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Abstract. We consider a simple reaction-diffusion system exhibiting Turing’s diffusion
driven instability if supplemented with classical homogeneous mixed boundary conditions.
We consider the case when the Neumann boundary condition is replaced by a unilateral
condition of Signorini type on a part of the boundary and show the existence and location of
bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem
is reformulated as a single variational inequality with a potential operator, and a variational
approach is used in a certain non-direct way.
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1. Introduction

Let Ω ⊂ R
m be a bounded domain with Lipschitzian boundary ∂Ω, and let ΓD,

ΓN , ΓU be pairwise disjoint parts of ∂Ω,

(1.1) mesΓD > 0, mes ΓU > 0, mes(∂Ω \ (ΓD ∪ ΓN ∪ ΓU )) = 0

(the (m − 1)-dimensional Lebesgue measure). Our goal is to show on the basis of a

simple variational approach the existence and location of bifurcations of nontrivial

*The research has been supported by the Academy of Sciences of the Czech Repub-
lic under the Grant IAA100190805 of the GAAV and the Institutional Research Plan
AV0Z10190503.
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solutions of the system

(1.2)
d1∆u + b11u + b12v + n(u) = 0

d2∆v + b21u + b22v = 0
in Ω

with unilateral boundary conditions, i.e.

(1.3)















u = v = 0 on ΓD,
∂u

∂ν
= 0 on ΓN ,

∂v

∂ν
= 0 on ∂Ω \ ΓD,

u > 0,
∂u

∂ν
> 0, u ·

∂u

∂ν
= 0 on ΓU .

Simultaneously, similar results will be proved also for a “dual” problem with a non-

linearity n in the second equation and unilateral conditions for v instead of u. See

Section 5 for further examples. It will be always assumed that the constant real

matrix B = (bij) satisfies

(1.4)
b11 > 0 > b22, b12b21 < 0,

det B = b11b22 − b12b21 > 0, b11 + b22 < 0,

n will be a function satisfying

(1.5) n(0) = n′(0) = 0,

and (d1, d2) ∈ R
2
+ := (0,∞) × (0,∞) will be real parameters (diffusion coefficients).

In order to explain the sense of our results and include it in the framework of the

previous research, we must start our exposition with a more general reaction-diffusion

system

(1.6)
ut = d1∆u + b11u + b12v + n1(u, v)

vt = d2∆v + b21u + b22v + n2(u, v)
in (0,∞) × Ω,

first with the classical mixed boundary conditions

(1.7) u = v = 0 on ΓD,
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω \ ΓD.

Here, nj(0, 0) = (∂nj/∂u)(0, 0) = (∂nj/∂v)(0, 0) = 0. Clearly, (0, 0) is a solution

of (1.6) with (1.3) as well as with (1.7).

In terms of models of chemical reactions, the first line in (1.4) means that our sys-

tem is of an activator-inhibitor type (the case b12 < 0 < b21) or of a positive feedback

(substrate-depletion) type. See e.g. [4], [11], [16]. In the first case, u and v describe
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the concentration of the activator and inhibitor, respectively. It is well known that

under the assumption (1.4), the trivial solution of the problem without any diffusion

(i.e. of ODE’s, d1 = d2 = 0) is stable but the trivial solution of the problem (1.6),

(1.7) is stable only for parameters d1, d2 from a certain subset DS (the domain of

stability) of R2
+ and unstable for d1, d2 ∈ DU = R

2
+ \ DS (the domain of instabil-

ity). See Proposition 2.1, Remark 2.2 and Fig. 1 for details. Moreover, stationary

but spatially nonhomogeneous solutions bifurcate at the border CE between DS and

DU (see e.g. [15], [17]). Such solutions describe spatial patterns in mathematical

models in biology (see e.g. [4], [11], [16]). In fact, in applications there is usually a

positive (not zero) spatially constant stationary solution ū, v and spatially nonhomo-

geneous stationary solutions bifurcate from ū, v. However, this basic solution can be

shifted to zero, which is done in our system. Let us note that any nontrivial solution

of (1.6) with boundary conditions (1.7) or (1.3) is spatially nonhomogeneous due to

the Dirichlet conditions on a part of the boundary.

In a series of papers (e.g. [1], [2], [6], [9], [12], [18]), an influence of unilateral con-

ditions to this bifurcation was studied. (Usually only systems of activator-inhibitor

type were discussed but in fact only the assumption (1.4) was used, i.e. the results

were true also for systems of positive feedback type.) Roughly speaking, it was

proved that if unilateral conditions are prescribed for the inhibitor v then, if an

eigenfunction of the Laplacian satisfies a certain sign condition, bifurcation occurs

even in the domain DS , while if unilateral conditions are prescribed for the activa-

tor u then bifurcation is excluded in DS and in some situations it is excluded even

in CE . However, the existence of a bifurcation in the last case has not been proved

up to now, and is shown only in the current paper for the particular case n2 = 0.

The goal of this paper is two-fold. One goal is to prove existence of bifurcation

in DU for the particular case of a nonlinearity only in the first equation and unilateral

conditions for u. The other goal is to prove bifurcation in the domain DS for the

case of a nonlinearity only in the second equation and unilateral conditions for v

even if all eigenfunctions of the Laplacian fail to satisfy the mentioned sign condition

demanded in all previous papers. Both results are obtained by the same approach

in a somewhat dual manner.

All previous results concerning bifurcation for our system with unilateral con-

ditions for the inhibitor were based on topological methods. Namely, either on a

certain homotopical joining of the variational inequality to the equation by a system

of penalty problems and a transfer of the information about the existence of small

nontrivial solutions from the equation to the inequality (e.g. [2], [6]), or on the direct

use of the Leray-Schauder degree (a jump of the degree implies bifurcation, e.g. [18],

[9]). As we already mentioned, for the proof it was always essential that certain

eigenfunctions of the Laplacian satisfy a certain sign condition (in general, it must
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be in the interior or in a certain pseudo-interior of the cone related to the corre-

sponding variational inequality), see e.g. [1], [9]. In the present variational approach

we need no such assumption, cf. Remark 5.2. The price for the use of the variational

approach is that we consider only some particular situations, and that we get no

information concerning the character of the set of bifurcating solutions. However, in

a particular case of situations like in Examples 5.2, 5.3, our method combined with

the results [8], [19] can give a bifurcation for the case of general n1, n2 (Remark 3.2),

and even the direction of bifurcation can be described.

