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MECHANICAL OSCILLATORS DESCRIBED BY A SYSTEM OF

DIFFERENTIAL-ALGEBRAIC EQUATIONS*

Dalibor Pražák, Praha, Kumbakonam R. Rajagopal, College Station

(Received November 30, 2009)

Abstract. The classical framework for studying the equations governing the motion of
lumped parameter systems presumes one can provide expressions for the forces in terms of
kinematical quantities for the individual constituents. This is not possible for a very large
class of problems where one can only provide implicit relations between the forces and the
kinematical quantities. In certain special cases, one can provide non-invertible expressions
for a kinematical quantity in terms of the force, which then reduces the problem to a system
of differential-algebraic equations.
We study such a system of differential-algebraic equations, describing the motions of

the mass-spring-dashpot oscillator. Assuming a monotone relationship between the dis-
placement, velocity and the respective forces, we prove global existence and uniqueness of
solutions. We also analyze the behavior of some simple particular models.

Keywords: differential-algebraic equations, existence and uniqueness of solutions, me-
chanical oscillators

MSC 2010 : 34C15, 34A09, 34A12

1. Introduction

The equations governing the vibratory motion of a spring, dashpot and mass,

represented as a lumped parameter system (see Fig. 1) take the form

(1.1) mẍ = F − Fs − Fd,

where x is the displacement, m the mass, F the externally applied force on the mass

and Fs and Fd denote the forces in the spring and dashpot, respectively. The dot

*Research of D.P. is supported by the project of the Grant Agency of the Czech Republic
no. 201/09/0917 and by the project 0021620839 of the Ministry of Education, Youth,
and Sports of the Czech Republic. K.R.R. thanks to NSF for its support.
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Figure 1. Mass-Spring-Dashpot lumped parameter system.

denotes differentiation with respect to time. It is customarily assumed that one can

provide an explicit expression for the force in the spring in terms of the displacement,

and the force in the dashpot in terms of the velocity, i.e.,

Fs = f̂(x),(1.2)

Fd = ĝ(ẋ).(1.3)

Substituting (1.2) and (1.3) into (1.1) yields the equations governing the vibratory

motion of the system. The equations are completed by providing the initial conditions

x(0) = x0,(1.4)

ẋ(0) = x1.(1.5)

Recently, Rajagopal [3] has studied the vibratory motion of a class of lumped

parameter systems wherein the forces in the individual constituents that store and

dissipate energy (springs and dashpots) cannot be expressed in terms of kinematical

quantities such as the displacement, velocity, etc. Either one has the expression for

the kinematics in terms of the forces in the constituents, or worse still one has an

implicit relationship between the forces and the kinematics. In such lumped param-

eter systems, instead of dealing with a differential equation we are forced to deal

with a system of differential-algebraic equations. Constituents wherein one cannot

provide expressions for the forces explicitly in terms of the kinematical quantities

arise naturally in physical systems, for example the frictional force in a dashpot con-

sisting in a Bingham fluid cannot be expressed in terms of the velocity, rather the

velocity can be expressed in terms of the frictional force (see Fig. 2). Similarly, one

cannot express the force in a system which consists of a spring and an inextensible

string in parallel in terms of the displacement; on the contrary, one can express the

displacement in terms of the force (see Fig. 3). In the above mentioned examples, we

note that the constitutive expression for the spring-inextensible spring is given by

(1.6) x = f(Fs),
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Figure 2. Frictional forces velocity relationship for a linear Bingham dashpot.
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Figure 3. A spring and an inextensible string in parallel; the relation between the applied
force and the displacement.

while the constitutive expression for the dashpot takes the form

(1.7) ẋ = g(Fd).

Thus, we cannot substitute (1.6) and (1.7) into (1.1) to obtain a single differential

equation for the displacement, and we need to solve the system of equations (1.1),

(1.6), and (1.7) simultaneously.

