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Abstract. The so-called “invariance under twisting” for twisted tensor products of al-
gebras is a result stating that, if we start with a twisted tensor product, under certain
circumstances we can “deform” the twisting map and we obtain a new twisted tensor prod-
uct, isomorphic to the given one. It was proved before that a number of independent and
previously unrelated results from Hopf algebra theory are particular cases of this theo-
rem. In this article we show that some more results from literature are particular cases
of invariance under twisting, for instance a result of Beattie-Chen-Zhang that implies the
Blattner-Montgomery duality theorem.
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1. Introduction

If A and B are (associative unital) algebras and R : B⊗A → A⊗B is a linear map

satisfying certain axioms (such an R is called a twisting map) then A ⊗ B becomes

an associative unital algebra with a multiplication defined in terms of R and the

multiplications of A and B; this algebra structure on A ⊗ B is denoted by A ⊗R B

and called the twisted tensor product of A and B afforded by R (cf. [2], [11]).

A very general result about twisted tensor products of algebras was obtained in

[8]. It states that, if A ⊗R B is a twisted tensor product of algebras and on the

vector space A we have one more algebra structure denoted by A′ and we have

also two linear maps ̺, λ : A → A ⊗ B satisfying a set of conditions, then one can

define a new map R′ : B ⊗ A′ → A′ ⊗ B by a certain formula, this map turns out

to be a twisting map and we have an algebra isomorphism A′ ⊗R′ B ≃ A ⊗R B.

Research partially supported by the CNCSIS project “Hopf algebras, cyclic homology
and monoidal categories”, contract nr. 560/2009, CNCSIS code ID 69.
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This result was directly inspired by the invariance under twisting of the Hopf smash

product (and thus it was called invariance under twisting for twisted tensor products

of algebras), but it also contains as particular cases a number of independent and

previously unrelated results from Hopf algebra theory, for instance Majid’s theorem

stating that the Drinfeld double of a quasitriangular Hopf algebra is isomorphic to an

ordinary smash product (cf. [9]), a result of Fiore-Steinacker-Wess from [5] concerning

a situation where a braided tensor product can be “unbraided”, and also a result of

Fiore from [4] concerning a situation where a smash product can be “decoupled”.

The aim of this paper is to show that some more results from literature can be

regarded as particular cases of invariance under twisting. Among them is a re-

sult from [1] concerning twistings of comodule algebras (which implies the Blattner-

Montgomery duality theorem) and a generalization (obtained in [3]) of Majid’s theo-

rem mentioned before, in which quasitriangularity is replaced by a weaker condition,

called semiquasitriangularity (a concept introduced in [6]).

2. Preliminaries

We work over a commutative field k. All algebras, linear spaces etc. will be over k;

unadorned ⊗ means ⊗k. By “algebra” we always mean an associative unital algebra.

We will denote by ∆(h) = h1 ⊗ h2 the comultiplication of a Hopf algebra H .

We recall from [2], [11] that, given two algebras A, B and a k-linear map R :

B ⊗ A → A ⊗ B, with notation R(b ⊗ a) = aR ⊗ bR for a ∈ A, b ∈ B, satisfying

the conditions aR ⊗ 1R = a ⊗ 1, 1R ⊗ bR = 1 ⊗ b, (aa′)R ⊗ bR = aRa′
r ⊗ bRr

,

aR ⊗ (bb′)R = aRr
⊗ brb

′
R for all a, a′ ∈ A and b, b′ ∈ B (where r is another copy of

R), if we define on A⊗B a new multiplication by (a⊗ b)(a′⊗ b′) = aa′
R ⊗ bRb′, then

this multiplication is associative with unit 1 ⊗ 1. In this case, the map R is called

a twisting map between A and B and the new algebra structure on A⊗B is denoted

by A ⊗R B and called the twisted tensor product of A and B afforded by R.