In Section 2 we give an abstract formulation of our problem and summarize some

facts necessary for the formulation of main results, which are given in an abstract

form in Section 3 (Theorems 3.1 and 3.2). The proofs of the abstract results are

given in Section 4. Section 5 is devoted to applications to unilateral boundary value

problems; the first example covers the boundary conditions (1.3).

For the proof of existence of a bifurcation in DU , we transfer for fixed d2 > 0 the

problem to a single variational inequality and prove by a variational approach that

there is a bifurcation for a suitable d1. The proof of existence of a bifurcation in DS

works in a dual manner by interchanging the roles of d1 and d2.

The idea to transfer our nonsymmetric problem for fixed d2 to a single variational

inequality comes already from [12], but up to now it has been always used only

for the proof of nonexistence of critical points (and consequently, nonexistence of

bifurcation). The dual approach, i.e. to transfer the nonsymmetric problem for

fixed d1 to a single variational inequality, was used in [5], also for the proof of

nonexistence of bifurcation.

Unilateral boundary conditions can describe a certain regulation, e.g. by a uni-

lateral membrane. Interpretation of the boundary conditions (1.3) (even in a more

general form) and of unilateral conditions from Examples 5.2, 5.3 (the last section)

is described e.g. in [1] and in Remark 5.3, respectively.

2. Motivation of abstract formulation, general remarks

Let us assume that n is a continuous function satisfying (1.5) and that there exists

c ∈ R such that

(2.1) |n(u)| 6 c(1 + |u|)q−1

with some q > 2 or 2 < q < 2m/(m−2) in the case m 6 2 or m > 2, respectively (in

the casem = 1, one can even formally put q = ∞ and does not need to require (2.1)).

Let us introduce the real Hilbert space

(2.2) H = {ϕ ∈ W 1,2(Ω): ϕ = 0 on ΓD in the sense of traces}
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and the closed convex cone K with its vertex at the origin in H,

K = {ϕ ∈ H : ϕ > 0 on ΓU in the sense of traces}.

We equip H with the scalar product

(2.3) 〈u, ϕ〉 =

∫

Ω

∇u(x) · ∇ϕ(x) dx (u, ϕ ∈ H)

and the corresponding norm ‖ϕ‖2 = 〈ϕ, ϕ〉 which is equivalent to the usual Sobolev

norm under the assumption (1.1), see e.g. [10]. Set

〈U, W 〉 = 〈u, w〉 + 〈v, z〉, ‖U‖2 = ‖u‖2 + ‖v‖2 for U = (u, v), W = (w, z) ∈ H×H.

Let us define operators A, N : H → H by

〈Au, ϕ〉 =

∫

Ω

u(x)ϕ(x) dx for all u, ϕ ∈ H,(2.4)

〈N(u), ϕ〉 =

∫

Ω

n(u(x))ϕ(x) dx for all u, ϕ ∈ H.(2.5)

It follows from the compactness of the embedding H →֒→֒ Lq(Ω) and the continuity

of the Nemyckij operator of Lq(Ω) into Lq∗

(Ω), 1/q + 1/q∗ = 1 (see e.g. [10]) that

under the assumption (2.1)

A is linear, symmetric, positive and compact,(2.6)

N is nonlinear, continuous and compact.(2.7)

Furthermore, under the conditions (1.5) and (2.1)

(2.8) N is Fréchet differentiable at 0, N(0) = 0, N ′(0) = 0,

see e.g. [3]. Moreover, let us introduce the functional GN : H → R by

GN (u) =

∫

Ω

∫ u(x)

0

n(s) ds dx.

Under the assumptions (2.1), this functional is well defined, Fréchet differentiable

and we have

(2.9) G′
N (u) = N(u),

i.e. GN is a potential of the operator N .
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Now, we introduce a weak solution of the problem (1.2), (1.3) or (1.2), (1.7) as a

couple (u, v) satisfying the variational inequality

(2.10)











u ∈ K, v ∈ H,

〈d1u − b11Au − b12Av − N(u), ϕ − u〉 > 0 for all ϕ ∈ K,

d2v − b21Au − b22Av = 0,

or the equations

(2.11)











u, v ∈ H,

d1u − b11Au − b12Av − N(u) = 0,

d2v − b21Au − b22Av = 0,

respectively. The weak formulation of the linearized system

(2.12) d1∆u + b11u + b12v = 0, d2∆v + b21u + b22v = 0 in Ω

with (1.3) or with (1.7) is

(2.13)











u ∈ K, v ∈ H,

〈d1u − b11Au − b12Av, ϕ − u〉 > 0 for all ϕ ∈ K,

d2v − b21Au − b22Av = 0,

or

(2.14)











u, v ∈ H,

d1u − b11Au − b12Av = 0,

d2v − b21Au − b22Av = 0,

respectively.

In parallel, we will consider the following dual situation with the variational in-

equality for v and nonlinearity dependent only on v, that means

(2.15)











u ∈ H, v ∈ K,

d1u − b11Au − b12Av = 0,

〈d2v − b21Au − b22Av − N(v), ϕ − u〉 > 0 for all ϕ ∈ K,

the corresponding system of equations

(2.16)











u, v ∈ H,

d1u − b11Au − b12Av = 0,

d2v − b21Au − b22Av − N(v) = 0,
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and the variational inequality with linearized operators

(2.17)











u ∈ H, v ∈ K,

d1u − b11Au − b12Av = 0,

〈d2v − b21Au − b22Av, ϕ − u〉 > 0 for all ϕ ∈ K.

In fact, we will formulate our main results in the abstract form for the variational

inequalities (2.10) and (2.15) in a general real Hilbert space with a closed convex

cone K with its vertex at the origin in H, and with operators A, N satisfying (2.6),

(2.7), (2.8), with N having a potential GN , i.e. (2.9) holds.

In the sequel, with the exception of the last section, H, K, A, N have this general

meaning if nothing else is mentioned.

In some of the papers mentioned in Section 1, bifurcations with respect to (d1, d2)

along general curves in R
2
+ were studied. Our variational approach enables us to

consider only particular cases of bifurcation in the direction d1 or in the direction d2

with fixed d2 or d1, respectively.