The constituents of the lumped parameter system can be much more complex in

that neither the force nor the kinematics can be expressed in terms of the other,

but requiring implicit constitutive relations between these variables. This would

indeed be the case if the individual constituents were viscoelastic or viscoplastic

bodies. Thus, one might have to deal with the vibratory motion of a lumped param-

eter system which consists of several constituents, the constitutive response of these

components being given by

(1.8) hi(fi, ḟi, x, ẋ) = 0,

where fi is the force acting in the ith constituent. In fact, the problem can be even

more daunting in that one might have higher time derivatives of the forces and the

displacement. Equation (1.8) could be such that it is truly implicit, not allowing the

displacement or any of the other kinematical variables to be expressed in terms of
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the force and its time derivatives. However, there are components, such as a Maxwell

element, which will correspond to a relation of the form

ẋ = αf + βḟ ,

where x is the displacement and f the force.

A frictional force that arises often in vibratory motions is Coulomb friction. This

also is an interesting situation wherein one cannot express the frictional force in

terms of the velocity. When the velocity is zero, the frictional force can take any

value −µsN 6 Fd 6 µsN where µs is the coefficient of static friction and N is the

normal traction acting on the mass. Classical solutions are not possible to the system

of equations governing the problem. Even more importantly, the frictional force Fd

that appears in (1.1) cannot be specified independent of the extension of the spring

whenever the force in the spring Fs 6 µsN . The problem can be cast as a differential

inclusion and solutions can be established in the sense of Filippov, see [1].

However, one finds that there is a large body of work, especially in engineering,

where the problem is incorrectly identified as possessing a classical solution. In fact,

in such studies (see for example Meirovitch [2]) one persists in using the governing

equation (1) to describe the vibrating system while obtaining the solution to the dif-

ferential equation by patching up the solution for negative and positive velocity, not

recognizing that the equation (1) is not meaningfully defined in that one cannot have

an expression for the force due to Coulomb friction when the velocity is zero and the

initial conditions are such that the spring force is less than the static frictional force.

In this paper, we seek solutions for Fs, Fd that are integrable functions rather than

solutions such as those sought by Filippov. We also require that the displacement

and the velocity are absolutely continuous functions.

In this paper, we will not be considering constituent equations of the form (1.8).

We shall consider the simpler system (1.1), (1.6), and (1.7). We show there exists at

least one solution to this system satisfying (1.4), (1.5). For the autonomous problem,

i.e., when the external force F is constant, the solution is unique. We then specialize

the constitutive expressions (1.6) and (1.7) to correspond to that for a linear spring

and a Bingham dashpot, respectively.

Throughout the paper, we will assume that

f, g : R → R are continuous, nondecreasing,(1.9)

f(0) = g(0) = 0,(1.10)

c1|u| − c2 6 |f(u)| 6 c3(|u| + 1),(1.11)

c4|u| − c5 6 |g(u)| 6 c6(|u| + 1).(1.12)
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Here (1.11), (1.12) are convenient technical assumptions, which together with (1.6),

(1.7) imply that

x is bounded ⇐⇒ Fs is bounded,(1.13)

ẋ is bounded ⇐⇒ Fd is bounded.

Clearly, (1.11), (1.12) are satisfied if f and g grow linearly close to infinity; they also

imply that these functions are onto, which seems necessary in order for us to prove

global existence of solutions for arbitrary initial data.

The underlying analysis does not correspond to that used in standard ODE theory;

therefore it is important to specify what we mean by a solution.

Definition 1. By a solution we mean a triple of functions (x, Fs, Fd) defined

on some time interval I, where x, ẋ are absolutely continuous functions, Fs, Fd are

integrable functions, and (1.1), (1.6), (1.7) hold almost everywhere (a.e.) in I.

2. A general existence result

In this section, we are going to prove the following theorem.

Theorem 1. For arbitrary x0, x1 ∈ R, T > 0 and F ∈ L2(0, T ), the system (1.1),

(1.6), (1.7) has at least one solution, satisfying (1.4), (1.5) and defined on the whole

interval [0, T ].