Theorem 2.1 ([8]). Let A ⊗R B be a twisted tensor product of algebras, and

denote the multiplication on A by a ⊗ a′ 7→ aa′. Assume that on the vector space

A we have one more algebra structure, denoted by A′, with the same unit as A and

multiplication denoted by a⊗a′ 7→ a∗a′. Assume that we are given two linear maps

̺, λ : A → A⊗B, with notation ̺(a) = a(0) ⊗ a(1) and λ(a) = a[0] ⊗ a[1], such that ̺

is an algebra map from A′ to A ⊗R B, λ(1) = 1 ⊗ 1 and the following relations hold
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for all a, a′ ∈ A:

λ(aa′) = a[0] ∗ (a′
R)[0] ⊗ (a′

R)[1](a[1])R,(2.1)

a(0)[0] ⊗ a(0)[1]a(1) = a ⊗ 1,(2.2)

a[0](0) ⊗ a[0](1)a[1] = a ⊗ 1.(2.3)

Then the map R′ : B ⊗ A′ → A′ ⊗ B, R′(b ⊗ a) = (a(0)R
)[0] ⊗ (a(0)R

)[1]bRa(1), is

a twisting map and we have an algebra isomorphism A′ ⊗R′ B ≃ A ⊗R B, a ⊗ b 7→

a(0) ⊗ a(1)b.

Given an algebra A, another algebra structure A′ on the vector space A (as in

Theorem 2.1) may sometimes be obtained by using the following result:

Theorem 2.2 ([8]). Let A, B be two algebras and R : B ⊗ A → A ⊗ B a linear

map, with notation R(b ⊗ a) = aR ⊗ bR for all a ∈ A and b ∈ B. Assume that we

are given two linear maps, µ : B ⊗ A → A, µ(b ⊗ a) = b · a, and ̺ : A → A ⊗ B,

̺(a) = a(0) ⊗ a(1), and denote a ∗ a′ := a(0)(a(1) · a
′) for all a, a′ ∈ A. Assume that

the following conditions are satisfied:

̺(1) = 1 ⊗ 1, 1 · a = a, a(0)(a(1) · 1) = a,(2.4)

b · (a ∗ a′) = a(0)R
(bRa(1) · a

′),(2.5)

̺(a ∗ a′) = a(0)a
′
(0)R

⊗ a(1)R
a′
(1)(2.6)

for all a, a′ ∈ A and b ∈ B. Then (A, ∗, 1) is an associative unital algebra.

3. Examples

3.1. Twisting comodule algebras. Let H be a finite dimensional Hopf algebra

and A a right H-comodule algebra, with multiplication denoted by a⊗ a′ 7→ aa′ and

comodule structure denoted by A → A ⊗ H , a 7→ a〈0〉 ⊗ a〈1〉. Let ν : H → End(A)

be a convolution invertible linear map, with convolution inverse denoted by ν−1.

For h ∈ H and a ∈ A, we denote ν(h)(a) = a · h ∈ A. For a, a′ ∈ A we denote

a ∗ a′ = (a · a′
〈1〉)a

′
〈0〉 ∈ A. Assume that for all a, a′ ∈ A and h ∈ H , the following

conditions are satisfied:

a · 1H = a, 1A · h = ε(h)1A,(3.1)

(a · h2)〈0〉 ⊗ (a · h2)〈1〉h1 = a〈0〉 · h1 ⊗ a〈1〉h2,(3.2)

(a ∗ a′) · h = (a · a′
〈1〉h2)(a

′
〈0〉 · h1).(3.3)
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Then, by [1], Proposition 2.1, (A, ∗, 1A) is also a right H-comodule algebra (with

the same H-comodule structure as for A), denoted in what follows by Aν , and more-

over, ν−1 satisfies the relations (3.2) and (3.3) for Aν , that is, for all a, a′ ∈ A and

h ∈ H we have

(ν−1(h2)(a))〈0〉 ⊗ (ν−1(h2)(a))〈1〉h1 = ν−1(h1)(a〈0〉) ⊗ a〈1〉h2,(3.4)

ν−1(h)(aa′) = ν−1(a′
〈1〉h2)(a) ∗ ν−1(h1)(a

′
〈0〉).(3.5)

Theorem 3.1 ([1]). There exists an algebra isomorphism Aν#H∗ ≃ A#H∗.

We will prove that Theorem 3.1 is a particular case of Theorem 2.1.

We take in Theorem 2.1 the algebra A to be the original H-comodule algebra A,

the second algebra structure A′ on A to be the comodule algebra Aν , and B = H∗.