Definition 2.1. A parameter d1 is a bifurcation point of (2.10) or (2.11) with

fixed d2 = d0
2 if in any neighborhood of (d1, 0, 0) in R×H×H there is (d̃1, u, v) with

(u, v) 6= (0, 0) such that (d̃1, d
0
2, u, v) satisfies (2.10) or (2.11), respectively.

A parameter d2 is a bifurcation point of (2.15) or (2.16) with fixed d1 = d0
1 if in

any neighborhood of (d2, 0, 0) in R×H×H there is (d̃2, u, v) with (u, v) 6= (0, 0) such

that (d0
1, d̃2, u, v) satisfies (2.15) or (2.16), respectively.

By a bifurcation point of the problem (1.2), (1.3) we mean always a bifurcation

point of the problem (2.10) with A, N from (2.4), (2.5). Analogously for the other

problems considered.

A critical point of the problem (2.13), (2.17) or (2.14) is a parameter d = (d1, d2) ∈

R
2
+ for which the corresponding system has a solution (u, v) 6= (0, 0). By a critical

point of the problem (2.12), (1.3) we mean always a critical point of the prob-

lem (2.13) with A, N from (2.4), (2.5). Analogously for the other problems consid-

ered.

R em a r k 2.1. If d1 is a bifurcation point of (2.10) with fixed d2 = d0
2 or d2 is

a bifurcation point of (2.15) with fixed d1 = d0
1 then (d1, d

0
2) or (d0

1, d2) is a critical

point of (2.13) or (2.17), respectively, cf. e.g. [2]. Of course, analogously for (2.11)

and (2.16).

R em a r k 2.2. Let us consider the eigenvalue problem

(2.18)
d1∆u + b11u + b12v = λu

d2∆v + b21u + b22v = λv
in Ω
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with the boundary conditions (1.7). Let us recall that if Re λ 6 −ε < 0 for all

eigenvalues of the problem (2.18), (1.7) then the trivial solution of (1.6), (1.7) is lin-

early stable, and if there is at least one eigenvalue of (2.18), (1.7) satisfying Reλ > 0

then the trivial solution of (1.6), (1.7) is linearly unstable (see e.g. [20]). Hence, the

definition of the domain DS and DU of stability and instability below (related to the

classical problem (1.6), (1.7)) is natural due to Proposition 2.1 below.

N o t a t i o n 2.1. Let us denote by 0 < κ1 < κ2 6 κ3 6 . . . the characteristic

values (i.e. reciprocals of eigenvalues) of the operator A, counted according to their

multiplicity. Furthermore, let ej (j = 1, 2, . . .) be a corresponding orthonormal

system of eigenvectors. With each κj , we associate the hyperbola

C̃j :=
{

d = (d1, d2) ∈ R
2 : d2 =

b12b21/κ2
j

d1 − b11/κj
+

b22

κj

}

and denote by Cj the part of C̃j lying in the positive quadrant R
2
+, i.e.

Cj :=
{

d = (d1, d2) ∈ R
2
+ : d2 =

b12b21/κ2
j

d1 − b11/κj
+

b22

κj

}

.

We denote by CE the envelope of Cj (j = 1, 2, . . .) and define the domain of stability

DS := {d ∈ R
2
+ : d lies to the right from CE , i.e. from all Cj , j = 1, 2, . . .}

and the domain of instability

DU := {d ∈ R
2
+ : d lies to the left from CE , i.e. from at least one Cj}

(see Fig. 1).

d1

d2

C3

x3

C2

x2

C1

x1

y1

y2
y3

DS

DU

Figure 1. The system of hyperbolas Cj , their asymptotes xj , their intersection yj with
the axis d2, domains of stability DS (to the right from the envelope CE) and
instability DU (to the left from CE).
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For any j = 1, 2, . . ., we will denote by yj := detB/κjb11 the d2-coordinate of the

intersection point of Cj with the d2-axis, that means

yj is the positive real with (0, yj) ∈ Cj ,

and by xj := b11/κj the d1-coordinate of the vertical asymptote of Cj .

For (d1, d2) ∈
⋃

j

C̃j , it will be convenient to define the index set

I(d1, d2) = {j : (d1, d2) ∈ C̃j}.

Note that two hyperbolas Cj , Ck are either identical or intersect at exactly one

point, and no more than two different hyperbolas intersect at any point. Hence,

concerning the number of elements |I(d1, d2)| there are essentially only two cases: If

(d1, d2) ∈ Cj lies on only one hyperbola, then |I(d1, d2)| is the multiplicity of the

characteristic value κj . If (d1, d2) lies on the intersection points of two hyperbolas

Cj 6= Ck then |I(d1, d2)| is the sum of the multiplicities of κj and of κk.

R em a r k 2.3. In the case of the operator A from (2.4), κj is a characteristic

value of A if and only if it is an eigenvalue of the boundary value problem

(2.19)







−∆u = κju in Ω,

u = 0 on ΓD,
∂u

∂ν
= 0 on ∂Ω \ ΓD,

and the corresponding eigenvectors of A coincide with the eigenfunctions of (2.19).

The weak formulation of the eigenvalue problem (2.18), (1.7) is

(2.20)
d1u − b11Au − b12Av = λAu,

d2v − b21Au − b22Av = λAv

with the operator A defined by (2.4). In this particular case the eigenvalues and the

corresponding eigenfunctions of (2.20) and of (2.18), (1.7) coincide.

Proposition 2.1. Let H be a real Hilbert space and let A : H → H be an operator

satisfying (2.6). Assume that (1.4) is fulfilled. Then
∞
⋃

j=1

C̃j is the set of all critical

points of the problem (2.14), and for (d1, d2) ∈
∞
⋃

j=1

C̃j we have

{(

u

v

)

∈ H×H : (2.14) is fulfilled

}

= span

{(

ej

b21(d2κj − b22)
−1ej

)

: j ∈ I(d1, d2)

}

.
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If d ∈ DS then there is ε > 0 such that Re λ < −ε for all eigenvalues of (2.20) and

if d ∈ DU then there exists at least one positive eigenvalue of (2.20).