P r o o f. Replacing f , g by

fk(u) = f(u) + k−1u,

gk(u) = g(u) + k−1u,

we can define the approximating problem

ẍk = F − F k
s − F k

d ,(2.1)

xk = fk(F k
s ),(2.2)

ẋk = gk(F k
d ).(2.3)

We observe that fk, gk are invertible, hence this is equivalent to

(2.4) ẍk = F − (fk)−1(x
k) − (gk)−1(ẋ

k).
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In fact, the functions (fk)−1, (gk)−1 are globally k-Lipschitz. Thus, for any k > 1,

we have a global solution by virtue of the standard ODE theory; see for example Vra-

bie [5, Theorem 2.4.5].

To obtain estimates that are independent of k, we multiply (2.1) by 2ẋk. Note

that
F k

d ẋ
k = F k

d gk(F k
d ) > 0,

|F k
s | 6 c(|xk| + 1);

the second inequality follows from (1.11), with c being independent of k provided it

is sufficiently large. Hence, we deduce that

d

dt
(ẋk)2 6 2(|F | + c1|x

k| + c1)|ẋ
k| 6 |F |2 + c2(1 + (xk)2 + (ẋk)2);

integrating over (0, t), and noting that

(2.5)

∫ t

0

(xk)2 ds =

∫ t

0

(

x0 +

∫ s

0

ẋk dτ

)2

ds 6 c3

(

x2
0 +

∫ t

0

(ẋk)2 ds

)

,

we finally deduce

(ẋk)2(t) 6 x2
1 + c4

(

x2
0 +

∫ t

0

|F |2 + (ẋk)2 ds

)

, t ∈ [0, T ],

where the constants c3, c4 possibly depend on T . We deduce from Gronwall’s lemma

(Vrabie [5, Lemma 1.5.2]) that

(2.6) sup
t∈[0,T ]

|ẋk(t)| + |xk(t)| 6 K1,

where K1 only depends on x0, x1, F and T > 0, but is independent of k that is

sufficiently large. Similarly, we have from (2.1)–(2.3) (invoking again (1.11), (1.12))

sup
t∈[0,T ]

|F k
s (t)| + |F k

d (t)| 6 K2,(2.7)

∫ T

0

|ẍk|2 dt 6 K3.(2.8)

Now, we need to take the limit k → ∞. From the above a priori estimates, there

exists a triple (x, Fs, Fd) such that, taking a subsequence (not relabelled),

xk → x

ẋk → ẋ

}

uniformly on [0, T ],
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and
ẍk → ẍ

F k
s → Fs

F k
d → Fd







weakly in L2(0, T ).

This is sufficient to obtain the limit in (2.1). The proof will be completed once we

handle (2.2); the equation (2.3) is treated similarly.

We employ monotonicity of f in a standard way. Observing that fk → f locally

uniformly in R, while F k
s are bounded, we have that

f(F k
s ) = f(F k

s ) − fk(F k
s )

︸ ︷︷ ︸

⇒0

+ fk(F k
s )

︸ ︷︷ ︸

xk

→ x uniformly on [0, T ].

Now, we can write
∫ T

0

(f(F k
s ) − f(w))(F k

s − w) dt > 0,

where w ∈ L2(0, T ) will be specified in a moment. Letting k → ∞, we deduce

∫ T

0

(x− f(w))(Fs − w) dt > 0.

Taking now w = Fs ± λχ, where λ > 0 is constant and χ ∈ L2(0, T ) is an arbitrary

function, we divide by λ and then let λ→ 0 to finally obtain

∫ T

0

(x− f(Fs))χ dt = 0.

By the arbitrariness of χ, it follows that x = f(Fs) almost everywhere. �

3. Uniqueness for the autonomous problem

We will now impose additional structural assumptions on the function f , namely

that there exists a finite number of disjoint closed intervals Ik and real constants ξk
such that

f ≡ ξk in Ik,

while f is strictly increasing outside
⋃

k

Ik. We set

ϕ := (f |R\
⋃

k
Ik

)−1;
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our final requirement is that ϕ is locally Lipschitz on its domain of definition, i.e., on

R \ {ξ1, ξ2, . . .}. Note that ϕ is a strictly increasing function.

