Czechoslovak Mathematical Journal

Shuxian Li; Bo Zhou
Ordering the non-starlike trees with large reverse Wiener indices

Czechoslovak Mathematical Journal, Vol. 62 (2012), No. 1, 215-233

Persistent URL: http://dml.cz/dmlcz/142052

Terms of use:

© Institute of Mathematics AS CR, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ORDERING THE NON-STARLIKE TREES WITH LARGE REVERSE WIENER INDICES

Shuxian Li, Bo Zhou, Guangzhou

(Received December 15, 2010)

Abstract. The reverse Wiener index of a connected graph G is defined as

$$
\Lambda(G)=\frac{1}{2} n(n-1) d-W(G)
$$

where n is the number of vertices, d is the diameter, and $W(G)$ is the Wiener index (the sum of distances between all unordered pairs of vertices) of G. We determine the n-vertex non-starlike trees with the first four largest reverse Wiener indices for $n \geqslant 8$, and the n vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for $n \geqslant 10$.

Keywords: distance, diameter, Wiener index, reverse Wiener index, trees, starlike trees, caterpillars

MSC 2010: 05C12, 05C35, 05C90

1. Introduction

Let G be a simple connected graph. The Wiener index $W(G)$ of G is the sum of distances between all unordered pairs of vertices of G [11], [20]. It is one of the oldest graph invariants studied extensively and thoroughly both in chemistry, e.g., [16], [18], [19] and in mathematics (under different names), e.g., [6], [7], [8], [10], [17].

Balaban et al. [2] proposed a novel variant of the Wiener index named the reverse Wiener index. For a connected graph G with n vertices, it is defined as [2]

$$
\Lambda(G)=\frac{1}{2} n(n-1) d-W(G)
$$

This work was supported by the National Natural Science Foundation of China (Grant No. 11071089).
where d is the diameter of G. The reverse Wiener index found applications in QSPR studies, see [2], [12]. Some mathematical properties of the reverse Wiener index have been established in [3], [9], [13], [14], [15], [21], see [22], [23] for a survey.

We note that the study of the reverse Wiener index is equivalent to the study of the difference between the diameter and the average distance [1], [4], [5].

A tree with exactly one vertex of degree at least three is said to be starlike. Otherwise, it is non-starlike. A caterpillar is a tree such that deleting all the pendent vertices (vertices of degree one) yields a path. A tree that is not a caterpillar is said to be a non-caterpillar tree.

In [13], we determined the n-vertex trees with the k-th largest reverse Wiener indices for all k up to $\left\lfloor\frac{1}{2} n\right\rfloor$, where $n \geqslant 5$. In [14], we determined the n-vertex noncaterpillar trees with the k-th largest reverse Wiener indices for all k up to $\left\lfloor\frac{1}{2}(n-3)\right\rfloor$, where $n \geqslant 8$. All these extremal trees are starlike. Therefore it is of interest to study the reverse Wiener indices of non-starlike trees.

In this paper, we determine the n-vertex non-starlike trees with the first four largest reverse Wiener indices for $n \geqslant 8$, and the n-vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for $n \geqslant 10$.

2. Preliminaries

Let T be a tree with a vertex set $V(T)$ and an edge set $E(T)$. For $e \in E(T)$, $n_{T, 1}(e)$ and $n_{T, 2}(e)$ denote the number of vertices of T lying on the two sides of the edge e, respectively. It is well-known that [20], [6]

$$
W(T)=\sum_{e \in E(T)} n_{T, 1}(e) n_{T, 2}(e)
$$

Let v be a vertex of degree $r+1$ in a tree T (which is not a star) with a unique non-pendent neighbor u and pendent neighbors $v_{1}, v_{2}, \ldots, v_{r}$. Let $\sigma(T ; u, v)$ be the tree obtained from T by removing edges $v v_{1}, v v_{2}, \ldots, v v_{r}$ and adding new edges $u v_{1}, u v_{2}, \ldots, u v_{r}$. We say that $\sigma(T ; u, v)$ is a σ-transformation of T at u and v.

T

$\sigma(T ; u, v)$

Figure 1. σ-transformation applied to T at u and v.

Lemma 2.1. Let T be a tree and v a vertex of T with a unique non-pendent neighbor u and at least one pendent neighbor. Then

$$
W(\sigma(T ; u, v))<W(T)
$$

Proof. Let $v_{1}, v_{2}, \ldots, v_{r}$ be the pendent neighbors of v. Let $n=|V(T)|$. Obviously, $n \geqslant r+3$. It is easily seen that

$$
\begin{aligned}
W(T)-W(\sigma(T ; u, v)) & =n_{T, 1}(u v) n_{T, 2}(u v)-n_{\sigma(T ; u, v), 1}(u v) n_{\sigma(T ; u, v), 2}(u v) \\
& =(r+1)(n-r-1)-(n-1) \\
& =r(n-r-2)>0,
\end{aligned}
$$

from which the result follows.
For $u, v \in V(T), d_{T}(u, v)$ denotes the distance between the vertices u and v in T. For $u \in V(T)$ and $A \subseteq V(T)$, let $d_{T}(u \mid A)$ be the sum of all distances from u to the vertices in A, i.e., $d_{T}(u \mid A)=\sum_{v \in A} d_{T}(u, v)$.

Let P_{n} be the n-vertex path.

Lemma 2.2. Let $P_{d+1}=v_{0} v_{1} \ldots v_{d}$. Then $d_{P_{d+1}}\left(v_{i} \mid P_{d+1}\right) \leqslant d_{P_{d+1}}\left(v_{j} \mid P_{d+1}\right)$ for $\left|i-\frac{1}{2} d\right| \leqslant\left|j-\frac{1}{2} d\right|$.

Proof. It is easily seen that

$$
d_{P_{d+1}}\left(v_{i} \mid P_{d+1}\right)=\sum_{s=1}^{i} s+\sum_{s=1}^{d-i} s=i^{2}-d i+\frac{d(d+1)}{2}
$$

which is symmetrical for $i=\frac{1}{2} d$.
Let G be a connected graph with a subgraph H. For $u \in V(G)$, the distance from u to H is defined as the minimum distance between u and the vertices of H.

Lemma 2.3. Let T be a tree with $P_{d+1}=v_{0} v_{1} \ldots v_{d}$ as its subgraph. For $u \in$ $V(T)$, let h be the distance from u to P_{d+1}. If $h \geqslant 1$, then

$$
d_{T}\left(u \mid P_{d+1}\right)=h(d+1)+d_{T}\left(v_{i^{\prime}} \mid P_{d+1}\right),
$$

where $v_{i^{\prime}} \in V\left(P_{d+1}\right)$ with $h=d_{T}\left(u, v_{i^{\prime}}\right)$.

Proof. Obviously, $d_{T}\left(v_{i^{\prime}} \mid P_{d+1}\right)=\sum_{s=1}^{i^{\prime}} s+\sum_{s=1}^{d-i^{\prime}} s$. Then we have

$$
\begin{aligned}
d_{T}\left(u \mid P_{d+1}\right)=\sum_{s=h}^{h+i^{\prime}} s+\sum_{s=h+1}^{h+d-i^{\prime}} s & =\left(i^{\prime}+1\right) h+\sum_{s=1}^{i^{\prime}} s+\left(d-i^{\prime}\right) h+\sum_{s=1}^{d-i^{\prime}} s \\
& =h(d+1)+d_{T}\left(v_{i^{\prime}} \mid P_{d+1}\right),
\end{aligned}
$$

as desired.