P r o o f. For a particular case of the reaction-diffusion system in one space

dimension see e.g. [15], [17], for the general case see e.g. [2], [9]. �

3. General results

In this section we will consider a general real Hilbert space H with the scalar

product 〈·, ·〉 and a closed convex cone K with its vertex at the origin in H. We will

discuss the variational inequalities (2.10) and (2.15) with general operators A, N :

H → H satisfying (2.6), (2.7), (2.8) with N having a potential GN , i.e. (2.9) holds.

The condition (1.4) will be always assumed. The proofs of the results described here

will be given in Section 4.

Theorem 3.1. Let d0
2 > 0 be such that there are ξj ∈ R with

(3.1)
∞
∑

j=1

ξjej ∈ K and
∞
∑

j=1

d0
2b11 − κ−1

j detB

d0
2κj − b22

ξ2
j > 0.

Then the value

(3.2)

d0
1 := max

{ ∞
∑

j=1

d0
2b11 − κ−1

j detB

d0
2κj − b22

ξ2
j

/

∞
∑

j=1

ξ2
j : (ξj) ∈ ℓ2 \ {0} and

∞
∑

j=1

ξjej ∈ K

}

is the largest bifurcation point of the problem (2.10) with fixed d2 = d0
2. Moreover,

(d0
1, d

0
2) ∈ DU ∪ CE , and the case (d0

1, d
0
2) ∈ CE occurs only if there is (u, v) 6= (0, 0)

satisfying (2.14) with (d1, d2) = (d0
1, d

0
2) and u ∈ K. In the latter case, these (u, v)

are exactly the nonzero solutions of (2.13).

Let us emphasize that in the case (d0
1, d

0
2) ∈ CE in Theorem 3.1 it can happen that

the bifurcating solutions of (2.10) are not solutions of (2.11) because the bifurcating

solutions of (2.11) (if they exist) need not satisfy u ∈ K.

For the proof in Section 4 we will introduce an operator S2,d0
2
(see Proposition 4.2)

such that the assumption (3.1) is equivalent to the existence of u ∈ K satisfying

〈S2,d0
2
u, u〉 > 0, and (3.2) means

(3.3) d0
1 = max

u∈K\{0}

〈S2,d0
2
u, u〉

‖u‖2
.
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Corollary 3.1. Let d0
2 > 0 be such that the assumptions of Theorem 3.1 are

fulfilled. Let dmax
1 > 0 denote the unique number with (dmax

1 , d0
2) ∈ CE . If (d1, d2) =

(dmax
1 , d0

2) satisfies

(3.4)
∑

j∈I(d1,d2)

αjej /∈ K for all nontrivial (αj)j∈I(d1,d2),

then (d1, d
0
2) ∈ DU for all bifurcation points d1 of (2.10) with fixed d2 = d0

2.

P r o o f. The assumption (3.4) means in view of Proposition 2.1 that for

(d1, d2) = (dmax
1 , d0

2) there is no solution (u, v) 6= (0, 0) of (2.14) with u ∈ K. Hence,

it follows from the last assertion of Theorem 3.1 that the case d0
1 = dmax

1 is excluded,

and therefore d0
1 < dmax

1 . �

Theorem 3.1 implies in particular that problem (2.10) has at least one bifurcation

point with fixed d2 = d0
2 for every d0

2 > y1:

R em a r k 3.1. Hypothesis (3.1) is satisfied for d0
2 > y1 if there is u ∈ K \ {0}.

More generally, condition (3.1) is satisfied for d0
2 > yj0 if

(3.5) there is u ∈ K \ {0} with u ⊥ {ej : j < j0}.

Indeed, we can write u uniquely in the form u =
∞
∑

j=1

ξjej , and in view of u ⊥

{ej : j < j0}, we must have ξj = 0 for j < j0. The coefficients

cj(d2) :=
d2b11 − κ−1

j detB

d2κj − b22

in (3.1) are strictly increasing in d2 on [0,∞), because c′j(d) > 0 for d > 0 under the

assumption (1.4), and yj0 > yj for j > j0. Hence,

cj(d
0
2) > cj(yj0) > cj(yj) = 0 for j > j0.

The assumption (3.5) as well as the conditions given below will be verified in

concrete examples in Section 5.

R em a r k 3.2. In particular, if N = 0 then Theorem 3.1 yields the existence of

a critical point of problem (2.13). In the case of particular variational inequalities

(e.g. when the cone K is given by a finite number of isolated obstacles as in Exam-

ples 5.2, 5.3 in the last section), such a critical point is also a bifurcation point even

for our system with general N1, N2 (not only N2 = 0) if certain simplicity assump-

tions are fulfilled. Moreover, bifurcating solutions form a smooth branch if N1, N2

are smooth, see [19]. In this case also the bifurcation direction can be described,

see [8].
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The following result is the “dual” version of Theorem 3.1 for problem (2.15).

Theorem 3.2. Let d0
1 > 0 satisfy d0

1 /∈ {xj : j = 1, 2, . . .}. Assume that there are

ξj ∈ R with

(3.6)

∞
∑

j=1

ξjej ∈ K and

∞
∑

j=1

κ−1
j detB − d0

1b22

b11 − d0
1κj

ξ2
j > 0.

Then the value

(3.7)

d0
2 := max

{ ∞
∑

j=1

κ−1
j detB − d0

1b22

b11 − d0
1κj

ξ2
j

/

∞
∑

j=1

ξ2
j : (ξj) ∈ ℓ2 \ {0} and

∞
∑

j=1

ξjej ∈ K

}

is the largest bifurcation point of problem (2.15) with fixed d1 = d0
1. Moreover,

d0
1 < x1 and d0

2 6 dmax
2 := max

{

d2 > 0: (d0
1, d2) ∈

⋃

j

Cj

}

, and the case d0
2 = dmax

2

occurs only if there is a solution (u, v) 6= (0, 0) of (2.14) with (d1, d2) = (d0
1, d

0
2) and

v ∈ K. In the latter case, these (u, v) are exactly the nonzero solutions of (2.17).

Corollary 3.2. Let d0
1 > 0 be such that the assumptions of Theorem 3.2 are

fulfilled (and thus d0
1 < x1). Let dmax

2 = max
{

d2 : (d0
1, d2) ∈

⋃

j

Cj

}

. If (3.4) holds

with (d1, d2) = (d0
1, d

max
2 ), then d0

2 < dmax
2 in Theorem 3.2.

In particular, if d0
1 > x2 and (3.4) holds with (d1, d2) = (d0

1, d
max
2 ), then (d0

1, d
0
2) ∈

DS .