The subsequent analysis is closely related to the problem of inverting (1.6). If

x 6= ξk, this is indeed equivalent to Fs = ϕ(x). On the other hand, one has

ẋ(t) = 0 for a.e. t ∈M,(3.1)

where M = {t ∈ [0, T ]; ∃ k such that x(t) = ξk}.

This follows from the fact that the derivative of x is zero at every Lebesgue point of

the set {t ∈ [0, T ]; x(t) = ξk}. We conclude by recalling the well-known fact that

Lebesgue points are a set of full measure, see for example Rudin [4, Theorem 7.7].

Finally, we set

F(x) :=

∫ x

0

2ϕ(ξ) dξ.

Observe that F is locally Lipschitz, strictly convex and has a global strict minimum

at F(0) = 0. One also has

(3.2) F ′(x) = 2ϕ(x), ∀x 6= ξk.

An important step towards uniqueness is the energy (in)equality.

Lemma 1. Every solution to the system (1.1), (1.6), (1.7) satisfies

(3.3)
d

dt
[(ẋ)2 + F(x)] + 2Fdẋ = 2F ẋ

almost everywhere on [0, T ].

P r o o f. We have (d/dt)(ẋ)2 = 2ẍẋ, and

d

dt
F(x) = F ′(x)ẋ = 2ϕ(x)ẋ

almost everywhere—this follows simply by the chain rule if x 6= ξk, and it is a

consequence of (3.1) if t ∈M . Thus, (3.3) is equivalent to

(ẍ+ Fd + ϕ(x))2ẋ = 2F ẋ;

for x 6= ξk this follows from the equation (since Fs = ϕ(x)) while for t ∈M we again

invoke (3.1). �
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For the sake of brevity, we will say that a solution is unique at a point (x0, x1), if

two arbitrary solutions satisfying the same initial condition

(3.4) x(t0) = x0, ẋ(t0) = x1

coincide on [t0, t0+δ] for some δ > 0. By the usual continuation argument, uniqueness

at every point implies global (forward) uniqueness.

Lemma 2. Let h be nondecreasing on the neighborhood V of x1, and let ψ be

Lipschitz on the neighborhood U of x0. Then the solution of the system

ẍ+ Fd + ψ(x) = F,

ẋ = h(Fd)

is unique at the point (x0, x1).

P r o o f. Let x1, x2 be two solutions with the initial condition (x0, x1); we can

assume t0 = 0. Let F 1
d , F

2
d , be the corresponding forces. By continuity, we can find

δ > 0 such that xi and ẋi remain in U and V for t ∈ [0, δ], respectively.

Subtracting the equations for x1 and x2 yields

d

dt
(ẋ1 − ẋ2) + F 1

d − F 2
d = ψ(x2) − ψ(x1);

we multiply by 2(ẋ1 − ẋ2) and note that

(F 1
d − F 2

d )(ẋ1 − ẋ2) = (F 1
d − F 2

d )(g(F 1
d ) − g(F 2

d )) > 0.

Hence, introducing z = x1 − x2, we arrive at

d

dt
(ż)2 6 2Lz2,

and integration yields (by the same token as in (2.5))

(ż(t))2 6 2L

∫ t

0

z2 ds 6 C

∫ t

0

(ż)2 ds,

for any t ∈ [0, δ]. By Gronwall’s lemma we deduce z ≡ 0. �

We can now prove the main result of this section.

Theorem 2. Let F ≡ F0, and let f satisfy the structural assumptions from the

beginning of the section. Then the solution of (1.1), (1.6), (1.7) is unique at every

point (x0, x1).
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P r o o f. The proof is split into several cases.

Case 0. If x0 6= ξk, the conclusion follows from Lemma 2 (with ψ = ϕ).

Case 1. If (x0, x1) = (0, 0) and F0 = 0, we deduce from (3.3) (note that Fdẋ > 0)

that

(ẋ(t))2 + F(x(t)) 6 0

for all t > 0, hence x ≡ 0.

