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THE GROWTH OF DIRICHLET SERIES

Zhendong Gu, Daochun Sun, Guangzhou
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Abstract. We define Knopp-Kojima maximum modulus and the Knopp-Kojima maxi-
mum term of Dirichlet series on the right half plane by the method of Knopp-Kojima, and
discuss the relation between them. Then we discuss the relation between the Knopp-Kojima
coefficients of Dirichlet series and its Knopp-Kojima order defined by Knopp-Kojima maxi-
mum modulus. Finally, using the above results, we obtain a relation between the coefficients
of the Dirichlet series and its Ritt order. This improves one of Yu Jia-Rong’s results, pub-
lished in Acta Mathematica Sinica 21 (1978), 97–118. We also give two examples to show
that the condition under which the main result holds can not be weakened.
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1. Introduction and main result

Consider the Dirichlet series

f(s) =

+∞
∑

n=0

ane−λns,

where s = σ+it denotes the complex variable, {an} is a sequence of complex numbers,

and 0 = λ0 < λ1 < λ2 < . . . < λn ↑ +∞. Following Bohr [2], we define the quantities

σc = inf
{

σ ∈ R :
∑

ane−λnσ converges.
}

,

σa = inf
{

σ ∈ R :
∑

|an|e
−λnσ converges.

}

,

σu = inf
{

σ ∈ R :
∑

ane−λn(σ+it) converges uniformly on R.
}

.
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When σu = −∞, f(s) is an entire function. In this case, S.Mandelbrojt [4],

M.Blambert [1], Yu Chia-Yung [14] have studied the relation between the growth of

f(s) and the coefficients. J. Ritt [6], S. Izumi [5], and K. Sugimura [7] have given for-

mulas determining the order and the type of f(s) in terms of an under an additional

condition imposed upon {λn}. C. Tanaka [8] improved these formulas.

When σu = 0, by the method of J.Ritt [6], Yu Chia-Yung [15], [13] defined the

order and type of f(s) under the conditions

lim
n→+∞

ln |an|

λn
= 0 and lim

n→+∞

n

λn
< +∞,

and obtained some results between the growth of f(s) and the coefficients, which

extends some of G.Valiron’s results [9]. In this paper, we improve one of his results.

Put

∆ = lim
k→+∞

ln+ ln(pk + 1)

ln k
, σ0 = lim

n→+∞

ln |an|

λn
,

where pk is given by [k, k + 1) ∩ {λn} = {λnk
, λnk+1, . . . , λnk+pk

}, k ∈ N. Moreover,

let

M(σ) = sup{|f(σ + it)| : t ∈ R}.

Our main result is the following theorem.

Theorem 1. Consider the Dirichlet series f(s) with frequencies {λn}, 0 = λ0 <

λ1 < λ2 < . . . < λn ↑ +∞. If σ0 = 0 and ∆ = 0, then

lim
σ→0+

ln+ ln+ M(σ)

− lnσ
= ̺ ⇔ lim

n→+∞

ln+ ln+ |an|

lnλn
=







̺

̺ + 1
, ̺ < +∞;

1, ̺ = +∞.

By Theorem 1, we deduce Yu Chia-Yung’s result [15], [13] as Corollary 1. Then

we give Example 1 to show that the condition ∆ = 0 is much less restrictive than the

condition lim
n→+∞

n/λn < +∞, which implies that the Dirichlet series acts more or

less like a power series. More precisely, we give Example 2 to show that the condition

∆ = 0 cannot be replaced by ∆ < +∞.
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2. Lemmas

Throughout this section, f(s) is a Dirichlet series with frequencies {λn} as in

the introduction. To give our lemmas, we define some symbols by the method of

Knopp-Kojima [3]. For each k ∈ N, when

(1) [k, k + 1) ∩ {λn} = {λnk
, λnk+1, . . . , λnk+pk

} 6= ∅,

put

Ak = max

{
∣

∣

∣

∣

p
∑

j=0

ank+j

∣

∣

∣

∣

: 0 6 p 6 pk

}

; A∗
k =

pk
∑

j=0

|ank+j |;

Ak = sup
06p6pk,t∈R

∣

∣

∣

∣

p
∑

j=0

ank+je
−itλnk+j

∣

∣

∣

∣

;

when [k, k+1)∩{λn} = ∅, put lnAk = lnA∗
k = lnAk = −∞. Then we have formulas

[3], [10] for the abscissas σc, σu, σa in terms of Ak, Ak, A∗
k,

σc = lim
k→+∞

lnAk

k
; σu = lim

k→+∞

lnAk

k
; σa = lim

k→+∞

lnA∗
k

k
.