Lemma 2.4. Let T be a tree with a diameter-achieving path $P=v_{0} v_{1} \ldots v_{d}$. Let v_{s} and v_{t} with $0<s<t<d$ be two vertices of degree at least three such that all internal vertices (if any) of the path connecting them have degree two. Form a tree T^{\prime} by removing the edges outside P incident with v_{s} to v_{t} and a tree $T^{\prime \prime}$ by removing the edges outside P incident with v_{t} to v_{s}. Then

$$
\min \left\{W\left(T^{\prime}\right), W\left(T^{\prime \prime}\right)\right\}<W(T) .
$$

Proof. Let n_{s} or n_{t} be the number of vertices of the tree containing v_{s} or v_{t} resulting from T by deleting the edge $v_{s} v_{s+1}$ or $v_{t-1} v_{t}$, respectively. Let $a+1$ or $b+1$ be the number of vertices of the tree containing v_{s} or v_{t} resulting from T by deleting edges $v_{s-1} v_{s}$ and $v_{s} v_{s+1}$ or $v_{t-1} v_{t}$ and $v_{t} v_{t+1}$, respectively. Let $c=t-s$. Let $n=|V(T)|$. Then $n=n_{s}+n_{t}+c-1$. It is easily seen that

$$
\begin{aligned}
W(T)-W\left(T^{\prime}\right) & =\sum_{i=0}^{c-1}\left[\left(n_{t}+i\right)\left(n-n_{t}-i\right)-\left(n_{t}+a+i\right)\left(n-n_{t}-a-i\right)\right] \\
& =\sum_{i=0}^{c-1} a\left(2 n_{t}+2 i+a-n\right)=a c\left(2 n_{t}+c-1+a-n\right) \\
& =a c\left(n_{t}-n_{s}+a\right)
\end{aligned}
$$

Similarly,

$$
W(T)-W\left(T^{\prime \prime}\right)=b c\left(n_{s}-n_{t}+b\right)
$$

Therefore $W\left(T^{\prime}\right)<W(T)$ if $n_{t} \geqslant n_{s}$, and $W\left(T^{\prime \prime}\right)<W(T)$ if $n_{s} \geqslant n_{t}$.

3. Reverse Wiener indices of non-Starlike trees

Let $\mathcal{N} \mathcal{S}_{n, d}$ be the class of non-starlike trees with n vertices and diameter d, where $3 \leqslant d \leqslant n-3$. Let $N_{n, d}$ be the tree obtained from the path $P_{d+1}=v_{0} v_{1} \ldots v_{d}$ by attaching $n-d-2$ pendent vertices to $v_{\lfloor d / 2\rfloor}$ and one pendent vertex to $v_{\lfloor d / 2\rfloor+1}$. See Figure 2.

Figure 2. The tree $N_{n, d}$.
Theorem 3.1. Let $T \in \mathcal{N} \mathcal{S}_{n, d}$, where $3 \leqslant d \leqslant n-3$. Then

$$
\begin{aligned}
W(T) \geqslant & \frac{d(d+1)(d+2)}{6}+(n-d-1)\left(\left\lfloor\frac{d}{2}\right\rfloor^{2}-d\left\lfloor\frac{d}{2}\right\rfloor+\frac{d(d+1)}{2}\right) \\
& +2\left\lfloor\frac{d}{2}\right\rfloor+(n+1)(n-d-2)+2
\end{aligned}
$$

with equality if and only if $T=N_{n, d}$.
Proof. Note that $W\left(P_{d+1}\right)=\frac{1}{6} d(d+1)(d+2)$. By Lemma 2.3, we have

$$
\begin{aligned}
W\left(N_{n, d}\right)= & W\left(P_{d+1}\right)+(n-d-2)\left(d+1+d_{N_{n, d}}\left(v_{\lfloor d / 2\rfloor} \mid P_{d+1}\right)\right) \\
& +\left(d+1+d_{N_{n, d}}\left(v_{\lfloor d / 2\rfloor+1} \mid P_{d+1}\right)\right)+2\binom{n-d-2}{2}+3(n-d-2) \\
= & W\left(P_{d+1}\right)+(n-d-2) d_{N_{n, d}}\left(v_{\lfloor d / 2\rfloor} \mid P_{d+1}\right)+d_{N_{n, d}}\left(v_{\lfloor d / 2\rfloor+1} \mid P_{d+1}\right) \\
& +(n-d-1)(d+1)+(n-d)(n-d-2) \\
= & W\left(P_{d+1}\right)+(n-d-2)\left(\left\lfloor\frac{d}{2}\right\rfloor^{2}-d\left\lfloor\frac{d}{2}\right\rfloor+\frac{d(d+1)}{2}\right) \\
& +\left[\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)^{2}-d\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)+\frac{d(d+1)}{2}\right\rfloor \\
& +(n-d-1)(d+1)+(n-d)(n-d-2) \\
= & \frac{d(d+1)(d+2)}{6}+(n-d-1)\left(\left\lfloor\frac{d}{2}\right\rfloor^{2}-d\left\lfloor\frac{d}{2}\right\rfloor+\frac{d(d+1)}{2}\right) \\
& +2\left\lfloor\frac{d}{2}\right\rfloor+(n+1)(n-d-2)+2 .
\end{aligned}
$$

Let T be a tree in $\mathcal{N} \mathcal{S}_{n, d}$ with a minimum Wiener index. We need only to show that $T=N_{n, d}$. Let $P=v_{0} v_{1} \ldots v_{d}$ be a diameter-achieving path of T.

Suppose that there exists a vertex in T (outside P), the distance from which to P is at least two. Let u be such a vertex, the distance from which to P is maximal. Then u is pendent. Let $u v w \ldots$ be the shortest path from u to P. Note that
$\sigma(T ; w, v) \in \mathcal{N S}_{n, d}$. By Lemma 2.1 we have $W(\sigma(T ; w, v))<W(T)$, a contradiction. It follows that T is a caterpillar.

Since $T \in \mathcal{N} \mathcal{S}_{n, d}$, there are at least two vertices on P of degree at least three.
If there are at least three vertices on P of degree at least three, then for two such vertices with minimal distance, say v_{s} and v_{t} on P, by Lemma 2.4 we may relocate the observed pendent edges (edges incident to the pendent vertices) outside P in such a way that the edges which were previously attached at v_{s} are now attached at v_{t}, or, conversely, to obtain a tree in $\mathcal{N} \mathcal{S}_{n, d}$ with a Wiener index smaller than T, a contradiction.

Hence there are exactly two vertices, say v_{i} and v_{j} on P of degree at least three. Suppose without loss of generality that $1 \leqslant i \leqslant\left\lfloor\frac{1}{2} d\right\rfloor$ and $\left|i-\frac{1}{2} d\right| \leqslant\left|j-\frac{1}{2} d\right|$. If $(i, j) \neq\left(\frac{1}{2}(d-1), \frac{1}{2}(d+1)\right)$ for odd d and $(i, j) \neq\left(\frac{1}{2} d, \frac{1}{2} d \pm 1\right)$ for even d, then move all the pendent neighbors of v_{i} or v_{j} outside P to $v_{\lfloor d / 2\rfloor}$ or $v_{\lfloor d / 2\rfloor+1}$, respectively, to obtain a tree $T^{*} \in \mathcal{N} \mathcal{S}_{n, d}$. Let a or b be the number of pendent neighbors outside P at v_{i} or v_{j}, respectively. By Lemmas 2.2 and 2.3,

$$
\begin{aligned}
W(T)-W\left(T^{*}\right)= & a\left[\left(d+1+d_{T}\left(v_{i} \mid P\right)\right)-\left(d+1+d_{T}\left(v_{\lfloor d / 2\rfloor} \mid P\right)\right)\right] \\
& +b\left[\left(d+1+d_{T}\left(v_{j} \mid P\right)\right)-\left(d+1+d_{T}\left(v_{\lfloor d / 2\rfloor+1} \mid P\right)\right)\right] \\
& +a b|j-i|-a b \\
= & a\left(d_{T}\left(v_{i} \mid P\right)-d_{T}\left(v_{\lfloor d / 2\rfloor} \mid P\right)\right)+b\left(d_{T}\left(v_{j} \mid P\right)-d_{T}\left(v_{\lfloor d / 2\rfloor+1} \mid P\right)\right) \\
& +a b(|j-i|-1)>0
\end{aligned}
$$

a contradiction. Hence $(i, j)=\left(\left\lfloor\frac{1}{2} d\right\rfloor,\left\lfloor\frac{1}{2} d\right\rfloor+1\right)$ or $\left(\frac{1}{2} d, \frac{1}{2} d-1\right)$. For the case $(i, j)=$ $\left(\frac{1}{2} d, \frac{1}{2} d-1\right)$, we may turn to the first case by relabeling the vertices of the path P conversely. Hence T has exactly two vertices $v_{\lfloor d / 2\rfloor}$ and $v_{\lfloor d / 2\rfloor+1}$ of degree at least three on P. Then