Case 2. Assume that (x0, x1) = (ξk, 0), and the force can be written as F0 = ψ+ϕ,

where g(ψ) = 0, f(ϕ) = ξk. In other words, the external force can be compensated

by the forces in the dashpot and the spring that keep the system at equilibrium.

Replacing x by x− ξk, g by g(·+ψ) and f by f(·+ϕ)− ξk, we deduce that x ≡ ξk

is the unique solution by reduction to the argument of case 1.

It remains to handle the following situations:

Case 3 i. (x0, x1) = (xk, x1) with x1 6= 0;

Case 3 ii. (x0, x1) = (ξk, 0), where F0 /∈ g−1(0) + f−1(ξk).

In both the situations, we first claim that (any possible) solution is strictly mono-

tone on [0, δ] for some δ > 0. This is obvious if ẋ(0) = x1 6= 0, while in the case 3 ii, by

the continuity argument, ẍ = F0−Fd−Fs is either positive or negative a.e. on (0, δ).

Together with the initial condition ẋ(0) = 0, this yields the desired monotonicity.

Assume that x1, x2 are two solutions that do not coincide on [0, δ] for any δ > 0.

Without loss of generality, xi are strictly increasing.

Set z := x1 − x2, and let z(t1) > 0 for some t1 ∈ (0, δ). We further define

t2 := inf{τ ∈ [0, t1); z > 0 on (τ, t1)}.

It follows that t2 ∈ [0, t1) and z > 0 on (t1, t2). By the mean value theorem, there

exists τ ∈ (t2, t1) such that ż(τ) > 0. By continuity, z, ż > 0 even on some (τ −η, τ),

η > 0.

On the other hand, we have the equation

z̈ + F 1
d − F 2

d + F 1
s − F 2

s = 0;

since z = f(F 1
s ) − f(F 2

s ) > 0, ż = g(F 1
d ) − g(F 2

d ) > 0, we deduce that z̈ < 0 a.e. on

(τ − η, τ). Hence ż(τ − η) > ż(τ) > 0.

Repeating the argument, we eventually deduce that ż(t2) > ż(t1) > 0. Since

ż(0) = 0, obviously t2 > 0, and z < 0 on some (t2 − η, t2). By the same token, there

is a sequence of points tk ց 0 such that z(tk) = 0 and (−1)kż(tk) > 0.

We will bring this to contradiction. Recall that xi are strictly increasing, and

assume that tk+1 < tk are close enough to zero so that x
i 6= ξk for all t ∈ (tk+1, tk).

Now, it is possible to find c such that x1 and x̃2 = x2(·+ c) have the same value and
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derivative at some τ ∈ (tk+1, tk). See Fig. 4; a rigorous proof is obtained by applying

the Lagrange theorem to inverse functions to xi and is left to the pedantic reader.

tk+1 τ tk

x̃
2

x
2

x
1

Figure 4. End of the proof of Theorem 2.

However, x̃2 solves the same autonomous equation; and hence, x̃ ≡ x1 on [τ, tk]

in virtue of the uniqueness proved in case 0. On the other hand, the construction

implies that x̃2(tk) > x1(tk)—a contradiction. �

R em a r k 1. It is interesting to note that the forces are NOT determined

uniquely. For example, if f , g ≡ 0 on some neighborhood of zero, then x ≡ 0 is a

solution, while Fs, Fd can change arbitrarily as long as Fd + Fs ≡ 0. Nonetheless,

no possible combinations of these forces would yield any motion.

4. Construction of solutions for particular models

The aim of this section is a more detailed analysis of solutions for some simple

particular models.

4.1. Linear spring and Bingham dashpot

Assume Hooke’s law for the spring, i.e.,

x =
Fs

k
,

and Bingham fluid in the dashpot; that is to say ẋ = g(Fd), where

g(u) =







0, |u| 6 γ0,

a(u− γ0), u > γ0,

a(u+ γ0), u < −γ0,
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where γ0, a are some positive constants. Our problem is reduced to the pair of

equations

ẍ+ Fd + kx = F,(4.1)

ẋ = g(Fd).(4.2)

We have global existence by Theorem 1; note that we also have global (forward)

uniqueness by the argument of Lemma 2—the proof obviously works for an arbitrary

(non-constant) right-hand side, with a globally Lipschitz function ϕ(u) = ku.