When σu < +∞, for any σ > σu put

Mu(σ) = sup

{∣

∣

∣

∣

n
∑

j=0

aje
−λj(σ+it)

∣

∣

∣

∣

: n ∈ N, t ∈ R

}

;

m(σ) = max{Ake−kσ : k ∈ N};

̺u = lim
σ→0+

ln+ ln+ Mu(σ)

− lnσ
; ̺µ = lim

σ→0+

ln+ ln+ m(σ)

− lnσ
.

Lemma 1. Suppose σu < +∞, then

(I) m(σ) 6 4e|σ|Mu(σ) (σ > σu);

(II) if σu = 0, ε > 0, then Mu(σ) 6 m((1 − ε)σ)/(1 − e−εσ) (σ > 0);

(III) if σu = 0, then ̺u = ̺µ.

P r o o f. Take p ∈ N such that nk + p < nk+1, where nk is defined by (1). Using

Abel’s transformation, we obtain

nk+p
∑

j=nk

aje
−itλj =

nk+p
∑

j=nk

aje
−(σ+it)λj eσλj

=

nk+p−1
∑

j=nk

j
∑

q=nk

aqe
−(σ+it)λq (eσλj − eσλj+1 ) +

nk+p
∑

q=nk

aqe
−(σ+it)λq eσλnk+p .
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Noting that
∣

∣

∣

∣

j
∑

q=nk

aqe
−(σ+it)λq

∣

∣

∣

∣

6 2Mu(σ),

we conclude that

Ak 6 2Mu(σ)|eσλnk − eσλnk+p | + 2eσλnk+pMu(σ) 6 4Mu(σ)e(k+sgnσ)σ.

This gives (I).

Now we prove (II). Suppose nk + p < nk+1. Using Abel’s transformation, we

arrive at

nk+p
∑

j=nk

aje
−(σ+it)λj

=

nk+p−1
∑

j=nk

j
∑

q=nk

aqe
−itλq(e−σλj − e−σλj+1 ) +

nk+p
∑

q=nk

aqe
−itλqe−σλnk+p .

So, when σ > 0,

∣

∣

∣

∣

nk+p
∑

j=nk

aje
−(σ+it)λj

∣

∣

∣

∣

6 Ak

nk+p−1
∑

j=nk

(e−σλj − e−σλj+1 ) + Ake−σλnk+p

= Ake−σλnk 6 Ake−σk.

Therefore,

∣

∣

∣

∣

nk+p
∑

j=0

aje
−(σ+it)λj

∣

∣

∣

∣

6

k
∑

j=0

Aje
−σj =

k
∑

j=0

Aje
−(1−ε)σje−jεσ

6 m((1 − ε)σ)
k

∑

j=0

e−jεσ 6
m((1 − ε)σ)

1 − e−εσ
.

This gives (II).

Since ln+ ln+ m(σ) 6 ln+ ln+ 1
4e−σm(σ) + ln+ ln+ 4eσ + ln 2, we have

lim
σ→0+

ln+ ln+ m(σ)

− lnσ
6 lim

σ→0+

ln+ ln+ 1
4e−σm(σ)

− lnσ
.

On the other hand,

lim
σ→0+

ln+ ln+ m((1 − ε)σ)

1 − e−εσ

− lnσ
6 lim

σ→0+

ln+ ln+ m((1 − ε)σ)

− lnσ
+ lim

σ→0+

ln+ ln+(1 − e−εσ)−1

− lnσ

= lim
σ→0+

ln+ ln+ m(σ)

− lnσ
.

Thus (III) is proved. �
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Lemma 2. If σu = 0, then

lim
k→+∞

ln+ ln+ Mu(σ)

− lnσ
= ̺u ⇔ lim

k→+∞

ln+ ln+ Ak

ln k
=







̺u

̺u + 1
, ̺u < +∞;

1, ̺u = +∞.

P r o o f. Consider the case ̺u < +∞. We prove the necessity of the right-hand

side condition. By Lemma 1(III), for all ε > 0, when σ > 0 is sufficiently small,

m(σ) < exp
{( 1

σ

)̺u+ε}

.

Since

min
{

kσ +
( 1

σ

)̺u+ε

: σ > 0
}

= (̺u + ε + 1)
( k

̺u + ε

)(̺u+ε)/(̺u+ε+1)

,

it follows that for sufficiently large k ∈ N,

Ak 6 exp
{

(̺u + ε + 1)
( k

̺u + ε

)(̺u+ε)/(̺u+ε+1)}

.