$$
\begin{aligned}
W(T)= & W(P)+a\left(d+1+d_{T}\left(v_{\lfloor d / 2\rfloor} \mid P\right)\right) \\
& +b\left(d+1+d_{T}\left(v_{\lfloor d / 2\rfloor+1} \mid P\right)\right)+2\binom{a}{2}+2\binom{b}{2}+3 a b \\
& =W(P)+a d_{T}\left(v_{\lfloor d / 2\rfloor} \mid P\right)+b d_{T}\left(v_{\lfloor d / 2\rfloor+1} \mid P\right) \\
& +(a+b)(d+1)+a(a-1)+b(b-1)+3 a b \\
= & W\left(P_{d+1}\right)+(a+b)\left(\left\lfloor\frac{d}{2}\right\rfloor^{2}-d\left\lfloor\frac{d}{2}\right\rfloor+\frac{d(d+1)}{2}\right) \\
& +2 b\left\lfloor\frac{d}{2}\right\rfloor-b d+b+(a+b)(a+b+d)+a b \\
= & \frac{d(d+1)(d+2)}{6}+(n-d-1)\left(\left\lfloor\frac{d}{2}\right\rfloor^{2}-d\left\lfloor\frac{d}{2}\right\rfloor+\frac{d(d+1)}{2}\right) \\
& +(n-d-1)(n-1)+b\left(2\left\lfloor\frac{d}{2}\right\rfloor-d+1+a\right),
\end{aligned}
$$

which is minimal for fixed n and d if and only if

$$
b\left(2\left\lfloor\frac{d}{2}\right\rfloor-d+1+a\right)= \begin{cases}a b+b & \text { if } d \text { is even } \\ a b & \text { if } d \text { is odd }\end{cases}
$$

is minimal (for positive integers a and b with $a+b=n-d-1$) if and only if $b=1$ if d is even and $a=1$ or $b=1$ if d is odd. Thus $T=N_{n, d}$.

Lemma 3.2. For $3 \leqslant d \leqslant n-4$, we have $\Lambda\left(N_{n, d}\right)<\Lambda\left(N_{n, d+1}\right)$.
Proof. By Theorem 3.1,

$$
\begin{aligned}
\Lambda\left(N_{n, d+1}\right)-\Lambda\left(N_{n, d}\right)= & \frac{n(n-1)}{2}-W\left(N_{n, d+1}\right)+W\left(N_{n, d}\right) \\
= & \frac{n(n-1)}{2}+\left\lfloor\frac{d}{2}\right\rfloor^{2}+2\left(\left\lfloor\frac{d}{2}\right\rfloor-\left\lfloor\frac{d+1}{2}\right\rfloor\right) \\
& +(n-2)\left\lfloor\frac{d+1}{2}\right\rfloor+2 d-n d+2 \\
\geqslant & \frac{n(n-1)}{2}+\left\lfloor\frac{d}{2}\right\rfloor^{2}+(n-2)\left\lfloor\frac{d+1}{2}\right\rfloor-(n-2) d \\
\geqslant & \frac{n(n-1)}{2}+\left\lfloor\frac{d}{2}\right\rfloor^{2}+(n-2) \cdot \frac{d}{2}-(n-2) d \\
= & \frac{n(n-1)}{2}+\left\lfloor\frac{d}{2}\right\rfloor^{2}-\frac{(n-2) d}{2} \\
& >0,
\end{aligned}
$$

from which the result follows.
By Theorem 3.1 and Lemma 3.1, we have
Theorem 3.3. Let T be an n-vertex non-starlike tree with $n \geqslant 6$. Then

$$
\Lambda(T) \leqslant \Lambda\left(N_{n, n-3}\right)
$$

with equality if and only if $T=N_{n, n-3}$.
Let $N_{n, n-3}(i, j)$ be the tree formed from the path $P_{n-2}=v_{0} v_{1} \ldots v_{n-3}$ by attaching a pendent vertex at vertices v_{i} and v_{j}, respectively, where $1 \leqslant i \leqslant\left\lfloor\frac{1}{2}(n-3)\right\rfloor$ and $i<j \leqslant n-4$. By symmetry, $N_{n, n-3}(i, j)=N_{n, n-3}(n-3-j, n-3-i)$ for $\left\lfloor\frac{1}{2}(n-3)\right\rfloor<j \leqslant n-4$ and thus, if n is even, then we may further restrict i and j as $i<j \leqslant \frac{1}{2}(n-4)$ or $n-3-i \leqslant j \leqslant n-4$. Similarly, if n is odd, then we may further restrict i and j as (a) $1 \leqslant i \leqslant \frac{1}{2}(n-5)$, and $i<j \leqslant \frac{1}{2}(n-5)$ or $n-3-i \leqslant j \leqslant n-4$, or (b) $i=\frac{1}{2}(n-3)$ and $\frac{1}{2}(n-3)<j \leqslant n-4$. Clearly, $N_{n, n-3}=N_{n, n-3}\left(\left\lfloor\frac{1}{2}(n-3)\right\rfloor,\left\lfloor\frac{1}{2}(n-3)\right\rfloor+1\right)$.

It is easily seen that

$$
\begin{aligned}
W\left(N_{n, n-3}(i, j)\right)= & W\left(P_{n-2}\right)+2(n-2)+d_{N_{n, n-3}(i, j)}\left(v_{i} \mid P_{n-2}\right) \\
& +d_{N_{n, n-3}(i, j)}\left(v_{j} \mid P_{n-2}\right)+j-i+2 \\
= & W\left(P_{n-2}\right)+2(n-2)+i^{2}-(n-3) i+\frac{1}{2}(n-3)(n-2) \\
& +j^{2}-(n-3) j+\frac{1}{2}(n-3)(n-2)+j-i+2 \\
= & W\left(P_{n-2}\right)+i^{2}-(n-2) i+j^{2}-(n-4) j+n(n-3)+4,
\end{aligned}
$$

and then

$$
\begin{aligned}
\Lambda\left(N_{n, n-3}(i, j)\right)= & \frac{1}{3}(n+1)(n-1)(n-3)-n(n-3) \\
& -i^{2}+(n-2) i-j^{2}+(n-4) j-4 .
\end{aligned}
$$

Let $[a, b]^{0}$ be the set of integers in the interval $[a, b]$. Let

$$
\mathcal{U}_{n}^{\mathrm{e}}=\left\{(s, t): s \in\left[-\frac{n-6}{2}, 0\right]^{0}, t \in[s+1,0]^{0} \cup\left[-s+1, \frac{n-4}{2}\right]^{0}\right\}
$$

for even $n \geqslant 6$, and

$$
\begin{aligned}
\mathcal{U}_{n}^{\mathrm{o}}= & \left\{(s, t): s \in\left[-\frac{n-5}{2},-1\right]^{0}, t \in[s+1,-1]^{0} \cup\left[-s, \frac{n-5}{2}\right]^{0}\right\} \\
& \cup\left\{(0, t): t \in\left[1, \frac{n-5}{2}\right]^{0}\right\}
\end{aligned}
$$

for odd $n \geqslant 7$.
For even n and $(s, t) \in \mathcal{U}_{n}^{e}$, let $i_{s}=\frac{1}{2}(n-4+2 s), j_{t}=\frac{1}{2}(n-4+2 t)$, and $f(s, t)=$ $(s-1)^{2}+t^{2}$. For odd n and $(s, t) \in \mathcal{U}_{n}^{\mathrm{o}}$, let $i_{s}=\frac{1}{2}(n-3+2 s), j_{t}=\frac{1}{2}(n-3+2 t)$, and $g(s, t)=s(s-1)+t(t+1)$. Clearly, $N_{n, n-3}=N_{n, n-3}\left(i_{0}, j_{1}\right)$. For $(s, t) \in \mathcal{U}_{n}^{e} \cup \mathcal{U}_{n}^{\circ}$,

$$
\begin{aligned}
\Lambda\left(N_{n, n-3}\left(i_{s}, j_{t}\right)\right)= & \frac{1}{3}(n+1)(n-1)(n-3)-n(n-3) \\
& -i_{s}^{2}+(n-2) i_{s}-j_{t}^{2}+(n-4) j_{t}-4 \\
= & \left\{\begin{array}{cc}
\frac{1}{3}(n+1)(n-1)(n-3)-\frac{1}{2} n^{2} \\
-(s-1)^{2}-t^{2}+1 & \text { for even } n \\
\frac{1}{3}(n+1)(n-1)(n-3)-\frac{1}{2} n^{2} & \\
-s(s-1)-t(t+1)+\frac{1}{2} & \text { for odd } n
\end{array}\right. \\
= & \begin{cases}\frac{1}{3}(n+1)(n-1)(n-3)-\frac{1}{2} n^{2}+1-f(s, t) & \text { for even } n \\
\frac{1}{3}(n+1)(n-1)(n-3)-\frac{1}{2} n^{2}+\frac{1}{2}-g(s, t) & \text { for odd } n\end{cases}
\end{aligned}
$$