We consider A#H∗ as the twisted tensor product A ⊗R H∗, where R : H∗ ⊗ A →

A ⊗ H∗, R(ϕ ⊗ a) = ϕ1 · a ⊗ ϕ2 = a〈0〉 ⊗ ϕ ↼ a〈1〉 for all ϕ ∈ H∗ and a ∈ A,

where ↼ is the right regular action of H on H∗. Define the map ̺ : Aν → A#H∗,

̺(a) =
∑
i

a · ei#ei := a(0) ⊗ a(1), where {ei} and {ei} are dual bases in H and H∗.

We will prove that ̺ is an algebra map. First, by using (3.1), it is easy to see that

̺(1A) = 1A#ε. We prove that ̺ is multiplicative. For a, a′ ∈ A, we have

̺(a ∗ a′) =
∑

i

(a ∗ a′) · ei ⊗ ei (3.3)
=

∑

i

(a · a′
〈1〉(ei)2)(a

′
〈0〉 · (ei)1) ⊗ ei,

which applied to some h ∈ H on the second component gives (a · a′
〈1〉h2)(a

′
〈0〉 · h1).

On the other hand, we have

̺(a)̺(a′) =
∑

i,j

(a · ei#ei)(a′ · ej#ej) =
∑

i,j

(a · ei)((e
i)1 · (a

′ · ej)#(ei)2e
j),

which applied to some h ∈ H on the second component gives

∑

i

(a · ei)((e
i)1(e

i)2(h1) · (a
′ · h2))

=
∑

i

(a · ei)(e
i((a′ · h2)〈1〉h1)(a

′ · h2)〈0〉)

= (a · (a′ · h2)〈1〉h1)(a
′ · h2)〈0〉

(3.2)
= (a · a′

〈1〉h2)(a
′
〈0〉 · h1),

showing that ̺ is indeed multiplicative.

Define now the map λ : A → A⊗H∗, λ(a) =
∑
i

ν−1(ei)(a)⊗ei := a[0]⊗a[1]. First,

it is obvious that λ(1A) = 1A ⊗ ε, because ν−1 satisfies also the condition (3.1). We
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need to prove now that the relations (2.1), (2.2) and (2.3) are satisfied. It is easy

to prove (2.2) and (2.3), because ν−1 is the convolution inverse of ν. We prove now

(2.1). We have λ(aa′) =
∑
i

ν−1(ei)(aa′) ⊗ ei, which applied to some h ∈ H on the

second component gives ν−1(h)(aa′). On the other hand, we have

a[0] ∗ (a′
R)[0] ⊗ (a′

R)[1](a[1])R = a[0] ∗ (a′
〈0〉)[0] ⊗ (a′

〈0〉)[1](a[1] ↼ a′
〈1〉)

=
∑

i,j

ν−1(ei)(a) ∗ ν−1(ej)(a
′
〈0〉) ⊗ ej(ei ↼ a′

〈1〉),

which applied to some h ∈ H on the second component gives ν−1(a′
〈1〉h2)(a) ∗

ν−1(h1)(a
′
〈0〉), and this is equal to ν−1(h)(aa′) because of the relation (3.5). Thus, all

hypotheses of Theorem 2.1 are fulfilled, so we obtain the twisting mapR′ : H∗⊗Aν →

Aν ⊗ H∗, which looks as follows:

R′(ϕ ⊗ a) = (a(0)R
)[0] ⊗ (a(0)R

)[1]ϕRa(1)

= a(0)〈0〉[0]
⊗ a(0)〈0〉[1]

(ϕ ↼ a(0)〈1〉)a(1)

=
∑

i

(a · ei)〈0〉[0] ⊗ (a · ei)〈0〉[1](ϕ ↼ (a · ei)〈1〉)e
i

=
∑

i,j

ν−1(ej)((a · ei)〈0〉) ⊗ ej(ϕ ↼ (a · ei)〈1〉)e
i,

which applied to some h ∈ H on the second component gives

∑

i

ν−1(h1)((a · ei)〈0〉)ϕ((a · ei)〈1〉h2)e
i(h3)

= ν−1(h1)((a · h3)〈0〉)ϕ((a · h3)〈1〉h2)

(3.2)
= ν−1(h1)(a〈0〉 · h2)ϕ(a〈1〉h3)

= ν−1(h1)(ν(h2)(a〈0〉))ϕ(a〈1〉h3)

= a〈0〉ϕ(a〈1〉h).