So, as ε → 0,

lim
k→+∞

ln+ ln+ Ak

ln k
6

̺u

̺u + 1
.

As for the converse, suppose that lim
k→+∞

ln+ ln+ Ak/ lnk < ̺u/(̺u + 1). There exist

0 < ̺′u < ̺u such that for any k ∈ N,

Ak < exp(k̺′

u/(̺′

u+1)).

Since

max{(k̺′

u/(̺′

u+1) − kσ) : k > 0} =
1

̺′u + 1

( ̺′u
̺′u + 1

1

σ

)̺′

u

,

we have

Ake−kσ < exp
{ 1

̺′u + 1

( ̺′u
̺′u + 1

1

σ

)̺′

u
}

.

Thus

m(σ) 6 exp
{ 1

̺′u + 1

( ̺′u
̺′u + 1

1

σ

)̺′

u
}

.

Hence, by Lemma 1(III),

lim
k→+∞

ln+ ln+ Mu(σ)

− lnσ
6 ̺′u < ̺u,

33



which contradicts the left-hand side condition of the theorem. Thus we have proved

the necessity of the right-hand side condition. The sufficiency of the right-hand side

condition follows easily in a similar manner and is left to the reader.

Consider the case ̺u = +∞. We then have

lim
k→+∞

ln+ ln+ Ak

ln k
= 1.

Otherwise, assume that lim
k→+∞

ln+ ln+ Ak/ ln k < 1. Then there exists ̺′′u < +∞ such

that

lim
k→+∞

ln+ ln+ Ak

ln k
=

̺′′u
̺′′u + 1

.

Clearly, by the case ̺u < +∞, this yields a contradiction. �

Lemma 3. If ∆ = 0, then σc = σu = σa = σ0.

P r o o f. Since ∆ = 0, for any ε > 0 there exists K ∈ N such that for any k > K,

pk 6 ekε

− 1.

For any sufficiently large n satisfying λn > K + 1,

n < nK+1 +

[λn]
∑

i=K+1

pi < nK+1 +

[λn]
∑

i=K+1

(eiε

− 1) 6 nK+1 + [λn](e[λn]ε − 1),

where [λn] denotes the integer part of λn. Then

lim
n→+∞

lnn

λn
6 lim

n→+∞

ln(nK+1 + [λn](e[λn]ε − 1))

[λn]

6 lim
n→+∞

lnnK+1

[λn]
+ lim

n→+∞

ln[λn]

[λn]
+ lim

n→+∞

[λn]ε

[λn]
= 0.

By G.Valiron’s formula [10], [11]

lim
n→+∞

ln |an|

λn
6 σc 6 σu 6 σa 6 lim

n→+∞

ln |an|

λn
+ lim

n→+∞

lnn

λn
.

The conclusion now follows. �
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3. The proof of theorem 1

P r o o f. Since ∆ = 0, σ0 = 0, by Lemma 3 we have σc = σu = σa = 0.

Consider the case ̺ < +∞. We first prove the necessity of the right-hand side

condition. Since Mu(σ) > M(σ), we have ̺u > ̺.

For any ε > 0, when σ(> 0) is sufficiently small,

M(σ) < exp{σ−(̺+ε)}.

Take account of Hadamard’s theorem [12], ane−λnσ 6 M(σ) and

min{σ−(̺+ε) + λnσ : σ > 0} = (̺ + ε + 1)
( λn

̺ + ε

)(̺+ε)/(̺+ε+1)

.

Therefore, for sufficiently large n ∈ N,

|an| < exp
{

(̺ + ε + 1)
( λn

̺ + ε

)(̺+ε)/(̺+ε+1)}

.

So, as ε → 0,

lim
n→+∞

ln+ ln+ |an|

lnλn
6

̺

̺ + 1
.

Suppose lim
n→+∞

ln+ ln+ |an|/ lnλn < ̺/(̺ + 1). Then there exists 0 6 ̺′ < ̺ such

that for sufficiently large n ∈ N ,

|an| < exp{λ̺′/(̺′+1)
n }.

Then for sufficiently large k ∈ N,

Ak <

nk+pk
∑

j=nk

exp{λ
̺′/(̺′+1)
j } < exp{(k + 1)̺′/(̺′+1) + ln(pk + 1)}.

Since ∆ = 0, we conclude that

lim
k→+∞

ln+ ln+ Ak

ln k
6

̺′

̺′ + 1
<

̺

̺ + 1
.

