no. 2, 551–583.

[28] Stratonovich R.L., On distributions in representation space, Soviet Physics. JETP 4 (1957),
891–898.

[29] Unterberger A., Upmeier H., Berezin transform and invariant differential operators, Com-
mun. Math. Phys. 164 (1994), no. 3, 563–597.

[30] Varadarajan V.S., Lie groups, Lie algebras and their representations, Graduate Texts in
Mathematics, 102, Springer, New York, 1984.

[31] Wallach N.R., The analytic continuation of the discrete series. I , Trans. Amer. Math. Soc.
251 (1979), 1–17.

[32] Wildberger N.J., On the Fourier transform of a compact semisimple Lie group, J. Austral.
Math. Soc. A 56 (1994), 64–116.

[33] Zhang G., Berezin transform on line bundles over bounded symmetric domains, J. Lie
Theory 10 (2000), 111–126.

[34] Zhang G., Berezin transform on real bounded symmetric domains, Trans. Amer. Math.
Soc. 353 (2001), 3769–3787.
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