Lemma 3.4. Let T be an n-vertex non-starlike tree different from $N_{n, n-3}$ with diameter $n-3$, where $n \geqslant 8$. If n is even and $T \neq N_{n, n-3}\left(i_{-1}, j_{0}\right), N_{n, n-3}\left(i_{0}, j_{2}\right)$, $N_{n, n-3}\left(i_{-1}, j_{2}\right)$, then

$$
\begin{aligned}
\Lambda\left(N_{n, n-3}\left(i_{-1}, j_{0}\right)\right) & >\Lambda\left(N_{n, n-3}\left(i_{0}, j_{2}\right)\right) \\
& >\Lambda\left(N_{n, n-3}\left(i_{-1}, j_{2}\right)\right) \\
& >\Lambda(T)
\end{aligned}
$$

while if n is odd and $T \neq N_{n, n-3}\left(i_{-1}, j_{1}\right), N_{n, n-3}\left(i_{0}, j_{2}\right), N_{n, n-3}\left(i_{-2}, j_{-1}\right), N_{n, n-3}$ $\left(i_{-1}, j_{2}\right)$, then

$$
\begin{aligned}
\Lambda\left(N_{n, n-3}\left(i_{-1}, j_{1}\right)\right) & >\Lambda\left(N_{n, n-3}\left(i_{0}, j_{2}\right)\right)=\Lambda\left(N_{n, n-3}\left(i_{-2}, j_{-1}\right)\right) \\
& >\Lambda\left(N_{n, n-3}\left(i_{-1}, j_{2}\right)\right) \\
& >\Lambda(T)
\end{aligned}
$$

Proof. Obviously, any n-vertex non-starlike tree with diameter $n-3$ is of the form $N_{n, n-3}\left(i_{s}, j_{t}\right)$, where $(s, t) \in \mathcal{U}_{n}^{e}$ for even n and $(s, t) \in \mathcal{U}_{n}^{\circ}$ for odd n.

Case 1. n is even. It is easily seen that

$$
f(0,1)=2<f(-1,0)=4<f(0,2)=5<f(-1,2)=8
$$

Suppose that $(s, t) \neq(0,1),(-1,0),(0,2),(-1,2)$. We have $s \in\left[-\frac{1}{2}(n-6),-2\right]^{0}$ and then $f(s, t) \geqslant 9+t^{2}>8$, or $t \in\left[3, \frac{1}{2}(n-4)\right]^{0}$ and then $f(s, t) \geqslant 9+(s-1)^{2}>8$. Since $\Lambda\left(N_{n, n-3}\left(i_{s}, j_{t}\right)\right)=\frac{1}{3}(n+1)(n-1)(n-3)-\frac{1}{2} n^{2}+1-f(s, t)$ and $T \neq N_{n, n-3}=$ $N_{n, n-3}\left(i_{0}, j_{1}\right), N_{n, n-3}\left(i_{-1}, j_{0}\right), N_{n, n-3}\left(i_{0}, j_{2}\right), N_{n, n-3}\left(i_{-1}, j_{2}\right)$, we have

$$
\begin{aligned}
\Lambda\left(N_{n, n-3}\left(i_{0}, j_{1}\right)\right) & >\Lambda\left(N_{n, n-3}\left(i_{-1}, j_{0}\right)\right) \\
& >\Lambda\left(N_{n, n-3}\left(i_{0}, j_{2}\right)\right) \\
& >\Lambda\left(N_{n, n-3}\left(i_{-1}, j_{2}\right)\right) \\
& >\Lambda(T)
\end{aligned}
$$

Case 2. n is odd. It is easily seen that

$$
g(0,1)=2<g(-1,1)=4<g(0,2)=g(-2,-1)=6<g(-1,2)=8 .
$$

Suppose that $(s, t) \neq(0,1),(-1,1),(0,2),(-2,-1),(-1,2)$. We have $(s, t)=(-2,2)$ and then $g(s, t)=12>8$, or $s \in\left[-\frac{1}{2}(n-5),-3\right]^{0}$ and then $g(s, t) \geqslant 12+$ $t(t+1)>8$, or $t \in\left[3, \frac{1}{2}(n-5)\right]^{0}$ and then $g(s, t) \geqslant 12+s(s-1)>8$. Since $\Lambda\left(N_{n, n-3}\left(i_{s}, j_{t}\right)\right)=\frac{1}{3}(n+1)(n-1)(n-3)-\frac{1}{2} n^{2}+\frac{1}{2}-g(s, t)$ and $T \neq N_{n, n-3}=$
$N_{n, n-3}\left(i_{0}, j_{1}\right), N_{n, n-3}\left(i_{-1}, j_{1}\right), N_{n, n-3}\left(i_{0}, j_{2}\right), N_{n, n-3}\left(i_{-2}, j_{-1}\right), N_{n, n-3}\left(i_{-1}, j_{2}\right)$, we have

$$
\begin{aligned}
\Lambda\left(N_{n, n-3}\left(i_{0}, j_{1}\right)\right) & >\Lambda\left(N_{n, n-3}\left(i_{-1}, j_{1}\right)\right) \\
& >\Lambda\left(N_{n, n-3}\left(i_{0}, j_{2}\right)\right)=\Lambda\left(N_{n, n-3}\left(i_{-2}, j_{-1}\right)\right) \\
& >\Lambda\left(N_{n, n-3}\left(i_{-1}, j_{2}\right)\right) \\
& >\Lambda(T) .
\end{aligned}
$$

The result follows by combining Cases 1 and 2 .
Note that $N_{6,3}$ (see Figure 3) is the only 6-vertex non-starlike tree, and $N_{7,4}$, $N_{7,4}(1,3)$, and $N_{7,3}$ (see Figure 3) are all the 7 -vertex non-starlike trees. It is easily seen that $\Lambda\left(N_{7,4}\right)=38>\Lambda\left(N_{7,4}(1,3)\right)=36>\Lambda\left(N_{7,3}\right)=21$.

Figure 3. The non-starlike trees with 6 or 7 vertices.

Theorem 3.5. Let T be an n-vertex non-starlike tree with $n \geqslant 8$, and $T \neq$ $N_{n, n-3}$.
(i) If n is even and $T \neq N_{n, n-3}\left(\frac{1}{2}(n-6), \frac{1}{2}(n-4)\right), \quad N_{n, n-3}\left(\frac{1}{2}(n-4), \frac{1}{2} n\right)$, $N_{n, n-3}\left(\frac{1}{2}(n-6), \frac{1}{2} n\right)$, then

$$
\begin{aligned}
\Lambda\left(N_{n, n-3}\left(\frac{n-6}{2}, \frac{n-4}{2}\right)\right) & >\Lambda\left(N_{n, n-3}\left(\frac{n-4}{2}, \frac{n}{2}\right)\right) \\
& >\Lambda\left(N_{n, n-3}\left(\frac{n-6}{2}, \frac{n}{2}\right)\right) \\
& >\Lambda(T)
\end{aligned}
$$

(ii) If n is odd and $T \neq N_{n, n-3}\left(\frac{1}{2}(n-5), \frac{1}{2}(n-1)\right), N_{n, n-3}\left(\frac{1}{2}(n-3), \frac{1}{2}(n+1)\right)$, $N_{n, n-3}\left(\frac{1}{2}(n-7), \frac{1}{2}(n-5)\right), N_{n, n-3}\left(\frac{1}{2}(n-5), \frac{1}{2}(n+1)\right)$, then

$$
\begin{aligned}
\Lambda\left(N_{n, n-3}\left(\frac{n-5}{2}, \frac{n-1}{2}\right)\right) & >\Lambda\left(N_{n, n-3}\left(\frac{n-3}{2}, \frac{n+1}{2}\right)\right)=\Lambda\left(N_{n, n-3}\left(\frac{n-7}{2}, \frac{n-5}{2}\right)\right) \\
& >\Lambda\left(N_{n, n-3}\left(\frac{n-5}{2}, \frac{n+1}{2}\right)\right) \\
& >\Lambda(T)
\end{aligned}
$$