By Lemma 2, ̺u < ̺, which contradicts ̺u > ̺. Hence,

lim
n→+∞

ln+ ln+ |an|

lnλn
=

̺

̺ + 1
.
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Second, we prove the sufficiency of the right-hand side condition. For any ε > 0,

when n is sufficiently large,

|an| < exp{λ(̺+ε)/(̺+ε+1)
n }.

Then for sufficiently large k ∈ N,

Ak <

nk+pk
∑

j=nk

exp{λ
(̺+ε)/(̺+ε+1)
j } < exp{(k + 1)(̺+ε)/(̺+ε+1) + ln(pk + 1)}.

Since ∆ = 0, then as ε → 0,

lim
k→+∞

ln+ ln+ Ak

ln k
6

̺

̺ + 1
.

By Lemma 2, ̺u 6 ̺. Since M(σ) 6 Mu(σ), we have

lim
σ→0+

ln+ ln+ M(σ)

− lnσ
6 ̺.

If the equality does not hold, then by the necessity of the right-hand side condition,

lim
n→+∞

ln+ ln+ |an|

lnλn
<

̺

̺ + 1
,

which contradicts the right-hand side condition. Thus the sufficiency of the right-

hand side condition is proved. Therefore the case ̺ < +∞ is proved.

By the case ̺ < +∞, it is easy to prove the case ̺ = +∞. Thus Theorem 1 is

proved. �

4. Corollary and examples

By Theorem 1, we can deduce Yu Jia-Rong’s result [15], Theorem 2.2.

Corollary 1 [15]. Let f(s) be a Dirichlet series with frequencies {λn} as in the

introduction. If σ0 = 0 and lim
n→+∞

n/λn = D < +∞, then

(2) lim
σ→0+

ln+ ln+ M(σ)

− lnσ
= ̺ ⇔ lim

n→+∞

ln+ ln+ |an|

lnλn
=







̺

̺ + 1
, ̺ < +∞;

1, ̺ = +∞.
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P r o o f. Since lim
n→+∞

n/λn = D < +∞, hence for any ε > 0 there exists N such

that for any n > N ,

p[λn]−1 6 n < λn(D + ε) < ([λn] + 1)(D + ε).

Therefore,

∆ = lim
n→+∞

ln+ ln(p[λn]−1 + 1)

ln([λn] − 1)
6 lim

n→+∞

ln+ ln(([λn] + 1)(D + ε) + 1)

ln([λn] − 1)
= 0.

Hence ∆ = 0. Since σ0 = 0, (2) holds by Theorem 1. �

Now we give two examples. Example 1 shows that ∆ = 0 is weaker than

lim
n→+∞

n/λn < +∞. Example 2 shows that ∆ = 0 cannot be weakened to ∆ < +∞.

Example 1. Consider a Dirichlet series f(s) with frequencies {λn} as in the

introduction. Take an = 1, n = 0, 1, 2, . . .. When 1
2k(k + 1) < n 6 1

2 (k + 1)(k + 2),

take λ 1
2
k(k+1)+1+p = k + p/(k + 1), where 0 6 p < k + 1. It is evident that σ0 = 0,

∆ = 0 (but lim
n→+∞

n/λn = +∞). Since lim
n→+∞

ln+ ln+ |an|/ lnλn = 0, by Theorem 1

we infer ̺ = 0.

Example 2. Consider a Dirichlet series f(s) with frequencies {λn} as in the

introduction. Take an = (−1)n, n = 0, 1, 2, . . .. When 2k 6 n < 2k+1, take λn =

λ2k+p = k + p/2k, where 0 6 p < 2k. It is easily seen from the formulas for the

abscissas σc, σu, σa in terms of Ak, Ak, A∗
k in Section 2 that σc = 0 and σa = ln 2.

Since

Ak >

∣

∣

∣

∣

2k−1
∑

j=0

(−1)je−i(2kkπ+jπ)

∣

∣

∣

∣

=

∣

∣

∣

∣

2k−1
∑

j=0

(−1)je−ijπ

∣

∣

∣

∣

=

∣

∣

∣

∣

2k−1
∑

j=0

(−1)j(cos jπ + i sin jπ)

∣

∣

∣

∣

= 2k,

hence

σu = lim
k→+∞

lnAk

k
= ln 2.

We can see from this example that σu = σa = ln 2 and σc = 0, while ∆ = 1 and

σ0 = 0. The conclusion of Theorem 1 does not hold for this Dirichlet series, as M(σ)

is infinite for σ < ln 2, while ln+ |an| ≡ 0.
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