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Mesocompactness and selection theory

Peng-Fei Yan, Zhongqiang Yang

Abstract. A topological space X is called mesocompact (sequentially mesocom-
pact) if for every open cover U of X, there exists an open refinement V of U such
that {V ∈ V : V ∩ K 6= ∅} is finite for every compact set (converging sequence
including its limit point) K in X. In this paper, we give some characterizations
of mesocompact (sequentially mesocompact) spaces using selection theory.

Keywords: selections, l.s.c. set-valued maps, mesocompact, sequentially meso-
compact, persevering compact set-valued maps

Classification: 54C65, 54C60

1. Introduction

Let X and Y be topological spaces, and 2Y stand for the family of non-empty
subsets of Y . Let

F (Y ) = {S ∈ 2Y : S is closed};
C(Y ) = {S ∈ F (Y ) : S is compact};
K(Y ) = {S ∈ F (Y ) : S is finite}, and
S(Y ) = {S ∈ F (Y ) : S is separable}.
A set-valued map Φ : X→ 2Y is lower semi-continuous (upper semi-continuous)

or l.s.c. (u.s.c.), if the set

Φ−1(U) = {x ∈ X : Φ(x) ∩ U 6= ∅}

is open (closed) in X for every open (closed) subset U of X . A family F of subsets
of a space X is compact finite (sequential finite), if {F ∈ F : F ∩K 6= ∅} is finite
for every compact subset (converging sequence including its limit point) K of X .
A topological space X is called mesocompact (sequentially mesocompact) [1], if
every open cover of X has a compact finite (sequential finite) open refinement.
There is a series of results which characterize separation and covering properties
(like paracompactness, metacompactness, collectionwise normality and so on) by
means of the existence of selections for l.s.c. maps. The following are two ones
among those results.
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Theorem A ([4]). For a Hausdorff space X , the following statements are equiv-
alent.

(1) X is paracompact.
(2) For every complete metric space Y and l.s.c. set-valued map Φ : X →

F (Y ), there exists an l.s.c. map ϕ : X → C(Y ) and a u.s.c. map φ : X →
C(Y ) such that ϕ(x) ⊂ φ(x) ⊂ Φ(x) for every x ∈ X . (ϕ, φ) is called a
Michael’s pair of Φ.

Theorem B ([2]). For a regular spaceX , the following statements are equivalent.

(1) X is metacompact.
(2) For every complete metric space Y and l.s.c. set-valued map Φ : X →

F (Y ), there exists an l.s.c. map ϕ : X → C(Y ) such that ϕ(x) ⊂ Φ(x)
for every x ∈ X .

The first author of the present paper obtained the following result.

Theorem C ([8]). For a regular space X , the following conditions are equivalent.

(1) X is metalindelöf.
(2) For every complete metric space Y and l.s.c. set-valued map Φ : X →

F (Y ), there exists an l.s.c. map ϕ : X → S(Y ) such that ϕ(x) ⊂ Φ(x) for
every x ∈ X .

In the present paper we shall give some characterizations of mesocompactness
and sequential mesocompactness which are similar to the theorems above. For
convenience, we introduce a new concept. A set-valued map Φ : X → 2Y is said
to be persevering compact (weakly persevering compact), if Φ(K) =

⋃{Φ(x) : x ∈
K} is compact for every compact subset (converging sequence including its limit
point) K of X .

Throughout this paper, all spaces are assumed to be Hausdorff. Let N be the
set of all natural numbers. All undefined topological concepts are taken in the
sense given Engelking [3]. In particular, (·) is the closure operator.

2. Main results

We at first give a lemma.

Lemma 1. Let X be a regular and mesocompact (sequentially mesocompact)
space and (Y, ρ) be a metric space. Then for every l.s.c. map Φ : X → F (Y ),
there exist a sequence {Vn = {V n

α : α ∈ An}} of locally finite open covers of Y ,
two sequences {Wn = {Wn

β : β ∈ Bn}} and {Un = {Un
α : α ∈ An}} of compact

(sequential) finite open covers of X , and two sequences {πn : An+1 → An} and
{σn : Bn → An} of maps satisfying the following conditions:

(a) Un−1
α =

⋃
β∈π−1

n−1(α)
Un
β , V

n−1
α =

⋃
β∈π−1

n−1(α)
V n
β ;

(b) Un
α ⊂ Φ−1(V n

α );

(c) Wn
β ⊂ Φ−1(V n

σn(β)), U
n
α =

⋃
β∈σ−1

n (α) W
n
β ;
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(d) diamV n
α < 2−n, where diamV n

α is the diametric of V n
α ,

for every n ∈ N and α ∈ An, β ∈ Bn.