Proof. Note that

$$
\begin{aligned}
W\left(N_{n, n-4}\right)= & \frac{(n-2)(n-3)(n-4)}{6}+3\left(\left\lfloor\frac{n-4}{2}\right\rfloor^{2}-(n-4)\left\lfloor\frac{n-4}{2}\right\rfloor\right. \\
& \left.+\frac{(n-4)(n-3)}{2}\right)+2\left\lfloor\frac{n-4}{2}\right\rfloor+2(n+1)+2 \\
= & \frac{(n-2)(n-3)(n-4)}{6}+3\left\lfloor\frac{n-4}{2}\right\rfloor^{2}-3(n-4)\left\lfloor\frac{n-4}{2}\right\rfloor+2\left\lfloor\frac{n-4}{2}\right\rfloor \\
& +\frac{3 n^{2}-17 n}{2}+22 \\
= & \begin{cases}\frac{1}{6}(n-2)(n-3)(n-4)+\frac{3}{4} n(n-2)+6 & \text { for even } n \\
\frac{1}{6}(n-2)(n-3)(n-4)+\frac{3}{4} n(n-2)+\frac{23}{4} & \text { for odd } n .\end{cases}
\end{aligned}
$$

We have

$$
\Lambda\left(N_{n, n-4}\right)-\Lambda\left(N_{n, n-3}\left(i_{s}, j_{t}\right)\right)= \begin{cases}-\frac{1}{4}\left(n^{2}+2 n+16\right)+f(s, t) & \text { for even } n \\ -\frac{1}{4}\left(n^{2}+2 n+13\right)+g(s, t) & \text { for odd } n\end{cases}
$$

Then

$$
\begin{aligned}
\Lambda\left(N_{n, n-4}\right)-\Lambda\left(N_{n, n-3}\left(i_{-1}, j_{2}\right)\right) & = \begin{cases}-\frac{1}{4}\left(n^{2}+2 n+16\right)+f(-1,2) & \text { for even } n \\
-\frac{1}{4}\left(n^{2}+2 n+13\right)+g(-1,2) & \text { for odd } n\end{cases} \\
& \leqslant \begin{cases}-\frac{1}{4}\left(8^{2}+2 \times 8+16\right)+8<0 & \text { for even } n \\
-\frac{1}{4}\left(9^{2}+2 \times 9+13\right)+8<0 & \text { for odd } n\end{cases}
\end{aligned}
$$

i.e., $\Lambda\left(N_{n, n-4}\right)<\Lambda\left(N_{n, n-3}\left(i_{-1}, j_{2}\right)\right)$. Now the result follows from Lemma 3.2.

4. Reverse Wiener indices of non-starlike non-Caterpillar trees

Let $\mathcal{N S C}_{n, d}$ be the class of non-starlike non-caterpillar trees with n vertices and diameter d, where $4 \leqslant d \leqslant n-4$. Let $\widetilde{N}_{n, d}$ be the tree obtained from the path $P_{d+1}=v_{0} v_{1} \ldots v_{d}$ by attaching $n-d-4$ pendent vertices and a path P_{2} to the vertex $v_{\lfloor d / 2\rfloor}$ and attaching one pendent vertex to the vertex $v_{\lfloor d / 2\rfloor+1}$, see Figure 4.

Figure 4. The tree $\widetilde{N}_{n, d}$.

Theorem 4.1. Let $T \in \mathcal{N S C}_{n, d}$, where $4 \leqslant d \leqslant n-4$. Then

$$
\begin{aligned}
W(T) \geqslant & \frac{d(d+1)(d+2)}{6}+(n-d-1)\left(\left\lfloor\frac{d}{2}\right\rfloor^{2}-d\left\lfloor\frac{d}{2}\right\rfloor+\frac{d(d+1)}{2}\right) \\
& +2\left\lfloor\frac{d}{2}\right\rfloor+(n+1)(n-d-1)-2
\end{aligned}
$$

with equality if and only if $T=\widetilde{N}_{n, d}$.
Proof. By direct calculation, we have

$$
\begin{aligned}
W\left(\widetilde{N}_{n, d}\right)= & W\left(P_{d+1}\right)+\left[2(d+1)+d_{\widetilde{N}_{n, d}}\left(v_{\lfloor d / 2\rfloor} \mid P_{d+1}\right)\right] \\
& \left.+(n-d-3)\left(d+1+d_{\widetilde{N}_{n, d}} v_{\lfloor d / 2\rfloor} \mid P_{d+1}\right)\right) \\
& +\left(d+1+d_{\widetilde{N}_{n, d}}\left(v_{\lfloor d / 2\rfloor+1} \mid P_{d+1}\right)\right)+2\binom{n-d-3}{2} \\
& +3(n-d-4)+1+3(n-d-3)+4 \\
= & W\left(P_{d+1}\right)+(n-d-2) d_{\widetilde{N}_{n, d}}\left(v_{\lfloor d / 2\rfloor} \mid P_{d+1}\right)+d_{\widetilde{N}_{n, d}}\left(v_{\lfloor d / 2\rfloor+1} \mid P_{d+1}\right) \\
& +(n-d)(d+1)+(n-d)(n-d-4)+3(n-d-3)+5 \\
= & W\left(P_{d+1}\right)+(n-d-2)\left(\left\lfloor\frac{d}{2}\right\rfloor^{2}-d\left\lfloor\frac{d}{2}\right\rfloor+\frac{d(d+1)}{2}\right) \\
& +\left[\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)^{2}-d\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)+\frac{d(d+1)}{2}\right] \\
& +n^{2}-n d-4 \\
= & \frac{d(d+1)(d+2)}{6}+(n-d-1)\left(\left\lfloor\frac{d}{2}\right\rfloor^{2}-d\left\lfloor\frac{d}{2}\right\rfloor+\frac{d(d+1)}{2}\right) \\
& +2\left\lfloor\frac{d}{2}\right\rfloor+(n+1)(n-d-1)-2 .
\end{aligned}
$$

Let T be a tree in $\mathcal{N S C}_{n, d}$ with minimum Wiener index. We need only to show that $T=\widetilde{N}_{n, d}$. Let $P=v_{0} v_{1} \ldots v_{d}$ be a diameter-achieving path of T.

Suppose that there exists a vertex in T (outside P), the distance from which to P is at least three. Let w be such a vertex, the distance from which to P is maximal. Then w is pendent. Let $w v u \ldots$ be the shortest path from w to P. Note that $\sigma(T ; u, v) \in \mathcal{N S C}_{n, d}$. By Lemma 2.1, we have $W(\sigma(T ; u, v))<W(T)$, a contradiction. Thus the maximal distance from the vertices outside P to P is two. Suppose that there are at least two vertices of degree at least two outside P. For any such vertex, say z, with z^{\prime} denoting its neighbor on P, we have $\sigma\left(T ; z^{\prime}, z\right) \in \mathcal{N S C}_{n, d}$ and by Lemma 2.1, $W\left(\sigma\left(T ; z^{\prime}, z\right)\right)<W(T)$, a contradiction. It follows that there is exactly one vertex, say x, of degree at least two outside P.

Let s be the number of pendent neighbors of x. If $s>1$, we obtain a tree $T^{\prime} \in \mathcal{N S C}_{n, d}$ from T by moving $s-1$ pendent neighbors of x to its neighbor on P.

Obviously $n-s>3$. Then

$$
\begin{aligned}
W(T)-W\left(T^{\prime}\right) & =(s+1)(n-s-1)-2(n-2) \\
& =(s-1)(n-s-3)>0
\end{aligned}
$$

a contradiction. Thus the only vertex outside P of degree at least two has degree two.