Thus, we obtained R′(ϕ ⊗ a) = a〈0〉 ⊗ ϕ ↼ a〈1〉 for all ϕ ∈ H∗ and a ∈ A, that

is R′ = R and Aν ⊗R′ H∗ = Aν#H∗, and so Theorem 2.1 provides the algebra

isomorphism Aν#H∗ ≃ A#H∗, a ⊗ ϕ 7→ a(0) ⊗ a(1)ϕ =
∑
i

a · ei ⊗ eiϕ, which is

exactly Theorem 3.1.

3.2. External homogenization. Let H be a Hopf algebra and A a right H-

comodule algebra, with comodule structure denoted by a 7→ a(0) ⊗ a(1). We also

denote a(0) ⊗ a(1) ⊗ a(2) = a(0)(0) ⊗ a(0)(1) ⊗ a(1) = a(0) ⊗ a(1)1 ⊗ a(1)2 . The external
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homogenization of A, introduced in [10] and denoted by A[H ], is an H-comodule al-

gebra structure on A⊗H , with multiplication (a⊗h)(a′⊗h′) = aa′
(0)⊗S(a′

(1))ha′
(2)h

′.

By [10], A[H ] is isomorphic as an algebra to the ordinary tensor product A ⊗ H .

We want to obtain this as a consequence of Theorem 2.1, actually, we will see that

the data in Theorem 2.1 lead naturally to the multiplication of A[H ]. Indeed, we

will apply Theorem 2.1 to the following data: A is the original comodule algebra we

started with, B = H , R is the usual flip between A and H , A′ = A as an algebra, ̺ is

the comodule structure of A and λ : A → A⊗H is given by λ(a) = a(0) ⊗S(a(1)) :=

a[0] ⊗ a[1]. It is very easy to see that the hypotheses of Theorem 2.1 are fulfilled, so

we obtain the twisting map R′ : H ⊗ A → A ⊗ H given by

R′(h ⊗ a) = (a(0))[0] ⊗ (a(0))[1]ha(1)

= a(0)(0) ⊗ S(a(0)(1))ha(1)

= a(0) ⊗ S(a(1))ha(2),

and obviously A ⊗R′ H = A[H ]. Thus, as a consequence of Theorem 2.1, we obtain

the algebra isomorphism from [10]: A[H ] ≃ A ⊗ H , a ⊗ h 7→ a(0) ⊗ a(1)h.

3.3. Doubles of semiquasitriangular Hopf algebras. Let H be a finite di-

mensional Hopf algebra and r ∈ H⊗H an invertible element, denoted by r = r1⊗r2,

with inverse r−1 = u1 ⊗ u2. Consider the Drinfeld double D(H), which is the tensor

product H∗ ⊗ H endowed with the multiplication (ϕ ⊗ h)(ϕ′ ⊗ h′) = ϕ(h1 ⇀ ϕ′ ↼

S−1(h3)) ⊗ h2h
′ for all h, h′ ∈ H and ϕ, ϕ′ ∈ H∗, where ⇀ and ↼ are the regular

actions of H on H∗.

Define maps

f : D(H) → H∗ ⊗ H, f(ϕ ⊗ h) = ϕ ↼ S−1(u1) ⊗ u2h,

g : H∗ ⊗ H → D(H), g(ϕ ⊗ h) = ϕ ↼ S−1(r1) ⊗ r2h.

It is obvious that f and g are linear isomorphisms, inverse to each other, so we can

transfer the algebra structure of D(H) to H∗ ⊗ H via these maps. It is natural to

ask under what conditions on r this algebra structure on H∗ ⊗H is a twisted tensor

product between H and a certain algebra structure on H∗.

We claim that this is the case if r satisfies the following conditions:

∆(r1) ⊗ r2 = R1 ⊗ r1 ⊗R2r2,(3.6)

r1 ⊗ ∆(r2) = R1r1 ⊗ r2 ⊗R2,(3.7)

R1 ⊗R2
2r

1 ⊗R2
1r

2 = R1 ⊗ r1R2
1 ⊗ r2R2

2,(3.8)
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where R1 ⊗ R2 is another copy of r. We will obtain this result as a consequence

of Theorem 2.1, combined with Theorem 2.2. Note that the above conditions are

part of the axioms of a so-called semiquasitriangular structure (cf. [6]), and that if r

satisfies also the other axioms in [6] then it was proved in [3] that D(H) is isomorphic

as a Hopf algebra to a Hopf crossed product in the sense of [7].