Proof: For each n ∈ N, let V ′
n = {Gn

β : β ∈ Λn} be a locally finite open cover

of Y such that diamGn
α < 2−n for each α ∈ Λn. We inductively construct the

sequences above.
Since {Φ−1(G1

β) : β ∈ Λ1} is an open cover of X , by regularity and mesocom-

pactness of X , there exists a compact (sequential) finite open cover W1 = {W 1
b :

b ∈ B1} as its closure refinement (i.e. {W 1
b : b ∈ B1} refines {Φ−1(G1

β) : β ∈ Λ1}).
Define σ1 : B1 → Λ1 to be a refinement map, that is, W 1

b ⊂ Φ−1(G1
σ1(b)

) for every

b ∈ B1. Let U1
α =

⋃
b∈σ−1

1 (α) W
1
b , A1 = Λ1, V

1
β = G1

β . Then U1 = {U1
α : α ∈ A1},

V1 = {V 1
α : α ∈ A1}, W1 and σ1 satisfy the conditions (a)-(d) for n = 1.

For each (α, β) ∈ A1×Λ2, take V
2
(α,β) = V 1

α ∩G2
β . Then V2

α = {V 2
(α,β) : β ∈ Λ2}

is an open cover of V 1
α . For each b ∈ σ−1

1 (α), Φ−1(V2
α) coversW

1
b . Therefore there

exists a compact (sequential) finite open cover W ′
(α,b) = {W ′

(α,b,δ) : δ ∈ B2
(α,b)}

of W 1
b which is a closure refinement of Φ−1(V2

α). Let σ2
(α,b) : B

2
(α,b) → {α} × Λ2

be a corresponding refinement map. Then W(α,b) = {W ′
(α,b,δ) ∩W 1

b : δ ∈ B2
(α,b)}

is an open cover of W 1
b satisfying W ′

(α,b,δ) ∩W 1
b ⊂ Φ−1(V 2

σ2
(α,b)

(δ)
). Let A2 =

A1 ×Λ2, B2 =
⋃{B2

(α,b) : α ∈ A1, b ∈ σ−1
1 (α)}, where we may think that {B2

(α,b)}
is pair-disjoint. Define σ2 : B2 → A2 by σ2 | B2

(α,b) = σ2
(α,b). Define π1 : A2 → A1

to be the projection to the first factor. For every δ ∈ B2, there exists an unique
pair (α, b) ∈ A1 ×B1 such that δ ∈ B2

(α,b). Let

W 2
δ = W ′

(α,b,δ) ∩W 1
b .

For each γ = (α, β) ∈ A2, let

U2
γ =

⋃
{W 2

δ : σ2(δ) = γ}.

Then we may define families of open sets in X and Y , respectively, as follows

W2 = {W 2
δ : δ ∈ B2},

U2 = {U2
γ : γ ∈ A2} and

V2 = {V 2
γ : γ ∈ A2}.

It is not hard to verify that U2, V2, W2, π1 and σ2 satisfy the conditions (a)–(d)
for n = 2.

Repeating the process above, we can obtain the sequences of covers and maps
required. �
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For a metric space (Y, ρ), we may define the Hausdorff metric ρH(E,F ) be-
tween two compact sets E,F in Y as follows:

ρH(E,F ) = inf{r > 0 : E ⊂ Or(F ) and F ⊂ Or(E)},

where Or(E) = {y ∈ Y : ρ(x, y) < r for some x ∈ E}. In [7], the following lemma
was proved:

Lemma 2. Let X be a topological space and (Y, ρ) be a complete metric
space. For each i ∈ N, Φi : X → C(Y ) is an l.s.c. map which satisfies that
ρH(Φi(x),Φi+1(x)) < 2−i for every x ∈ X . Define Φ : X → 2Y by Φ(x) =
{lim yi : yi ∈ Φi(x), ρ(yi, yi+1) ≤ 2−i}. Then Φ(x) ∈ C(Y ) for every x ∈ X and
Φ : X → C(Y ) is l.s.c.

Using those lemmas, we show the following result.

Theorem 1. For a regular space X , the following statements are equivalent.