R em a r k 3.3. Hypothesis (3.6) is satisfied for d0
1 ∈ (0, xj0) if

(3.8) there is u ∈ K \ {0} with u ∈ span{ej : j = 1, . . . , j0}.

Indeed, writing u =
∞
∑

j=1

ξjej with ξj = 0 for j > j0, it suffices to observe that the

coefficients in (3.6) are positive for j 6 j0, because the nominator is positive due to

the assumption (1.4), and the denominator is positive in view of d0
1 < xj0 6 xj =

κ−1
j b11.

Remark 3.3 is “dual” to Remark 3.1, nevertheless condition (3.8) is much more

restrictive than (3.5) because the orthogonal complement to {ej : j < j0} is infinite-

dimensional while the space span{ej : j 6 j0} has only a finite dimension. In par-

ticular, while Remark 3.1 implies that Theorem 3.1 applies for at least some d0
2 > 0

(if K 6= {0}), Remark 3.3 does not give an analogous consequence for Theorem 3.2.

However, this consequence is also true for Theorem 3.2, but it requires a different
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argument. Indeed, if there is u ∈ K \ {0} then the completeness of the basis (ej)

implies that there is at least one j0 with 〈u, ej0〉 6= 0. For these j0, we can use the

following observation:

R em a r k 3.4. Let j0 ∈ {1, 2, . . .} be such that

(3.9) there is u ∈ K with 〈u, ej0〉 6= 0.

Then there is εj0 > 0 such that hypothesis (3.6) holds for every d0
1 ∈ [xj0 − εj0 , xj0 ).

Indeed, writing u =
∞
∑

j=1

ξjej, we have ξj0 = 〈u, ej0〉 6= 0. Put I := {j : κj = κj0}.

The corresponding series in (3.6) has the form S1(d1) + S2(d1) with

S1(d1) :=
∑

j∈I

κ−1
j detB − d1b22

b11 − d1κj
ξ2
j , S2(d1) :=

∞
∑

j=1
j /∈I

κ−1
j det B − d1b22

b11 − d1κj
ξ2
j .

Now observe that S2(d1) remains bounded for d1 close to κ−1
j0

b11 = xj0 , and that

S1(d1) → ∞ as d1 approaches xj0 from the left due to (1.4). Hence, for all d1 < xj0

sufficiently close to xj0 the series in (3.6) is strictly positive.

4. Proof of the main results

The proofs are based on the following well-known variational principle. Given

a mapping G : H → H with G(0) = 0, we call λ0 ∈ R a bifurcation point of the

variational inequality

(4.1) u ∈ K, 〈λu − G(u), ϕ − u〉 > 0 for all ϕ ∈ K,

if every neigborhood of (λ0, 0) ∈ R × H contains (λ, u) satisfying (4.1) with u 6= 0.

If S : H → H is linear, we say that λ is an eigenvalue of

(4.2) u ∈ K, 〈λu − Su, ϕ − u〉 > 0 for all ϕ ∈ K,

if (4.2) has a solution u 6= 0; we call each such u a corresponding eigenvector.

Proposition 4.1. Let G : H → H be a compact potential operator satisfying

G(0) = 0. Suppose that G is Fréchet differentiable at 0, S := G′(0), and that there

is u0 ∈ K with 〈Su0, u0〉 > 0. Then the maximum

(4.3) λ0 := max
u∈K\{0}

〈Su, u〉

‖u‖2

exists and is the largest bifurcation point of (4.1) and the largest eigenvalue of (4.2).

Moreover, the eigenvectors of (4.2) are exactly those u for which the maximum

in (4.3) is assumed.
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P r o o f. The result follows from [14, Theorem 1] or [23, Theorem 64.A], where

it is formulated in terms of bilinear forms. Let us verify the assumptions of the last

theorem. Let g be a potential of G with g(0) = 0. The compactness of g′ = G

implies the weak sequential continuity of g and the compactness of S, i.e. also the

compactness of the bilinear form b(u, u) := 〈Su, u〉 (see e.g. [22, Corollary 41.9]

and [21, Corollary 21.33]). Since g is twice Fréchet differentiable at 0 with g(0) = 0

and g′(0) = 0, we conclude from [23, Corollary 64.4] that all hypotheses of [23,

Theorem 64.A] are satisfied with F (u) = ‖u‖2 and a(u, v) := 〈u, v〉 (and G in

place of g). The latter implies that the maximum in (4.3) exists and is the largest

bifurcation point of (4.1) and the largest eigenvalue of (4.2). The last assertion of

Proposition 4.1 follows from the last statement of [14, Theorem 1 (c)]. �

The crucial hypothesis of Proposition 4.1 is of course that the operator g needs

to have a potential, which is not the case for the operators occurring in (2.10) and

(2.15) if we interpret the equation in an obvious manner on the product space H×H.

However, we can equivalently rewrite the equations in the space H in the required

form when we consider only d1 or only d2 as a bifurcation parameter (cf. [12] for this

idea).

Proposition 4.2. For fixed d2 > 0 the problem (2.10) is equivalent to the problem

u ∈ K, 〈d1u − S2,d2
u − N(u), ϕ − u〉 > 0 for all ϕ ∈ K,(4.4)

v = (d2I − b22A)−1b21Au,(4.5)

with the operator

S2,d2
:= b11Au + b12A(d2I − b22A)−1b21A.

P r o o f. Since d2/b22 < 0 by (1.4) and the operator A has only positive eigen-

values, the inverse in (4.5) exists. Hence, we can uniquely solve the last equation

of (2.10) for v, which is equivalent to (4.5). Inserting this value into the inequality

of (2.10), we obtain (4.4). �

Interchanging the roles of d1 and d2 in Proposition 4.2, we can similarly rewrite

the problem (2.15):

Proposition 4.3. For fixed d1 > 0 with d1 /∈ {xj : j = 1, 2, . . .} the prob-

lem (2.15) is equivalent to the problem

v ∈ K, 〈d2v − S1,d1
v − N(v), ϕ − v〉 > 0 for all ϕ ∈ K,(4.6)

u = (d1I − b11A)−1b12Av,(4.7)
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with the operator

S1,d1
:= b21A(d1I − b11A)−1b12A + b22A.