If ẋ 6= 0, we can invert (4.2) and our problem reduces to a single equation

(4.3) ẍ+
ẋ

a
+ kx = F − γ0 sgn(ẋ).

This is a linear ODE with constant coefficients.

On the other hand, the system admits equilibria of the form

x ≡ xe,

Fd = F − kxe,

|Fd| 6 γ0.

In other words: if x(t0) = xe and ẋ(t0) = 0 for some t0, then the solution remains

at x = xe as long as |F − kxe| 6 γ0 is satisfied.

4.1.1. The case with constant right-hand side. Assume that F ≡ F0. We

have a strip of equilibria

(4.4)
F0 − γ0

k
6 xe 6

F0 + γ0

k
.

If ẋ > 0, the solutions are governed by

ẍ+ ax+ kx = F0 − γ0;

while for ẋ < 0, we have

ẍ+ ax+ kx = F0 + γ0.

Solutions of these equations (exponentially) stabilize to (F0 −γ0)/k, (F0 +γ0)/k, re-

spectively. One deduces that any solution of the whole system is eventually (i.e., after

a finite number of oscillations) trapped by one of the equilibria (4.4).

To be more precise: if the system is overdamped (1/a2 > 4k), one can also have

solutions that are monotone and reach one of the equilibria (F0 ± γ0)/k in infinite

time.
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4.2. Linear dashpot and a rigid-elastic spring

We set ẋ = aFd and x = f(Fs), where

f(u) =







0, |u| 6 ϕ0,

a(u − ϕ0), u > ϕ0,

a(u + ϕ0), u < −ϕ0,

where ϕ0, k > 0 are constants. Our problem can be recast as

ẍ+
ẋ

a
+ Fs = F,(4.5)

x = f(Fs).(4.6)

Observe that the system fits into our general scheme; in particular, f satisfies the

structural assumptions given in Section 3. We thus have global existence and unique-

ness (in case of a constant right-hand side). There is a trivial equilibrium x = 0,

which can be maintained as long as Fs = F ∈ [−ϕ0, ϕ0]. If x 6= 0, we can invert f(·),

and reduce our problem to a single (constant coefficient) equation

ẍ+
ẋ

a
+ kx = F − ϕ0 sgn(x).

4.2.1. The case with constant right-hand side. Let F ≡ F0. If x > 0, we

have

ẍ+
ẋ

a
+ kx = F0 − ϕ0;

the solutions of this subproblem stabilize to x− := (F0 − ϕ0)/k. For x < 0, we have

ẍ+
ẋ

a
+ kx = F0 + ϕ0,

which implies that x tends to x+ := (F0 + ϕ0)/k.

Concerning the asymptotic behavior of the full system (4.5)–(4.6), we can distin-

guish three cases:

1. If x− 6 0 6 x+, zero is a possible equilibrium and solutions infinitely oscillate

closer and closer around it.

2. If x− > 0, solutions are positive for t large enough and stabilize to x−.

3. If x+ < 0, solutions are negative for t large and stabilize to x+.
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5. Concluding remarks

In this paper we have considered the existence of a solution for an interesting

class of problems concerning vibrating systems whose governing equations reduce to

a system of differential-algebraic equations. In such vibrating systems one cannot

express the forces in the components of the lumped parameter system as a function of

kinematical quantities. On the other hand, we have the kinematics being defined as

a function of the forces. We have sought solutions under several special assumptions

concerning the function that expresses the kinematical quantity in terms of the forces,

such as it being monotone. A great deal of work remains open, especially when the

components of the lumped parameter system are such that one can only provide

an implicit relationship between the forces and its derivatives and the kinematical

quantities.
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