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Abstract. Let R be a commutative Noetherian ring, a an ideal of R, M an R-module
and t a non-negative integer. In this paper we show that the class of minimax modules
includes the class of AF modules. The main result is that if the R-module ExttR(R/a, M)
is finite (finitely generated), Hi

a(M) is a-cofinite for all i < t and Ht
a(M) is minimax then

Ht
a(M) is a-cofinite. As a consequence we show that if M and N are finite R-modules and

Hi
a(N) is minimax for all i < t then the set of associated prime ideals of the generalized
local cohomology module Ht

a(M, N) is finite.
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1. Introduction

Throughout this note we assume that R is a commutative Noetherian ring, a an

ideal of R, M is an R-module, and t is a non-negative integer. For each i > 0, the

i-th local cohomology module of M with respect to a is defined as

Hi
a
(M) = lim

−→
n

ExtiR(R/a
n, M).

For the basic properties of local cohomology the reader can refer to [2] of Brod-

mann and Sharp. An important problem in commutative algebra is to determine

when the set of the associated primes of the i-th local cohomology module, Hi
a
(M)

with respect to a, is finite.

It is well known that the local cohomology modules Hi
a
(M) are not always finitely

generated. Taking this fact, Hartshorne [4] conjectured the following: If R is
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a Noetherian ring, then for any ideal a of R and any finitely generated R-module

M , the module Exti
R(R/a, Hj

a(M)) is finitely generated for all i, j > 0.

In the same paper Hartshorne defined that an R-moduleM is a-cofinite whenever

SuppR(M) ⊆ V (a) and ExtiR(R/a, M) is finitely generated for all i > 0. Hartshorne

also gave a counterexample to his conjecture, which is essentially as follows. Let k be

a field, R = k[[X, Y, Z, U ]], and a = (X, U)R. If we take M = R/(XY − ZU), then

H2
a
(M) is not a-cofinite. Nonetheless, by using derived category theory, he proved

that if R is a compelet regular local ring, then Hi
a
(M) is a-cofinite in two cases:

(i) a is a non-zero principal ideal.

(ii) a is a prime ideal with dim(R/a) = 1.

In particular, using spectral sequence Mafi [7] showed that, if for a finite R-module

M and an integer t, the local cohomology module Ht
a
(M) is Artinian and Hi

a
(M)

is a-cofinite for all i < t, then Ht
a
(M) is a-cofinite. In this paper, in Theorem 4,

we obtain this result with the minimax condition on Ht
a
(M) instead of the Artinian

condition without using the spectral sequence theory. At the end, in Theorem 7, we

show that if M and N are finite R-modules and Hi
a
(N) is minimax for all i < t, then

the set of associated prime ideals of the generalized local cohomology Ht
a
(M, N) is

finite.

2. The results

In [14] H. Zöschinger introduced the interesting class of minimax modules. He also

has given many equivalent conditions for a module to be minimax in [14] and [15].

Definition 1. An R-module N is said to be a minimax module, if there is a finite

submodule L of N such that N/L is Artinian.

Example 1. It was shown by T. Zink [13] and E. Enochs [3] that a module over

a complete local ring is minimax if and only if it is Matlis reflexive.

S. Yassemi [12] introduced the following definition of the class of AF modules.

Definition 2. The R-module N is said to be an AF module, if there is an

Artinian submodule L of N such that N/L is a finite.

Example 2. All finite modules and all Artinian modules are AF modules.

In the following Lemma we prove that every AF module is a minimax module.
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Lemma 3. Every AF module is minimax.

P r o o f. Let N be an AF module, then there exists an Artinian submodule L

of N such that N/L is finite. Since N/L is finite, there exists a finite submodule K

of N such that N = K + L. Since N/K ∼= L/K ∩ L and L/K ∩ L is Artinian, so

N/K is Artinian as required. �

Example 3. By Lemma 3, the class of minimax modules includes the class of

AF modules.

Now we prove the main theorem.

Theorem 4. Let a be an ideal of a Noetherian ring R. Let t be a non-negative

integer, andM anR-module such that Extt
R(R/a, M) is a finite R-module. If Hi

a
(M)

is a-cofinite for all i < t and Ht
a
(M) is minimax, then Ht

a
(M) is a-cofinite.

P r o o f. In view of [9, Proposition 4.3], it is enough to show that HomR(R/a, Ht
a

(M)) is finite. To prove this, we use induction on t. If t = 0, since HomR(R/a, Γa

(M)) is equal to the finite R-module HomR(R/a, M) the assertion is obvious. Now

let t > 0 and suppose the result has been proved for smaller values of t. Since Γa(M)

is a-cofinite, Exti
R(R/a, Γa(M)) is finite for all i. Now from the long exact sequence

induced by the exact sequence

0 → Γa(M) → M → M/Γa(M) → 0,

we can get that ExttR(R/a, M/Γa(M)) is finite. Since Hi
a
(M) ∼= Hi

a
(M/Γa(M)) for

all i > 0, we can assume thatM is an a-torsion-free R-module. Let E be an injective

envelope of M and put L := E/M . Then Γa(E) = 0 and so HomR(R/a, E) = 0.