If there are at least three vertices of degree at least three on P, then for two such vertices with minimal distance, by Lemma 2.4 we obtain a tree in $\mathcal{N S C} \mathcal{C}_{n, d}$ with a Wiener index smaller than T, a contradiction. It follows that there are exactly two vertices, say v_{i} and v_{j}, of degree at least three on P. Note that there is exactly one vertex x outside P having degree two, and all other vertices outside P are pendent. Suppose without loss of generality that x is a neighbor of v_{i}. Let a or b be the number of pendent neighbors of v_{i} or v_{j}, respectively, outside P, where $a \geqslant 0$ and $b \geqslant 1$.

If $\left|i-\frac{1}{2} d\right|>\left|j-\frac{1}{2} d\right|$, then by moving all the pendent neighbors (if such exist) outside P of v_{i} to v_{j} and the pendent neighbor of x to a pendent neighbor of v_{j}, we obtain a tree $T_{1} \in \mathcal{N S C}_{n, d}$, and by Lemma 2.2 , it is easily seen that

$$
W(T)-W\left(T_{1}\right)=(a+1)\left(d_{T}\left(v_{i} \mid P\right)-d_{T}\left(v_{j} \mid P\right)\right)+(a+1)(b-1)|i-j|>0
$$

a contradiction. Thus $\left|i-\frac{1}{2} d\right| \leqslant\left|j-\frac{1}{2} d\right|$.
If $b \geqslant 2$, then by moving all but one pendent neighbors of v_{j} outside P to v_{i}, we have a tree $T_{2} \in \mathcal{N S C}_{n, d}$, and by Lemma 2.2, it is easily seen that

$$
W(T)-W\left(T_{2}\right)=(b-1)\left(d_{T}\left(v_{j} \mid P\right)-d_{T}\left(v_{i} \mid P\right)\right)+(a+1)(b-1)|i-j|>0,
$$

a contradiction. Thus $b=1$, i.e., v_{i} has $n-d-4$ pendent neighbors and one neighbor x of degree two (outside P), and v_{j} has exactly one pendent neighbor (outside P). Then

$$
\begin{aligned}
W(T)= & W(P)+\left[2(d+1)+d_{T}\left(v_{i} \mid P\right)\right] \\
& +(n-d-3)\left(d+1+d_{T}\left(v_{i} \mid P\right)\right) \\
& +\left(d+1+d_{T}\left(v_{j} \mid P\right)\right)+2\binom{n-d-3}{2} \\
& +3(n-d-4)+1+(n-d-3)(|i-j|+2)+(|i-j|+3) \\
= & W\left(P_{d+1}\right)+(n-d-2) d_{T}\left(v_{i} \mid P\right)+d_{T}\left(v_{j} \mid P\right) \\
& +(n-d)(d+1)+(n-d)(n-d-4)+2(n-d-3)+4 \\
& +(n-d-2)|i-j|,
\end{aligned}
$$

which is minimal for fixed n and d if and only if

$$
F(i, j)=(n-d-2) d_{T}\left(v_{i} \mid P\right)+d_{T}\left(v_{j} \mid P\right)+(n-d-2)|i-j|
$$

is minimal. By Lemma 2.2, if d is even, $F(i, j)$ is minimal if and only if $i=\frac{1}{2} d$ and $j=\frac{1}{2} d \pm 1$, while if d is odd, $F(i, j)$ is minimal if and only if $i=\frac{1}{2}(d \pm 1)$ and $j=\frac{1}{2}(d \mp 1)$. Thus $T=\widetilde{N}_{n, d}$.

Lemma 4.2. For $4 \leqslant d \leqslant n-5$, we have $\Lambda\left(\widetilde{N}_{n, d}\right)<\Lambda\left(\widetilde{N}_{n, d+1}\right)$.
Proof. As in the proof of Lemma 3.1, we have

$$
\begin{aligned}
\Lambda\left(\widetilde{N}_{n, d+1}\right)-\Lambda\left(\widetilde{N}_{n, d}\right)= & \frac{n(n-1)}{2}-W\left(\widetilde{N}_{n, d+1}\right)+W\left(\widetilde{N}_{n, d}\right) \\
= & \frac{n(n-1)}{2}+\left\lfloor\frac{d}{2}\right\rfloor^{2}+2\left\lfloor\frac{d}{2}\right\rfloor-2\left\lfloor\frac{d+1}{2}\right\rfloor \\
& +(n-2)\left\lfloor\frac{d+1}{2}\right\rfloor+2 d-n d+2>0
\end{aligned}
$$

from which the result follows.
By Theorem 4.1 and Lemma 4.1, we have
Theorem 4.3. Let T be an n-vertex non-starlike non-caterpillar tree with $n \geqslant 8$. Then

$$
\Lambda(T) \leqslant \Lambda\left(\widetilde{N}_{n, n-4}\right)
$$

with equality if and only if $T=\widetilde{N}_{n, n-4}$.
Let $\widetilde{N}_{n, n-4}(i, j)$ be the tree formed from the path $P_{n-3}=v_{0} v_{1} \ldots v_{n-4}$ by attaching a path on two vertices and a pendent vertex at vertices v_{i} and v_{j}, respectively, where $2 \leqslant i \leqslant\left\lfloor\frac{1}{2}(n-4)\right\rfloor, 1 \leqslant j \leqslant n-5$ and $j \neq i$. By symmetry, if n is even and $i=\frac{1}{2}(n-4)$, then we may restrict ourselves to $\frac{1}{2}(n-4)<j \leqslant n-5$. Clearly, $\widetilde{N}_{n, n-4}=\widetilde{N}_{n, n-4}\left(\left\lfloor\frac{1}{2}(n-4)\right\rfloor,\left\lfloor\frac{1}{2}(n-4)\right\rfloor+1\right)$. It is easily seen that

$$
\begin{aligned}
W\left(\widetilde{N}_{n, n-4}(i, j)\right)= & W\left(P_{n-3}\right)+4(n-3)+2 d_{\widetilde{N}_{n, n-4}(i, j)}\left(v_{i} \mid P_{n-3}\right) \\
& +d_{\widetilde{N}_{n, n-4}(i, j)}\left(v_{j} \mid P_{n-3}\right)+2|i-j|+6 \\
= & W\left(P_{n-3}\right)+\frac{3}{2}(n-3)(n-4)+4 n-6+2\left[i^{2}-(n-4) i\right] \\
& +\left[j^{2}-(n-4) j\right]+2|i-j|,
\end{aligned}
$$

and then

$$
\begin{aligned}
\Lambda\left(\widetilde{N}_{n, n-4}(i, j)\right)= & \frac{1}{6}(n-4)\left(2 n^{2}-7 n+21\right)-4 n+6 \\
& -2\left[i^{2}-(n-4) i\right]-\left[j^{2}-(n-4) j\right]-2|i-j| .
\end{aligned}
$$

Let

$$
\begin{aligned}
\mathcal{C}_{n}^{\mathrm{e}}= & \left\{(s, t): s \in\left[-\frac{n-8}{2},-1\right]^{0}, t \in\left[-\frac{n-6}{2}, \frac{n-6}{2}\right]^{0}, s \neq t\right\} \\
& \cup\left\{(0, t): t \in\left[1, \frac{n-6}{2}\right]^{0}\right\}
\end{aligned}
$$

for even $n \geqslant 8$, and

$$
\mathcal{C}_{n}^{\mathrm{o}}=\left\{(s, t): s \in\left[-\frac{n-9}{2}, 0\right]^{0}, t \in\left[-\frac{n-7}{2}, \frac{n-5}{2}\right]^{0}, s \neq t\right\}
$$

for odd $n \geqslant 9$.
For even n and $(s, t) \in \mathcal{C}_{n}^{\mathrm{e}}$, let $i_{s}=\frac{1}{2}(n-4+2 s), j_{t}=\frac{1}{2}(n-4+2 t)$, and $f_{2}(s, t)=$ $2 s^{2}+t^{2}+2|s-t|$. For odd n and $(s, t) \in \mathcal{C}_{n}^{\circ}$, let $i_{s}=\frac{1}{2}(n-5+2 s), j_{t}=\frac{1}{2}(n-5+2 t)$, and $g_{2}(s, t)=2 s(s-1)+t(t-1)+2|s-t|$. Clearly, $\widetilde{N}_{n, n-4}=\widetilde{N}_{n, n-4}\left(i_{0}, j_{1}\right)$. For $(s, t) \in \mathcal{C}_{n}^{o} \cup \mathcal{C}_{n}^{e}$,