(1) X is (sequentially) mesocompact.
(2) For every complete metric space (Y, ρ) and l.s.c. set-valued map Φ : X →

F (Y ), there exists an l.s.c. map ϕ : X → C(Y ) such that ϕ(x) ⊂ Φ(x)

for every x ∈ X and ϕ(K) is compact for every compact set (converging
sequence including its limit point) K of X .

Proof: We only prove the result for mesocompactness.
(1)⇒ (2). Let (Y, ρ) be a complete metric space and Φ : X → F (Y ) an l.s.c.

map. Using Lemma 1, there exist some sequences satisfying the conditions in
Lemma 1 and we use the same symbols to denote them as in Lemma 1. For every
α ∈ An, take yα ∈ V n

α . Let ϕn(x) = {yα : x ∈ Un
α , α ∈ An}. Then ϕn(x) ∈ K(Y )

and, by the definition of ϕn, ϕ
−1
n (y) is open in X for every y ∈ Y . Therefore,

ϕn : X → K(Y ) is l.s.c.
We shall prove the following:

(i) ρH(ϕn+1(x), ϕn(x)) < 2−n for every x ∈ X . In fact, for every yα ∈ ϕn+1(x),
we have x ∈ Un+1

α ⊂ Un
πn(α)

. Thus yπn(α) ∈ ϕn(x). It follows that ρ(yα, ϕn(x)) ≤
ρ(yα, yπn(α)) ≤ diamV n

πn(α)
< 2−n. Therefore, ϕn+1(x) ⊂ O2−n(ϕn(x)). Simi-

larly, ϕn(x) ⊂ O2−n(ϕn+1(x)).

(ii) ϕn(x) ⊂ O2−n(Φ(x)). In fact, let yα ∈ ϕn(x). Then x ∈ Un
α ⊂ Φ−1(V n

α ).
Hence Φ(x) ∩ V n

α 6= ∅. Pick y ∈ Φ(x) ∩ V n
α . Then ρ(yα,Φ(x)) ≤ ρ(yα, y) ≤

diamV n
α < 2−n. It follows that ϕn(x) ⊂ O2−n(Φ(x)).

Define ϕ : X → 2Y as follows:

ϕ(x) = {lim yi : yi ∈ ϕi(x), ρ(yi, yi+1) ≤ 2−i}.

By Lemma 2, ϕ : X → C(Y ) is l.s.c. From (ii) and the closedness of Φ(x) it

follows that ϕ(x) ⊂ Φ(x). It remains to prove that ϕ(K) is compact for each
compact subset K of X .
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Let K be a compact subset of X . For each n ∈ N, since Un is compact finite,
ϕn(K) is finite subset of Y . Note that the Hausdorff metric ρH on C(Y ) is
complete, see [5]. It follows from ρH(ϕn+1(K), ϕn(K)) < 2−n that the sequence
{ϕn(K)} is a Cauchy sequence in this complete metric space (C(Y ), ρH). Hence
this sequence converges to a compact subset of Y which contains ϕ(K). Therefore,

ϕ(K) is compact.

(2)⇒ (1). Let U = {Uα : α ∈ Λ} be an open cover ofX . Let Y = Λ be a discrete
metric space. Then Y is complete. Define Φ : X → F (Y ) by Φ(x) = {α : x ∈ Uα}.
Φ is l.s.c. since Φ−1(α) = Uα. By (2), there exists an l.s.c. map ϕ : X → C(Y )

such that ϕ(x) ⊂ Φ(x) for each x ∈ X and ϕ(K) is compact for each compact
subset K of X . Let K be a compact subset of X . Then K ∩ ϕ−1(α) 6= ∅ if and

only if α ∈ ϕ(K). Since ϕ(K) is compact in the discrete metric space Y , it is
finite and hence so is ϕ(K). It follows that {ϕ−1(α) : α ∈ Y } is compact finite
open refinement of U . This shows that X is mesocompact. �

Since the u.s.c. selection φ in Michael’s pair is persevering compact, a natural
problem is if (sequentially) mesocompactness can be characterized by replacing
the u.s.c. selection with (weakly) persevering compact selection in Theorem A.
The next theorem shows that one implication is true.

Theorem 2. A topological space X is mesocompact (sequentially mesocompact)
if, for every complete metric space Y and l.s.c. set-valued map Φ : X → F (Y ),
there exist an l.s.c. map ϕ : X → C(Y ) and a persevering compact (weakly
persevering compact) map φ : X → C(Y ) such that ϕ(x) ⊂ φ(x) ⊂ Φ(x) for
every x ∈ X .