P r o o f. Since d1 6= xj = b11κ
−1
j , we have d1 6= b11λ for every eigenvalue λ

of A, and so the inverse in the last equation exists. Hence, we can solve the first

equation in (2.15) for u and obtain (4.7). Inserting this into the second equation, we

obtain (4.6). �

The same calculation shows the corresponding statements for (2.14):

Proposition 4.4. With the notation of Propositions 4.2, 4.3 the problem (2.14)

is equivalent to the equation S2,d2
u = d1u with (4.5), and also equivalent to S1,d1

u =

d2u with (4.7).

We recall the well-known variational characterization of the largest eigenvalue

of a symmetric compact operator, and the characterization of the corresponding

eigenvectors.

Proposition 4.5. Let S : H → H be linear, symmetric, and compact. Then the

largest eigenvalue of S is given by

(4.8) λ0 := max
u∈H\{0}

〈Su, u〉

‖u‖2
,

and this maximum is attained exactly in all the corresponding eigenvectors.

Corollary 4.1. If the number λ0 of Proposition 4.1 is simultaneously the largest

eigenvalue of the operator S, then there is u0 ∈ K \ {0} with Su0 = λ0u0.

P r o o f. If u0 is an eigenvector of (4.2) corresponding to λ0 then the maximum

in (4.3) is attained at u0 by Proposition 4.1. If λ0 is the largest eigenvalue of the

operator S then Proposition 4.5 implies that also the maximum in (4.8) is assumed

at u0 and Su0 = λ0u0. �

P r o o f of Theorem 3.1. In view of Proposition 4.2, we only have to study

bifurcation points of the problem (4.4) (with fixed d2 = d0
2). However, this problem

has exactly the form (4.1) with λ = d1, G(u) = S2,d2
u + N(u). Using operator

calculus, we can write S2,d0
2

= f2,d0
2
(A), where the function f2,d0

2
is defined on the

spectrum of A by

f2,d0
2
(λ) := b11λ +

b12b21λ
2

d0
2 − b22λ

=
d0
2b11λ − (detB)λ2

d0
2 − b22λ

.
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Note that G has a potential, since S := S2,d0
2

= f2,d0
2
(A) is symmetric and

since N has a potential GN by hypothesis. Moreover, (2.8) implies G(0) = 0 and

G′(0) = S.

Every u ∈ K can be uniquely written in the form u =
∞
∑

j=1

ξjej with ξj ∈ R. By

Parseval’s identity, we have (ξj) ∈ ℓ2, ‖u‖2 =
∞
∑

j=1

ξ2
j , and by the rules of calculus for

symmetric operators, we have

〈S2,d0
2
u, u〉 = 〈f2,d0

2
(A)u, u〉 =

〈 ∞
∑

j=1

f2,d0
2
(κ−1

j )ξjej ,

∞
∑

i=1

ξiei

〉

=

∞
∑

j=1

f2,d0
2
(κ−1

j )ξ2
j ,

which is exactly the series occurring in (3.1) and (3.2). In particular, (3.1) means

that 〈S2,d0
2
u0, u0〉 > 0 for u0 =

∞
∑

j=1

ξjej , and (3.2) means exactly (3.3). Hence, d
0
1 is

the largest bifurcation point of (2.10) with fixed d2 = d0
2 by Proposition 4.1.

Propositions 2.1 and 4.4 imply that the eigenvalues of S = S2,d0
2
are exactly

those d1 with (d1, d
0
2) ∈

⋃

j

Cj . Hence, putting dmax
1 = max

{

d1 ∈ R : (d1, d
0
2) ∈

⋃

j

C̃j

}

, we have d0
1 6 dmax

1 , i.e. (d0
1, d

0
2) ∈ DU ∪ CE , and the equality d0

1 = dmax
1 (i.e.

(d0
1, d

0
2) ∈ CE)) holds if and only if d

0
1 is the maximal eigenvalue of S. Corollary 4.1

and Proposition 4.2 used forN = 0 imply that if this is true then all solutions of (2.13)

(with (d1, d2) = (d0
1, d

0
2)) satisfy also (2.14), and the last assertions of Theorem 3.1

follow. �

P r o o f of Theorem 3.2. Using operator calculus, we can write S1,d0
1

= f1,d0
1
(A)

with the function f1,d0
1
defined on the spectrum of A by

f1,d0
1
(λ) :=

b12b21λ
2

d0
1 − b11λ

+ b22λ =
(det B)λ2 − d0

1b22λ

b11λ − d0
1

.

Then the proof is analogous to the proof of Theorem 3.1 by applying Proposition 4.1

to the problem (4.6), and observing that for u =
∞
∑

j=1

ξjej ∈ K the expression

〈S1,d0
1
u, u〉 =

∞
∑

j=1

f1,d0
1
(κ−1

j )ξ2
j

is exactly the series occurring in (3.6) and (3.7). By an analogous reasoning as in

the proof of Theorem 3.1, we obtain d0
2 6 d̃max

2 := max
{

d2 ∈ R : (d0
1, d2) ∈

⋃

j

C̃j

}

and that d̃max
2 is the maximal eigenvalue of S := S1,d0

1
. Since d0

2 > 0, we must have
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d̃max
2 > 0. The operator S1,d0

1
has only negative eigenvalues if d0

1 > x1 due to the

form of the hyperbolas Cn and Proposition 4.4, which in turn implies d0
1 < x1 and

d̃max
2 = max

{

d2 > 0: (d0
1, d2) ∈

⋃

j

Cj

}

= dmax
2 . The proof of the last assertion is

again similar to that of the last assertion of Theorem 3.1. �

5. Application to unilateral boundary value problems

Throughout this section, we consider a domain Ω as in the introduction, a func-

tion n satisfying (1.5) and (2.1), the Hilbert space H from (2.2) with the scalar

product (2.3) and the corresponding norm ‖ · ‖, and the operators defined by (2.4),

(2.5). The condition (1.4) will be always assumed. The problem (2.11), (2.14), or

(2.20) is a weak formulation of (1.2), (2.12), or (2.18), respectively, with boundary

conditions (1.7). Similarly, (2.16) is the weak formulation of the problem

(5.1)
d1∆u + b11u + b12v = 0

d2∆v + b21u + b22v + n(v) = 0
in Ω

with boundary conditions (1.7). The characteristic values and eigenvectors κj and ej

of the operator A are the eigenvalues and eigenfunctions of the problem (2.19), see

Section 2. Hence, Proposition 2.1 remains valid if we replace (2.14) by (2.12), (1.7),

and (2.20) by (2.18), (1.7). Speaking about solutions of boundary value problems

we have always in mind weak solutions.