We take A = H∗, with its ordinary algebra structure, B = H , and R : H ⊗H∗ →

H∗ ⊗ H , R(h ⊗ ϕ) = h1 ⇀ ϕ ↼ S−1(h3) ⊗ h2, hence A ⊗R B = D(H). Then we

define maps

µ : H ⊗ H∗ → H∗, µ(h ⊗ ϕ) = h · ϕ := h1 ⇀ ϕ ↼ S−1(h2),

̺ : H∗ → H∗ ⊗ H, ̺(ϕ) = ϕ(0) ⊗ ϕ(1) := ϕ ↼ S−1(r1) ⊗ r2,

λ : H∗ → H∗ ⊗ H, λ(ϕ) = ϕ[0] ⊗ ϕ[1] := ϕ ↼ S−1(u1) ⊗ u2.

The corresponding product ∗ on H∗ provided by Theorem 2.2 is given by

ϕ ∗ ϕ′ = ϕ(0)(ϕ(1) · ϕ
′)

= (ϕ ↼ S−1(r1))(r2 · ϕ′)

= (ϕ ↼ S−1(r1))(r2
1 ⇀ ϕ′ ↼ S−1(r2

2)).

We need to prove that the relations (2.4)–(2.6) hold. We note first that as conse-

quences of (3.6) and (3.7) we obtain ε(r1)r2 = r1ε(r2) = 1 = ε(u1)u2 = u1ε(u2),

hence we have ̺(ε) = λ(ε) = ε ⊗ 1 and also we obtain immediately 1 · ϕ = ϕ and

ϕ(0)(ϕ(1) · ε) = ϕ for all ϕ ∈ H∗, thus (2.4) holds. We prove now (2.5). We compute:

h · (ϕ ∗ ϕ′) = h1 ⇀ (ϕ ∗ ϕ′) ↼ S−1(h2)

= (h1 ⇀ ϕ ↼ S−1(h4r
1))(h2r

2
1 ⇀ ϕ′ ↼ S−1(h3r

2
2)),

ϕ(0)R
(hRϕ(1) · ϕ

′) = (ϕ ↼ S−1(r1))R(hRr2 · ϕ′)

= (h1 ⇀ ϕ ↼ S−1(h3r
1))(h2r

2 · ϕ′)

= (h1 ⇀ ϕ ↼ S−1(h4r
1))(h2r

2
1 ⇀ ϕ′ ↼ S−1(h3r

2
2)), q.e.d.

In order to prove (2.6), we prove first the following relation:

r1 ⊗ r2
1 ⊗ r2

3R
1 ⊗ r2

2R
2 = R1

2r
1 ⊗ r2

1 ⊗R1
1r

2
2 ⊗R2.(3.9)
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We compute (denoting by r = R1 ⊗ R2 = ̺1 ⊗ ̺2 two more copies of r):

r1 ⊗ r2
1 ⊗ r2

3R
1 ⊗ r2

2R
2 (3.7)

= R
1r1 ⊗ r2 ⊗ R

2
2R

1 ⊗ R
2
1R

2

(3.8)
= R

1r1 ⊗ r2 ⊗R1
R

2
1 ⊗R2

R
2
2

(3.7)
= R

1̺1r1 ⊗ r2 ⊗R1̺2 ⊗R2
R

2,

R1
2r

1 ⊗ r2
1 ⊗R1

1r
2
2 ⊗R2 (3.6)

= R
1r1 ⊗ r2

1 ⊗R1r2
2 ⊗R2

R
2

(3.7)
= R

1̺1r1 ⊗ r2 ⊗R1̺2 ⊗R2
R

2,

and we see that the two terms coincide. Now we prove (2.6); we compute:

̺(ϕ ∗ ϕ′) = (ϕ ∗ ϕ′) ↼ S−1(R1) ⊗R2

= (ϕ ↼ S−1(R1
2r

1))(r2
1 ⇀ ϕ′ ↼ S−1(R1

1r
2
2)) ⊗R2,

ϕ(0)ϕ
′
(0)R

⊗ ϕ(1)R
ϕ′

(1) = (ϕ ↼ S−1(r1))(ϕ′ ↼ S−1(R1))R ⊗ r2
RR

2

= (ϕ ↼ S−1(r1))(r2
1 ⇀ ϕ′ ↼ S−1(r2

3R
1)) ⊗ r2

2R
2,

and the two terms are equal because of (3.9).