Proof: Let U = {Uα : α ∈ Λ} be an open cover of X . Let Y = Λ be equipped
with the discrete metric. Then Y is complete. Define Φ : X → F (Y ) by Φ(x) =
{α : x ∈ Uα}. Φ is l.s.c. since Φ−1(α) = Uα. Thus, there exist an l.s.c. map
ϕ : X → C(Y ) and a persevering compact (weakly persevering compact) map
φ : X → C(Y ) such that ϕ(x) ⊂ φ(x) ⊂ Φ(x) for each x ∈ X . Note that
K ∩ φ−1(α) 6= ∅ if and only if α ∈ φ(K) for each compact (converging sequence
including its limit) K of X . It follows from φ(K) being finite that {φ−1(α) :
α ∈ Y } is compact finite (sequential finite). For each α ∈ Λ, ϕ−1(α) ⊂ φ−1(α).
Thus {ϕ−1(α) : α ∈ Λ} is compact finite (sequential finite) open refinement of U .
Therefore, X is mesocompact (sequentially mesocompact). �

Moreover, for sequentially mesocompact spaces, we may show that another
implication is also true for every normal space. To this end, we need three lemmas.

Lemma 3. Let X be a normal and sequentially mesocompact space. Then, for
every open cover U = {Uα : α ∈ A} of X , there exists an open cover V={Vα :
α ∈ A} such that {V α : α ∈ A} is sequential finite and V α ⊂ Uα for each α ∈ A.

Proof: Without loss of generality, we can suppose that U is sequential finite. It
follows from [3, Theorem 1.5.18 ] that there exists an open cover V = {Vα : α ∈ A}
such that V α ⊂ Uα. Then V satisfies the conditions. �
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Lemma 4. Let X be a topological space and (Y, ρ) be a complete metric space.
For each i ∈ N, Φi : X → K(Y ) is a weakly persevering compact map satisfying
the following conditions:

(a) Φ−1
i (y) = Φ−1

i ({y}) is closed for each y ∈ Y and i ∈ N;
(b) Φi+1(x) ⊂ O2−i(Φi(x)) for each x ∈ X and i ∈ N.

Define Φ : X → 2Y by

Φ(x) = {lim yi : yi ∈ Φi(x), ρ(yi, yi+1) ≤ 2−i}.

Then Φ is weakly persevering compact.

Proof: By the finiteness of Φi(x) and the completeness of (Y, ρ), Φ(x) is non-
empty for every x ∈ X .

Let L = {xn : n ∈ N}∪{x} be a converging sequence {xn, n ∈ N} with its limit
x in X . Denote Z =

∏
i∈N Φi(L) with the product topology. Then Z is compact

and metrizable as a countable product of compact metric spaces. Let

Z0 = {r = (y1, y2, . . . , yi, . . . ) : ∃ l ∈ L such that

yi ∈ Φi(l) and ρ(yi, yi+1) ≤ 2−i}.

Define f : Z0 → Y by f(y1, y2, . . . , yi . . . , ) = lim yi. Trivially, f(Z0) = Φ(L). We
shall show that Z0 is compact and f is continuous.

First we show that f is continuous. To this end, pick a sequence {rn} of
elements of Z0 which converges to some r ∈ Z0. Let rn = (yn1 , y

n
2 , . . . ) and

r = (y′1, y
′
2, . . . ) ∈ Z0. We prove that f(rn) → f(r). Suppose limi→∞ yni = yn

and limi→∞ y′i = y. For ε > 0, take i0 ∈ N such that 2−i0+1 < ε/3. Then
ρ(yni0 , yn) < ε/3 and ρ(y′i0 , y) < ε/3. For i0, take n0 ∈ N such that ρ(yni0 , y