We will apply our abstract results to concrete choices of the cone K correspond-

ing to different unilateral boundary conditions. As we have already mentioned in

Section 2, the conditions (2.6), (2.7), (2.8) are automatically fulfilled and need not

be repeated.

E x am p l e 5.1. Suppose that ΓD, ΓN , Γ1
U , Γ2

U are pairwise disjoint nonempty

parts of ∂Ω,

mesΓD > 0, mes(Γ1
U ∪ Γ2

U ) > 0, mes(∂Ω \ (ΓD ∪ ΓN ∪ Γ1
U ∪ Γ2

U )) = 0.

We consider the system (1.2) with unilateral boundary conditions

(5.2)











































u = v = 0 on ΓD,

∂u

∂ν
= 0 on ΓN ,

∂v

∂ν
= 0 on ∂Ω \ ΓD,

u > 0,
∂u

∂ν
> 0, u ·

∂u

∂ν
= 0 on Γ1

U ,

u 6 0,
∂u

∂ν
6 0, u ·

∂u

∂ν
= 0 on Γ2

U ,
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or the system (5.1) with unilateral boundary conditions

(5.3)











































u = v = 0 on ΓD,

∂u

∂ν
= 0 on ∂Ω \ ΓD,

∂v

∂ν
= 0 on ΓN ,

v > 0,
∂v

∂ν
> 0, v ·

∂v

∂ν
= 0 on Γ1

U ,

v 6 0,
∂v

∂ν
6 0, v ·

∂v

∂ν
= 0 on Γ2

U .

It is natural to introduce a weak solution of (1.2), (5.2) or (5.1), (5.3) as a solution

of (2.10) or (2.15), respectively, with the operators A, N from (2.4), (2.5) and with

the closed convex cone

K = {ϕ ∈ H : ϕ > 0 on Γ1
U , ϕ 6 0 on Γ2

U in the sense of traces}.

Hypotheses (3.5) or (3.8) mean in this example that

(5.4) there is a nontrivial u =

∞
∑

j=j0

ξjej with u > 0 on Γ1
U and u 6 0 on Γ2

U

or

(5.5) there is a nontrivial u =

j0
∑

j=1

ξjej with u > 0 on Γ1
U and u 6 0 on Γ2

U ,

respectively. Hypothesis (3.9) means that

(5.6) there is u ∈ H with 〈u, ej0〉 6= 0 such that u > 0 on Γ1
U , and u 6 0 on Γ2

U .

The assumption (3.4) is fulfilled if
∑

j∈I(d1,d2)

αjej changes sign in Γ1
U or in Γ2

U(5.7)

or is nonzero with constant sign on a set Γ

with mes(Γ ∩ Γi
U ) > 0 for i = 1, 2

for all nontrivial (αj)j∈I(d1,d2).

Hence, the following assertion follows by using Theorem 3.1, Corollary 3.1, and

Remark 3.1.

Theorem 5.1. Let d0
2 > yj0 where j0 is such that (5.4) holds. Then the prob-

lem (1.2), (5.2) has a bifurcation point with fixed d2 = d0
2. Moreover, if additionally

for the unique dmax
1 > 0 with (dmax

1 , d0
2) ∈ CE the hypothesis (5.7) is satisfied with

(d1, d2) = (dmax
1 , d0

2), then (d1, d
0
2) ∈ DU for every bifurcation point d1 of (1.2), (5.2)

with fixed d2 = d0
2.
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In general, it can happen that the largest bifurcating point in the situation of

the last theorem is d0
1 with (d0

1, d
0
2) ∈ CE but the corresponding bifurcating solu-

tions of (1.2), (5.2) are not solutions of (1.2), (1.7) because the bifurcating solutions

of (1.2), (1.7) (if they exist) need not satisfy u ∈ K (cf. the text after Theorem 3.1).

Theorem 3.2 implies in view of Remark 3.3 or 3.4 the following results.

Theorem 5.2. Let j0 be such that (5.5) holds. Then for any d0
1 ∈ (0, xj0) the

problem (5.1), (5.3) has a bifurcation point with fixed d1 = d0
1.

Theorem 5.3. Let j0 be such that (5.6) holds. Then there is εj0 > 0 such that

for all d0
1 ∈ [xj0 − εj0 , xj0) the problem (5.1), (5.3) has a bifurcation point with fixed

d1 = d0
1.

For j0 = 1, we get the following modification which needs a proof.

Theorem 5.4. If mesΓk
U > 0 for both k = 1, 2 then there is ε > 0 such that for all

d0
1 ∈ [x1 − ε, x1) the problem (5.1), (5.3) has a bifurcation point with fixed d1 = d0

1,

and (d0
1, d2) ∈ DS for every such bifurcation point d2.

P r o o f. Since the eigenfunction e1 is simple and does not change sign, we

have (5.7) for all (d1, d2) with I(d1, d2) = {1}. In particular, (3.4) holds if (d1, d2) =

(d0
1, d

max
2 ) with d0

1 ∈ (x1 − ε, x1) (ε small) and dmax
2 > 0 being the unique number

with (d0
1, d

max
2 ) ∈ C1. There is a function u ∈ H with 〈u, e1〉 6= 0, u > 0 on Γ1

U

and u 6 0 on Γ2
U . This u satisfies (5.6) with j0 = 1, and so Remark 3.4 implies

that the hypotheses of Theorem 3.1 and of Corollary 3.2 are satisfied. Our assertion

follows. �

R em a r k 5.1. If mesΓ1
U = 0 or if mes Γ2

U = 0 then, since e1 does not change

sign, the hypothesis (5.7) and thus (3.4) is not fulfilled for (d1, d2) ∈ C1.