Thus, we can apply Theorem 2.2 and we obtain that (H∗, ∗, ε) is an associative

algebra, which will be denoted in what follows by H∗.

We will prove now that the hypotheses of Theorem 2.1 are fulfilled for A′ = H∗.

Note first that the relations (2.4) and (2.6) proved before imply that ̺ is an algebra

map from H∗ to H∗ ⊗R H . We have already seen that λ(ε) = ε ⊗ 1, so we only

have to check the relations (2.1)–(2.3). To prove (2.1), we compute (we denote by

r−1 = U1 ⊗ U2 = U1 ⊗ U2 some more copies of r−1):

λ(ϕϕ′) = (ϕϕ′) ↼ S−1(u1) ⊗ u2

= (ϕ ↼ S−1(u1
2))(ϕ

′ ↼ S−1(u1
1)) ⊗ u2

(3.6)
= (ϕ ↼ S−1(u1))(ϕ′ ↼ S−1(U1)) ⊗ u2U2,

ϕ[0] ∗ (ϕ′
R)[0] ⊗ (ϕ′

R)[1](ϕ[1])R

= (ϕ ↼ S−1(u1)) ∗ (ϕ′
R ↼ S−1(U1)) ⊗ U2u2

R

= (ϕ ↼ S−1(u1)) ∗ (u2
1 ⇀ ϕ′ ↼ S−1(U1u2

3)) ⊗ U2u2
2

= (ϕ ↼ S−1(r1u1))(r2
1u2

1 ⇀ ϕ′ ↼ S−1(r2
2U1u2

3)) ⊗ U2u2
2

(3.7)
= (ϕ ↼ S−1(r1u1

U
1))(r2

1u2 ⇀ ϕ′ ↼ S−1(r2
2U1

U
2
2)) ⊗ U2

U
2
1

(3.8)
= (ϕ ↼ S−1(r1u1

U
1))(r2

1u2 ⇀ ϕ′ ↼ S−1(r2
2U

2
1U

1)) ⊗ U
2
2U

2

(3.7)
= (ϕ ↼ S−1(r1

U
1))(ϕ′ ↼ S−1(r2

U
2
1U

1)) ⊗ U
2
2U

2

(3.7)
= (ϕ ↼ S−1(u1))(ϕ′ ↼ S−1(U1)) ⊗ u2U2,
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and we see that the two terms are equal. The remaining relations (2.2) and (2.3) are

very easy to prove and are left to the reader. Thus, we can apply Theorem 2.1 and

we obtain the twisting map R′ : H ⊗ H∗ → H∗ ⊗ H ,

R′(h ⊗ ϕ) = (ϕ(0)R
)[0] ⊗ (ϕ(0)R

)[1]hRϕ(1) = h1 ⇀ ϕ ↼ S−1(u1h3r
1) ⊗ u2h2r

2,

and the algebra isomorphism H∗ ⊗R′ H ≃ H∗ ⊗R H = D(H), given by

ϕ ⊗ h 7→ ϕ(0) ⊗ ϕ(1)h = ϕ ↼ S−1(r1) ⊗ r2h,

which is exactly the linear isomorphism g defined before. Thus, we have proved that

if r satisfies the conditions (3.6)–(3.8) then D(H) is isomorphic as an algebra to

a twisted tensor product between H∗ and H .
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[10] C.Năstăsescu, F. Panaite, F.Van Oystaeyen: External homogenization for Hopf alge-
bras: Applications to Maschke’s theorem. Algebr. Represent. Theory 2 (1999), 211–226.

[11] A.Van Daele, S.Van Keer: The Yang-Baxter and pentagon equation. Compos. Math.
91 (1994), 201–221.

Author’s address: F l o r i n Pa n a i t e, Institute of Mathematics of the Romanian
Academy,PO-Box 1-764, RO-014700 Bucharest, Romania, e-mail: Florin.Panaite@imar.ro.

195


		webmaster@dml.cz
	2020-07-03T19:48:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