′
i0
) < ε/3

if n ≥ n0. Therefore,

ρ(yn, y) ≤ ρ(yn, y
n
i0) + ρ(yni0 , y

′
i0) + ρ(y′i0 , y) < ε

for n ≥ n0. It follows that f is continuous.
To show that Z0 is compact, we can take a sequence {rn} in Z0 which converges

to r in Z, where rn = (yn1 , y
n
2 , . . . ) and r = (y1, y2, . . . ) ∈ Z. We shall prove

that r ∈ Z0, which implies that Z0 is compact. At first, it is easy to see that
ρ(yi, yi+1) ≤ 2−i for each i ∈ N. We only need to prove that there exists l0 ∈ L
such that yi ∈ Φi(l0) for each i ∈ N. By the definition of L0, for every n, there
exists ln ∈ L such that yni ∈ Φi(ln). Then {ln} has a subsequence converging to
some point l0 ∈ L. Without loss of generality, we can suppose that {ln} converges
to l0. For every i andm, we have yni → yi, y

n
i ∈ Φi(ln) and Φi({ln : n ∈ N and n >

m}∪{l0}) is compact. It follows that yi ∈ Φi({ln : n ∈ N and n > m}∪{l0}). This
implies that yi ∈ Φi(l0) or there are infinitely many n ∈ N satisfying yi ∈ Φi(ln).
In the second case, there exists infinitely many n ∈ N such that ln ∈ Φ−1

i (yi).

Thus, l0 ∈ Φ−1
i (yi) since Φ−1

i (yi) is closed. Therefore, we have also yi ∈ Φi(l0).
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This means that yi ∈ Φi(l0) for any i ∈ N, and hence r ∈ Z0. Therefore Z0 is
compact and hence Φ(L) = f(Z0) is compact. �

The following lemma is similar to Lemma 1 with a simpler proof than that of
Lemma 1.

Lemma 5. Let X be a normal and sequentially mesocompact space and (Y, ρ)
be a complete metric space. Then for every l.s.c. map Φ : X → F (Y ), there exist:
a sequence {Un = {Uα : α ∈ An}} of open covers of X with {Uα : α ∈ An} being
sequentially finite for each n ∈ N, a sequence {Vn = {Vα : α ∈ An}} of locally
finite open covers of Y and a sequence {πn : An+1 → An} of maps such that, for
each α ∈ An and n ∈ N,

(a) Uα =
⋃

β∈π−1
n (α) Uβ, Vα =

⋃
β∈π−1

n (α) Vβ ;

(b) Uα ⊂ Φ−1(Vα), and
(c) diamVα < 2−n.

Proof: For each n ∈ N, let Wn = {Wα : α ∈ Λn} be a locally finite open cover
of Y such that diamWα < 2−n for each α ∈ Λn. We inductively construct the
sequences above.

Since {Φ−1(Wα) : α ∈ Λ1} is an open cover of X , by Lemma 3, there exists an
open cover U1 = {Uα : α ∈ Λ1} of X such that {Uα : α ∈ Λ1} is sequentially finite
and Uα ⊂ Φ−1(Wα) for each α ∈ Λ1. Let A1 = Λ1, Vα = Wα for each α ∈ A1.

Denote Wα = {Vα ∩Wβ : β ∈ Λ2} for each α ∈ A1. Then Φ−1(Wα) is an open

cover of Uα. In the subspace Uα, by Lemma 3, there exists an open refinement
{U ′

(α,β) : β ∈ Λ2} of Φ−1(Wα) such that {U ′
(α,β) : β ∈ Λ2} is sequentially finite

and U ′
(α,β) ⊂ Φ−1(Vα ∩Wβ) for each β ∈ Λ2. Let U(α,β) = U ′

(α,β) ∩ Uα, V(α,β) =

Vα ∩Wβ , A2 = A1 × Λ2, U2 = {U(α,β) : (α, β) ∈ A2}, V2 = {V(α,β) : (α, β) ∈ A2},
let π1 : A2 → A1 be the project map. Note that U(α,β) is open in X . Moreover,
trivially, they satisfy (a)–(c) for n = 2.

Repeating the process above, we can obtain the required sequences. �
We are in a position now to prove the following theorem.

Theorem 3. For a normal space X , the following conditions are equivalent.

(1) X is sequentially mesocompact.
(2) For every complete metric space (Y, ρ) and l.s.c. set-valued map Φ : X →

F (Y ), there exist an l.s.c. map ϕ : X → C(Y ) and a weakly persevering
compact map φ : X → C(Y ) such that ϕ(x) ⊂ φ(x) ⊂ Φ(x) for every
x ∈ X .