$$
\begin{aligned}
\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{s}, j_{t}\right)\right)= & \frac{1}{6}(n-4)\left(2 n^{2}-7 n+21\right)-4 n+6 \\
& -2\left[i_{s}^{2}-(n-4) i_{s}\right]-\left[j_{t}^{2}-(n-4) j_{t}\right]-2\left|i_{s}-j_{t}\right| \\
= & \left\{\begin{array}{cl}
\frac{1}{6}(n-4)\left(2 n^{2}-7 n+21\right)+\frac{3}{4} n^{2}-10 n+18 \\
-2 s^{2}-t^{2}-2|s-t| & \text { for even } n, \\
\frac{1}{6}(n-4)\left(2 n^{2}-7 n+21\right)+\frac{3}{4} n^{2}-10 n+\frac{69}{4} \\
-2 s(s-1)-t(t-1)-2|s-t| & \text { for odd } n
\end{array}\right. \\
= & \left\{\begin{array}{cc}
\frac{1}{6}(n-4)\left(2 n^{2}-7 n+21\right)+\frac{3}{4} n^{2}-10 n+18 \\
-f_{2}(s, t) & \text { for even } n, \\
\frac{1}{6}(n-4)\left(2 n^{2}-7 n+21\right)+\frac{3}{4} n^{2}-10 n+\frac{69}{4} \\
-g_{2}(s, t) & \text { for odd } n .
\end{array}\right.
\end{aligned}
$$

Lemma 4.4. Let T be an n-vertex non-starlike non-caterpillar tree with diameter $d=n-4$, where $n \geqslant 10$ and $T \neq \widetilde{N}_{n, n-4}$. If n is even, and $T \neq \widetilde{N}_{n, n-4}\left(i_{-1}, j_{0}\right)$, $\widetilde{N}_{n, n-4}\left(i_{-1}, j_{1}\right), \widetilde{N}_{n, n-4}\left(i_{0}, j_{2}\right), \widetilde{N}_{n, n-4}\left(i_{-1}, j_{-2}\right)$, then

$$
\begin{aligned}
\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{0}\right)\right) & >\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{1}\right)\right) \\
& >\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{0}, j_{2}\right)\right)=\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{-2}\right)\right) \\
& >\Lambda(T),
\end{aligned}
$$

while if n is odd and $T \neq \widetilde{N}_{n, n-4}\left(i_{0}, j_{-1}\right)$, $\tilde{N}_{n, n-4}\left(i_{0}, j_{2}\right), \tilde{N}_{n, n-4}\left(i_{-1}, j_{0}\right), \tilde{N}_{n, n-4}$ $\left(i_{-1}, j_{1}\right)$, then

$$
\begin{aligned}
\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{0}, j_{-1}\right)\right) & >\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{0}, j_{2}\right)\right)=\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{0}\right)\right) \\
& >\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{1}\right)\right) \\
& >\Lambda(T) .
\end{aligned}
$$

Proof. Obviously, any n-vertex non-starlike non-caterpillar tree with diameter $d=n-4$ is of the form $\widetilde{N}_{n, n-4}\left(i_{s}, j_{t}\right)$, where $(s, t) \in \mathcal{C}_{n}^{\text {e }}$ for even n and $(s, t) \in \mathcal{C}_{n}^{o}$ for odd n.

C a se 1. n is even. It is easily seen that

$$
f_{2}(0,1)=3<f_{2}(-1,0)=4<f_{2}(-1,1)=7<f_{2}(0,2)=f_{2}(-1,-2)=8
$$

Suppose that $(s, t) \neq(0,1),(-1,0),(-1,1),(0,2),(-1,-2)$. Since $2|s-t| \geqslant 2$, we have $(s, t)=(-1,2)$ and then $f_{2}(-1,2)=12>8$, or $s \in\left[-\frac{1}{2}(n-8),-2\right]^{0}$ and then $f_{2}(s, t) \geqslant 10+t^{2}>8$, or $t \in\left[-\frac{1}{2}(n-6),-3\right]^{0}$ and then $f_{2}(s, t) \geqslant 11+2 s^{2}>8$, or $t \in\left[3, \frac{1}{2}(n-6)\right]^{0}$ and then $f_{2}(s, t) \geqslant 11+2 s^{2}>8$. Since $\Lambda\left(\widetilde{N}_{n, n-4}\right)=\frac{1}{6}(n-4)\left(2 n^{2}-\right.$ $7 n+21)+\frac{3}{4} n^{2}-10 n+18-f_{2}(s, t)$ and $T \neq \widetilde{N}_{n, n-4}=\widetilde{N}_{n, n-4}\left(i_{0}, j_{1}\right), \widetilde{N}_{n, n-4}\left(i_{-1}, j_{0}\right)$, $\widetilde{N}_{n, n-4}\left(i_{-1}, j_{1}\right), \widetilde{N}_{n, n-4}\left(i_{0}, j_{2}\right), \widetilde{N}_{n, n-4}\left(i_{-1}, j_{-2}\right)$, we have

$$
\begin{aligned}
\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{0}, j_{1}\right)\right) & >\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{0}\right)\right) \\
& >\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{1}\right)\right) \\
& >\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{0}, j_{2}\right)\right)=\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{-2}\right)\right) \\
& >\Lambda(T)
\end{aligned}
$$

Case 2. n is odd. It is easily seen that

$$
g_{2}(0,1)=2<g_{2}(0,-1)=4<g_{2}(0,2)=g_{2}(-1,0)=6<g_{2}(-1,1)=8 .
$$

Suppose that $(s, t) \neq(0,1),(0,-1),(0,2),(-1,0),(-1,1)$. Since $2|s-t| \geqslant 2$, we have $(s, t)=(-1,2)$ and then $g_{2}(-1,2)=12>8$, or $s \in\left[-\frac{1}{2}(n-9),-2\right]^{0}$ and then $g_{2}(s, t) \geqslant 14+t(t-1)>8$, or $t \in\left[-\frac{1}{2}(n-7),-2\right]^{0}$ and then $g_{2}(s, t) \geqslant 6+2 s(s-1)+$ $2|s-t|>8$, or $t \in\left[3, \frac{1}{2}(n-5)\right]^{0}$ and then $g_{2}(s, t) \geqslant 6+2 s(s-1)+2|s-t|>8$. Since $\Lambda\left(\widetilde{N}_{n, n-4}\right)=\frac{1}{6}(n-4)\left(2 n^{2}-7 n+21\right)+\frac{3}{4} n^{2}-10 n+\frac{69}{4}-g_{2}(s, t)$ and $T \neq \widetilde{N}_{n, n-4}\left(i_{0}, j_{1}\right)$, $\widetilde{N}_{n, n-4}\left(i_{0}, j_{-1}\right), \widetilde{N}_{n, n-4}\left(i_{0}, j_{2}\right), \widetilde{N}_{n, n-4}\left(i_{-1}, j_{0}\right), \widetilde{N}_{n, n-4}\left(i_{-1}, j_{1}\right)$, we have

$$
\begin{aligned}
\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{0}, j_{1}\right)\right) & >\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{0}, j_{-1}\right)\right) \\
& >\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{0}, j_{2}\right)\right)=\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{0}\right)\right) \\
& >\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{1}\right)\right) \\
& >\Lambda(T)
\end{aligned}
$$

The result follows by combining Cases 1 and 2 .
Note that $\widetilde{N}_{8,4}$ (see Figure 5) is the only 8-vertex non-starlike non-caterpillar tree, and $\widetilde{N}_{9,5}, \widetilde{N}_{9,5}(2,1), \widetilde{N}_{9,5}(2,4)$, and $\widetilde{N}_{9,4}$ (see Figure 5) are all the 9-vertex nonstarlike non-caterpillar trees. It is easily seen that $\Lambda\left(\widetilde{N}_{9,5}\right)=86>\Lambda\left(\widetilde{N}_{9,5}(2,1)\right)=$ $84>\Lambda\left(\tilde{N}_{9,5}(2,4)\right)=82>\Lambda\left(\tilde{N}_{9,4}\right)=58$.