Now, by using the exact sequence

0 → M → E → L → 0,

we get that Exti
R(R/a, L) ∼= Exti+1

R (R/a, M) and Hi
a
(L) ∼= Hi+1

a
(M) for all i > 0.

Consequently, by the inductive hypothesis HomR(R/a, Ht−1
a

(L)) is finite and hence

HomR(R/a, Ht
a
(M)) is finite too. �

Melkersson in [10, Example 1.3] showed that in a local ring (R, m) a module M is

m-cofinite if and only if it is Artinian. So we conclude the following result.

Corollary 5. Let (R, m) be a local ring. Assume that the assumptions of Theo-

rem 4 hold. Then Ht
a
(M) is an Artinian R-module.

P r o o f. By [12, Theorem 1.2.v], Ht
a
(M) is m-cofinite, so that Ht

a
(M) is an

Artinian R-module. �
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Corollary 6. Let the situation be as in Theorem 4. Moreover, assume that

Hi
a
(M) is minimax for all i > t. Then Hi

a
(M) is a-cofinite for all i. In this case if R

is local with maximal ideal m then Hi
a
(M) is an Artinian R-module for all i.

P r o o f. The claim follows by Theorem 4 and the second part follows by Corol-

lary 5. �

Now, we are ready to prove our final result about finiteness of the set of associated

prime ideals of generalized local cohomology modules. Let M and N be R-modules,

and let a be an ideal of R. Then the generalized local cohomology module Hi
a
(M, N)

which was introduced by Herzog in [5], is defined as

Hi
a
(M, N) = lim

−→
n

Exti
R(M/a

nM, N).

If M = R, then Hi
a
(M, N) is equal to Hi

a
(N), the usual local cohomology module.

In [8] Mafi shows that if a is an ideal of R, and M is a finite R-module, then for

every R-module N and any positive integer t we have

AssR(Ht
a
(M, N)) ⊆

t⋃

i=0

AssR(Exti
R(M, Ht−i

a
(N))).

By virtue of this result we prove the following theorem.

Theorem 7. Let a be an ideal of a Noetherian ring R, t a non-negative integer,

and M and N finite R-modules. If Hi
a
(N) is a minimax R-module for all i < t and

supp(M) ⊆ V (a), then the set AssR(Ht
a
(M, N)) is finite.

In order to prove Theorem 7, we need to generalize [6, Lemma 4.2] as follows.

Lemma 8. Let a be an ideal of R and N an a-cofinite R-module. Then for any

finite R-module M with supp(M) ⊆ V (a) the R-module ExtiR(M, N) is finite for

all i.

P r o o f. Since supp(M) ⊆ V (a), according to Gruson’s Theorem [11, Theo-

rem 4.1], there exists a chain of submodules of M ,

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mk = M
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such that the factors Mj/Mj−1 are homomorphic images of a direct sum of finitely

many R/a (1 6 j 6 k). Now consider the exact sequences

0 → K → (R/a)n → M1 → 0

0 → M1 → M2 → M2/M1 → 0

...

0 → Mk−1 → Mk → Mk/Mk−1 → 0

for some positive integer n. From the long exact sequence

. . . → Exti−1

R (Mj−1, N) → Exti
R(Mj/Mj−1, N) → Exti

R(Mj , N)

→ Exti
R(Mj−1, N) → . . .

and by an easy induction on k, the assertion follows. So, it suffices to prove the case

k = 1. From the exact sequence

0 → K → (R/a)n → M → 0

where n ∈ N and K is a finite R-module, and the induced long exact sequence, by

using induction on i we show that Exti
R(M, N) is finite for all i. For i = 0, we have

an exact sequence

0 → HomR(M, N) → HomR((R/a)n, N) → HomR(K, N) → . . .

Since HomR((R/a)n, N) ∼=
n⊕

HomR(R/a, N) and N is a-cofinite, HomR((R/a)n, N)

is finite and then HomR(M, N) is finite. Now let i > 0. For any R-module M with

supp(M) ⊆ V (a) we have that the R-module Exti−1

R (M, N) is finite, in particular

for K. Then from the long exact sequence

. . . → Exti−1

R (K, N) → Exti
R(M, N) → ExtiR((R/a)n, N) → . . .

we can conclude that ExtiR(M, N) is finite. �

Now we can prove Theorem 7 by using Lemma 8.

P r o o f of Theorem 7. It is enough to show that Hi
a
(N) is a-cofinite for all i < t

and HomR(M, Ht
a
(N)) is finite. To show that Hi

a
(N) is a-cofinite, we use induction

on i. The case i = 0 is obvious as H0
a
(N) is finite. So, let i > 0 and suppose the

result has been proved for smaller values of i. By the inductive hypothesis, Hj
a(N) is

a-cofinite for j = 0, 1, . . . , i−1 and since Hj
a(N) is minimax, hence by [1, Lemma 2.2]

we can conclude that HomR(R/a, Hi
a
(N)) is finite. Therefore by [9, Proposition 4.3],

Hi
a
(N) is a-cofinite. If we use again [1, Lemma 2.2] then HomR(R/a, Ht

a
(N)) is finite.

So by Lemma 8, Exti
R(M, Ht−i

a
(N)) is finite and so AssR(Hi

a
(M, N)) is finite. �
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