Proof: (1)⇒ (2). Let Un and Vn be the sequence of covers such as in Lemma 5.
For every α ∈ An, take yα ∈ Vα. Define ϕn(x) = {yα : x ∈ Uα, α ∈ An} and
φn(x) = {yα : x ∈ Uα, α ∈ An}. Then φn : X → K(Y ), ϕn : X → K(Y ).
Moreover, from the definitions of φn and ϕn it follows that ϕ−1

n (y) is open and
φ−1
n (y) is closed in X for every y ∈ Y . Therefore, ϕn is l.s.c. and φ−1

n (y) is closed
for every y ∈ Y . We show that φn is weakly persevering compact. In fact, for
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every converging sequence L of X , yα ∈ φn(L) if and only if Uα ∩ L 6= ∅. Thus
φn(L) is finite and hence φn is weakly persevering compact.

For every x ∈ X and n ∈ N, we shall prove the following:

(i) ρH(ϕn+1(x), ϕn(x)) < 2−n. In fact, let yα ∈ ϕn+1(x), then x ∈ Uα ⊂
Uπn(α). Thus yπn(α) ∈ ϕn(x), and ρ(yα, ϕn(x)) ≤ ρ(yα, yπn(α)) ≤ diamVπn(α) <

2−n. Therefore ϕn+1(x) ⊂ O2−n(ϕn(x)). Similarly, ϕn(x) ⊂ O2−n(ϕn+1(x)).

(ii) φn+1(x) ⊂ O2−n(φn(x)). Indeed, for every yα ∈ φn+1(x), we have x ∈
Uα ⊂ Uπn(α) and hence yπn(α) ∈ φn(x). Thus ρ(yα, φn(x)) ≤ ρ(yα, yπn(α)) ≤
diamVπn(α) < 2−n. Therefore, φn+1(x) ⊂ O2−n(ϕn(x)).

(iii) ϕn(x) ⊂ O2−n(Φ(x)) and φn(x) ⊂ O2−n(Φ(x)). We only prove the second
statement. For every yα ∈ φn(x), x ∈ Uα ⊂ Φ−1(Vα). It follows that Φ(x)∩Vα 6=
∅. Pick y ∈ Φ(x) ∩ Vα. Then ρ(yα,Φ(x)) ≤ ρ(yα, y) ≤ diamVα < 2−n and hence
φn(x) ⊂ O2−n(Φ(x)).

Now we define ϕ : X → 2Y and φ : X → 2Y as follows:

ϕ(x) = {lim yi : yi ∈ ϕi(x), ρ(yi, yi+1) ≤ 2−i} and

φ(x) = {lim yi : yi ∈ φi(x), ρ(yi, yi+1) ≤ 2−i}.

By Lemmas 2 and 4, ϕ : X → C(Y ) is l.s.c. and φ : X → C(Y ) is weakly
persevering compact. Moreover, ϕ(x) ⊂ φ(x) ⊂ Φ(x) from (iii). Therefore, ϕ and
φ satisfy the conditions in (2).

(2)⇒ (1) By Theorem 2. �
The following problems remain open.

Question 1. Is there an analogue of Theorem 3 for mesocompact spaces?

Question 2. Can the normality of X in Theorem 3 be weakened to the regula-
rity?

Acknowledgment. The authors would like to express their sincere thanks to
the referee for his or her valuable comments and suggestions.

References

[1] Boone J.R., Some characterization of paracompactness in χ-space, Fund. Math. 72 (1971),
145–155.

[2] Choban M., Many-valued mappings and Borel sets, II , Trans. Moscow Math. Soc. 23
(1970), 286–310.

[3] Engelking R., General Topology , Revised and completed edition, Heldermann, Berlin, 1989.
[4] Michael E., A theorem on semicontinuous set-valued funtions, Duke Math. 26 (1956),

647–652.
[5] Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
[6] Miyazaki K., Characterizations of paracompact-like properties by means of set-valued semi-

continuous selections, Proc. Amer. Math. Soc. 129 (2001), 2777–2782.



Mesocompactness and selection theory 157

[7] Nedev S., Selection and factorization theorems for set-valued mapings, Serdica 6 (1980),
291–317.

[8] Yan P.-F., τ selections and its applictions on BCO , J. Math. (in Chinese) 17 (1997),
547–551.

Department of Mathematics, Wuyi University, Jiangmen 529000, P.R. China

E-mail: ypengfei@sina.com

Department of Mathematics, Shantou University, Shantou, Guangdong,
515063, P.R. China

E-mail: zqyang@stu.edu.cn

(Received February 16, 2011, revised November 22, 2011)


		webmaster@dml.cz
	2013-09-22T11:22:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