R em a r k 5.2. All previously known results about the existence of a bifurcation

point of (5.1), (5.3) in DS have had the hypothesis that

there is u =
∑

j∈I(d1,d2)

ξjej with u > 0 on Γ1
U and u < 0 on Γ2

U

for certain (d1, d2) ∈
∞
⋃

j=1

Cj . Theorem 5.4 applies in particular if this hypothesis is

violated for all (d1, d2) ∈
∞
⋃

j=1

Cj .
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E x am p l e 5.2. Let I+ and I− be two finite sets of indices, at least one of them

nonempty. Let ΓD, ΓN , and Γi (i ∈ I+ ∪ I−) be pairwise disjoint parts of ∂Ω such

that

mesΓD > 0, mes Γi > 0, mes
(

∂Ω \
(

ΓD ∪ ΓN ∪
⋃

i∈I+∪I−

Γi

))

= 0.

We consider the system (1.2) with unilateral boundary conditions

(5.8)











































u = v = 0 on ΓD,

∂u

∂ν
= 0 on ΓN ,

∂v

∂ν
= 0 on ∂Ω \ ΓD,

∫

Γi

u dx > 0,
∂u

∂ν
= const > 0,

∫

Γi

u dx
∂u

∂ν
= 0 on Γi, i ∈ I+,

∫

Γi

u dx 6 0,
∂u

∂ν
= const 6 0,

∫

Γi

u dx
∂u

∂ν
= 0 on Γi, i ∈ I−,

or the system (5.1) with unilateral boundary conditions

(5.9)











































u = v = 0 on ΓD,

∂u

∂ν
= 0 on ∂Ω \ ΓD,

∂v

∂ν
= 0 on ΓN ,

∫

Γi

v dx > 0,
∂v

∂ν
= const > 0,

∫

Γi

v dx
∂v

∂ν
= 0 on Γi, i ∈ I+,

∫

Γi

v dx 6 0,
∂v

∂ν
= const 6 0,

∫

Γi

v dx
∂v

∂ν
= 0 on Γi, i ∈ I−.

It is natural to introduce a weak solution of (1.2), (5.8) or (5.1), (5.9) as a solution

of (2.10) or (2.15), respectively, with the operators A, N from (2.4), (2.5), and with

the closed convex cone

K =

{

ϕ ∈ H :

∫

Γi

ϕdx > 0 for all i ∈ I+,

∫

Γi

ϕdx 6 0 for all i ∈ I−

}

.

More precisely, u, v is a solution of (2.10) if and only if u, v ∈ H, ∆u, ∆v ∈ L2(Ω),

the equation (1.2) holds a.e. in Ω and (5.8) is fulfilled; an analogous statement holds

for (2.15). See [7, Observation 5.2] for details.

Hypotheses (3.5) or (3.8) mean in this example that

there is a nontrivial u =

∞
∑

j=j0

ξjej such that

∞
∑

j=j0

ξj

∫

Γi

ej dx is

nonnegative for all i ∈ I+ and nonpositive for all i ∈ I−,
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or

there is a nontrivial u =

j0
∑

j=1

ξjej such that

j0
∑

j=1

ξj

∫

Γi

ej dx is

nonnegative for all i ∈ I+ and nonpositive for all i ∈ I−,

respectively. Hypothesis (3.9) means

there is u ∈ H with 〈u, ej0〉 6= 0 such that

∫

Γi

u dx is

nonnegative for all i ∈ I+ and nonpositive for all i ∈ I−.

The condition (3.4) is fulfilled if

(5.10)

for any nontrivial (αj)j∈I(d1,d2) there are

i1, i2 lying both in I+ or both in I− such that

sgn
∑

j∈I(d1,d2)

αj

∫

Γi1

ej dx = − sgn
∑

j∈I(d1,d2)

αj

∫

Γi2

ej dx

or there are i1 ∈ I+, i2 ∈ I− such that

sgn
∑

j∈I(d1,d2)

αj

∫

Γi1

ej dx = sgn
∑

j∈I(d1,d2)

αj

∫

Γi2

ej dx.

If I+ 6= ∅ 6= I− then (5.10) automatically holds for (d1, d2) ∈ C1 \
∞
⋃

j=2

Cj due to

the positivity and simplicity of the first eigenfunction e1 of (2.19).

Summarizing these facts to obtain assertions concerning all situations mentioned

on the basis of the abstract results of Section 3 is left to the reader.

E x am p l e 5.3. Analogously to Example 5.1 or 5.2, we can consider also a reg-

ulation in the interior of the domain Ω described by the closed convex cone

K = {ϕ ∈ H : ϕ > 0 on G1
U , ϕ 6 0 on G2

U

or

K =

{

ϕ ∈ H :

∫

Gi

ϕdx > 0 for all i ∈ I+,

∫

Gi

ϕdx 6 0 for all i ∈ I−

}

,

where G1
U , G

2
U or Gi (i ∈ I+ ∪ Ii) are pairwise disjoint subsets of Ω. It is straight-

forward to change the respective conditions (5.4)–(5.10) to these situations.
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R em a r k 5.3. Let us suppose that the system (1.2) describes a coexistence of

two populations with densities u, v. Let us consider a given nontrivial solution

(u, v) of (1.2), (5.8) corresponding to some (d1, d2). Hence, (u, v) is a nontrivial

equilibrium of the original evolution system (1.6) with (5.8). Then the integral
∫

Γj
u dx determines the amount of the species u which can be removed (e.g. harvested)

in the region Γj to keep the equilibrium. It is assumed that the amount harvested is

the same at all places of Γj. Analogously for the integral
∫

Gj
u dx from Example 5.3.

The boundary conditions from Example 5.1 can describe unilateral membranes, see

e.g. [1].

R em a r k 5.4. Example 5.2 and the second case of Example 5.3 fit into the

theory developed in [8], [19]. It follows that if the critical point (d1, d2) obtained

from Theorem 3.1 or 3.2 used for the particular case n = 0 is such that the nontrivial

solution of the problem (2.12), (5.8) or (2.12), (5.9) is unique up to a positive multiple

and satisfies certain activity conditions then a smooth branch of nontrivial solutions

of the problem

(5.11)
σ1(s)∆u + b11u + b12v + n1(u, v) = 0,

σ2(s)∆v + b21u + b22v + n2(u, v) = 0

with the boundary conditions (5.8) or (5.9), respectively, bifurcates at a point sB

with (σ1(sB), σ2(sB)) = (d1, d2), where σ is a smooth curve in R2
+ containing (d1, d2).

The bifurcation direction for such situations is described in [8]. Cf. also [13] where

an application of the result [19] is given to (5.11), (5.9).
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