Figure 5. The non-starlike non-caterpillar trees with 8 or 9 vertices.
Theorem 4.5. Let T be an n-vertex non-starlike non-caterpillar tree with $n \geqslant 10$, and $T \neq \widetilde{N}_{n, n-4}$.
(i) If n is even and $T \neq \widetilde{N}_{n, n-4}\left(\frac{1}{2}(n-6), \frac{1}{2}(n-4)\right)$, $\widetilde{N}_{n, n-4}\left(\frac{1}{2}(n-6), \frac{1}{2}(n-2)\right)$, $\widetilde{N}_{n, n-4}\left(\frac{1}{2}(n-4), \frac{1}{2} n\right), \widetilde{N}_{n, n-4}\left(\frac{1}{2}(n-6), \frac{1}{2}(n-8)\right)$, then

$$
\begin{aligned}
\Lambda\left(\widetilde{N}_{n, n-4}\left(\frac{n-6}{2}, \frac{n-4}{2}\right)\right) & >\Lambda\left(\widetilde{N}_{n, n-4}\left(\frac{n-6}{2}, \frac{n-2}{2}\right)\right) \\
& >\Lambda\left(\widetilde{N}_{n, n-4}\left(\frac{n-4}{2}, \frac{n}{2}\right)\right) \\
& =\Lambda\left(\widetilde{N}_{n, n-4}\left(\frac{n-6}{2}, \frac{n-8}{2}\right)\right) \\
& >\Lambda(T)
\end{aligned}
$$

(ii) If n is odd and $T \neq \widetilde{N}_{n, n-4}\left(\frac{1}{2}(n-5), \frac{1}{2}(n-7)\right), \widetilde{N}_{n, n-4}\left(\frac{1}{2}(n-5), \frac{1}{2}(n-1)\right)$, $\widetilde{N}_{n, n-4}\left(\frac{1}{2}(n-7), \frac{1}{2}(n-5)\right), \widetilde{N}_{n, n-4}\left(\frac{1}{2}(n-7), \frac{1}{2}(n-3)\right)$, then

$$
\begin{aligned}
\Lambda\left(\widetilde{N}_{n, n-4}\left(\frac{n-5}{2}, \frac{n-7}{2}\right)\right) & >\Lambda\left(\widetilde{N}_{n, n-4}\left(\frac{n-5}{2}, \frac{n-1}{2}\right)\right) \\
& =\Lambda\left(\widetilde{N}_{n, n-4}\left(\frac{n-7}{2}, \frac{n-5}{2}\right)\right) \\
& >\Lambda\left(\widetilde{N}_{n, n-4}\left(\frac{n-7}{2}, \frac{n-3}{2}\right)\right) \\
& >\Lambda(T) .
\end{aligned}
$$

Proof. Note that

$$
\begin{aligned}
W\left(\widetilde{N}_{n, n-5}\right)= & \frac{(n-3)(n-4)(n-5)}{6}+4\left[\left\lfloor\frac{n-5}{2}\right\rfloor^{2}-(n-5)\left\lfloor\frac{n-5}{2}\right\rfloor\right]+2\left\lfloor\frac{n-5}{2}\right\rfloor \\
& +2(n-4)(n-5)+4(n+1)-2 \\
= & \frac{1}{6}(n-3)(n-4)(n-5)+n(n-3)+12 .
\end{aligned}
$$

Then

$$
\Lambda\left(\widetilde{N}_{n, n-5}\right)-\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{s}, j_{t}\right)\right)= \begin{cases}-\frac{1}{4}\left(n^{2}+2 n+24\right)+f_{2}(s, t) & \text { for even } n \\ -\frac{1}{4}\left(n^{2}+2 n+21\right)+g_{2}(s, t) & \text { for odd } n\end{cases}
$$

Thus
$\Lambda\left(\tilde{N}_{n, n-5}\right)-\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{-2}\right)\right)=-\frac{1}{4}\left(n^{2}+2 n+24\right)+8 \leqslant-\frac{1}{4}\left(10^{2}+20+24\right)+8<0$ for even n, and

$$
\begin{aligned}
\Lambda\left(\widetilde{N}_{n, n-5}\right)-\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{1}\right)\right) & =-\frac{1}{4}\left(n^{2}+2 n+21\right)+8 \\
& \leqslant-\frac{1}{4}\left(11^{2}+22+21\right)+8<0
\end{aligned}
$$

for odd n. Then $\Lambda\left(\widetilde{N}_{n, n-5}\right)<\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{-2}\right)\right)$ for even n and $\Lambda\left(\widetilde{N}_{n, n-5}\right)<$ $\Lambda\left(\widetilde{N}_{n, n-4}\left(i_{-1}, j_{1}\right)\right)$ for odd n. Now the result follows from Lemma 4.2.

References

[1] I. Althöfer: Average distances in undirected graphs and the removal of vertices. J. Comb. Theory, Ser. B 48 (1990), 140-142.
[2] A. T. Balaban, D. Mills, O. Ivanciuc, S. C. Basak: Reverse Wiener indices. Croat. Chem. Acta 73 (2000), 923-941.
[3] X. Cai, B. Zhou: Reverse Wiener indices of connected graphs. MATCH Commun. Math. Comput. Chem. 60 (2008), 95-105.
[4] F. R. K. Chung: The average distance and the independence number. J. Graph Theory 12 (1988), 229-235.
[5] P. Dankelmann, S. Mukwembi, H. C. Swart: Average distance and vertex-connectivity. J. Graph Theory 62 (2009), 157-177.
[6] A. A.Dobrynin, R.Entringer, I. Gutman: Wiener index of trees: Theory and applications. Acta Appl. Math. 66 (2001), 211-249.
[7] Z. Du, B. Zhou: A note on Wiener indices of unicyclic graphs. Ars Comb. 93 (2009), 97-103.
[8] Z. Du, B. Zhou: Minimum on Wiener indices of trees and unicyclic graphs of given matching number. MATCH Commun. Math. Comput. Chem. 63 (2010), 101-112.
[9] Z. Du, B. Zhou: On the reverse Wiener indices of unicyclic graphs. Acta Appl. Math. 106 (2009), 293-306.
[10] R. C. Entringer, D. E. Jackson, D. A. Snyder: Distance in graphs. Czech. Math. J. 26 (1976), 283-296.
[11] H. Hosoya: Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Japan 44 (1971), 2332-2339.
[12] O.Ivanciuc, T. Ivanciuc, A. T. Balaban: Quantitative structure-property relationship evaluation of structural descriptors derived from the distance and reverse Wiener matrices. Internet Electron. J. Mol. Des. 1 (2002), 467-487.
[13] W. Luo, B. Zhou: Further properties of reverse Wiener index. MATCH Commun. Math. Comput. Chem. 61 (2009), 653-661.
[14] W. Luo, B. Zhou: On ordinary and reverse Wiener indices of non-caterpillars. Math. Comput. Modelling 50 (2009), 188-193.
[15] W. Luo, B. Zhou, N. Trinajstić, Z. Du: Reverse Wiener indices of graphs of exactly two cycles. Util. Math., in press.
[16] S. Nikolić, N. Trinajstić, Z. Mihalić: The Wiener index: Development and applications. Croat. Chem. Acta 68 (1995), 105-128.
[17] J. Plesnik: On the sum of all distances in a graph or digraph. J. Graph Theory 8 (1984), 1-21.
[18] D. H. Rouvray: The rich legacy of half a century of the Wiener index (D. H. Rouvray and R.B. King, eds.). Topology in Chemistry-Discrete Mathematics of Molecules, Norwood, Chichester, 2002, pp. 16-37.
[19] N. Trinajstić: Chemical Graph Theory, 2nd revised edn. CRC press, Boca Raton, 1992, pp. 241-245.
[20] H. Wiener: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947), 17-20.
[21] B. Zhang, B. Zhou: On modified and reverse Wiener indices of trees. Z. Naturforsch. 61 a (2006), 536-540.
[22] B. Zhou, N. Trinajstić: Mathematical properties of molecular descriptors based on distances. Croat. Chem. Acta 83 (2010), 227-242.
[23] B. Zhou: Reverse Wiener index (I. Gutman and B. Furtula, eds.). Novel Molecular Structure Descriptors-Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010, pp. 193-204.

Authors' address: Shuxian Li, Bo Zhou, South China Normal University, Guangzhou 510631, P.R. China, e-mail: zhoubo@scnu.edu.cn.

