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Abstract. Let G be a finite nonabelian group, ZG its associated integral group ring, and
A(G) its augmentation ideal. For the semidihedral group and another nonabelian 2-group
the problem of their augmentation ideals and quotient groups Qn(G) = A™(G)/A™1(G)
is deal with. An explicit basis for the augmentation ideal is obtained, so that the structure
of its quotient groups can be determined.
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1. INTRODUCTION

Let G be a finite group, ZG its integral group ring and A(G) the kernel of the

augmentation homomorphism ZG — Z, ) agg — > a4, the augmentation ideal
geG geG
of ZG. Tt is clear that A(G) is the free abelian group on the elements [g] = g — 1

for all g € G modulo the relation [1] = 0. The n-th power ideal A™(G) := (A(G))"
of the augmentation ideal A(G) is generated as an abelian group by the products
[91,---9n) = [91]---l9n);, 915+, 9n € G. It is well known that if G is a finite group
of order r, then A™(G) is a free Z-module of rank r — 1 for any n > 1 [6, p. 122].
The augmentation quotient group is defined as

Qn(G) = A"(G)/A"H(G).

The problem of determining the structure of augmentation ideals A™(G) and quo-
tient groups @, (G) is an interesting topic in group ring theory. For abelian groups
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much work has been done [1], [2], [4], [5], [6], [7]. In [4], Hales and Passi (see also [1])
proved that for a finite abelian group G there exists a number N such that for all
n = N, @Q,(G) is isomorphic to Qn(G). However, it is usually difficult to write
down explicitly a basis of A™(G) for an arbitrary finite nonabelian group, even for
the finite 2-group.

Nonabelian finite 2-groups are one kind of important clases in nonabelian groups.
For every positive integer k greater than or equal to 4, there are exactly four iso-
morphism classes of nonabelian groups of order 2* which have a cyclic subgroup of
index 2. Let M = 7/2*~17 be a cyclic maximal subgroup of the nonabelian finite
2-group G, then there are four possibilities:

(i) G is a dihedral group.
(ii) G is a generalized quaternion group.
(iii) G is a semidirect product of M and a cyclic group of order two which acts on
M via multiplication by 14 2¥~2. Its presentation is

(a,b] =12 =1,b"tab= a1+2k72>.

In Daniel Gorenstein’s influential text [3], this group was denoted by M} (2) and
not given a special name.
(iv) G is a semidirect product of M and a cyclic group of order two which acts on
M via multiplication by —1 + 2¥=2. The presentation for this group is

(ab]a® ™ = 1,62 =1,b"lab = a= 1+ %),

In [3], Gorenstein called this group the semidihedral group and we denote it by SD
in this paper.

The structure of augmentation quotient groups is well established for two of them:
the dihedral group [8], [9] and the generalized quaternion group [10]. The current
paper investigates the structure of augmentation ideals and quotient groups of the
group M} (2) and the semidihedral group SD, respectively. We start with some
known results.

In [5], M. M. Parmenter proved

Theorem 1.1. Let G = (g) be cyclic of order m. Then the set
B,(G)={(g—1)" (g - )" ... (g —1)""%}

is a Z-basis for A™(G).

Let G be a finite group, and denote by G7 = [G, G] the commutator subgroup of G.
For i > 1, define G; = [G, G;—1]. Then we have the sequence: G = Go>G1>Gab. . ..
The next theorem is easy to see:
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Theorem 1.2. g — 1 € AY(G), ifg € G;.

2. STRUCTURE OF AUGMENTATION QUOTIENTS FOR THE GROUP Mj(2)

Let Mp(2) = (a,b | a2 = 1,02 = 1,b~Yab = a’*2" "), where k > 4. It is not
hard to see that

Mip(2) = {b'a" [0 <t < 1,0 <u <28 =1} and bla* - bla? = biHign(+2" )"+,
Consequently, we have

Lemma 2.1. M(2); = [Mr(2), Mi(2)] = <a2k72) and My (2); = {1}, fori > 2.

Proof. By the definition of the group My (2), a~'b~tab = a2" . Moreover,
ok—2 _ok—2 k-2

a2 b2 = a2 (b~ Lab) =a a® " =1. O

Now using Theorem 1.2, Lemma 2.1 and the formula

e (2k12) e 1)+ <2’“22) (a=1)2+..+(a—1)*7",

we have
Lemma 2.2. 2¥72(a — 1) € A2(My(2)).

Lemma 2.3. Fori > 0,1 > 1, we have 2i(b — 1) = (—1)’(b — 1)**L, (b —1)i*! =
(=2)'(b—1)".

Proof. We give the proof of the first equality by induction on i. If i = 0 the
equation is trivial. For i = 1 we have 2(b—1) = —(b—1)? since b2 = 1. Assume that
i > 1. Then by induction we obtain

=20b—-1)- (=)' (b—-1)""
= (1o

Furthermore,
2'(b-1) =2'(b-1)-(b-1)""" = (=)' - )b - 1) = (-1)'(b - )™,
so the second equality can be derived. O
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Recall that the n-th power A™(Mj(2)) is a free Z-module of rank |M(2)| — 1 for
any n > 1, and is generated as an abehan group by the products (z1 —1)...(z, —1),
X1y...,Tn € My(2), where k >

Mp(2) = {b'a* |0<t<1,0<u< ok—1 _ 1} and b'a" - big) = ptriqu+2" ")+,
The recurrence relation of A™(Mj(2)) is given as follows:
Lemma 2.4. A%(M(2)) = (b—1)>Z + A(My(2))(a — 1) + 2¥"2(a — 1) Z.
Moreover, if n > 2,
A (M(2)) = (0= 1)"Z + A™(Mk(2))(a - 1).

Proof. Since A™(My(2)) is generated by the elements {(z1 —1)...(x, — 1) |
x; € Mk(2)} with

(1) ai—1—<)a—1 +<;>a—1 . (i_il)(a—l)i1+(a—1)i,

(2) ba' —1=(b—1)(a" = 1)+ (b—1) + (a' — 1),

(@ —1)(b—1)= (b— 1)@ — 1)+ (@ = D)(@> T =1)+ (a® T —1)
for any i > 1, we have
A" (M(2)) € (b= )" Z 4+ AN (M(2))(a — 1) + Y 2873 (a—1)7

i+j=n
C A (Mi(2)).

For j > 1,22(b—1)"(a — 1) = [2F72(b— 1)i(a — 1) !](a — 1):
(i) If i #0 or j > 1, by Lemma 2.2 and Lemma 2.3 we have
28=2(h — 1)'(a — 1)7 € A"(M(2))(a — 1), for any n.
(i) Ifi=0and j =1,2"2(b—1){(a—1)! =28 2(a—1) € A2(M(2)),ie,n = 1.
For j = 0, we have
2k—2(b _ 1)1’ _ (_1)k—2(b _ 1)k—2+i
(_1)k—2(_2)k—2+i—n—1(b _ 1)n+1 c (b _ 1)”*12.

It follows that
A*(My(2)) = (b—1)*Z + A(M(2))(a — 1) + 2" %(a — 1)Z

and
A"H(Mk(Z)) =(b— 1)”+1Z + A" (M(2))(a—1)
for n > 2. O
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Theorem 2.5. Let B,,(My(2)) be as follows:

Bi(My(2)) = {(a—1)" | 1<i <27 =1} U{(b - 1)}
U{b—-1)(a—1)"|1<i<2F1—1},

By(M(2)) = {(a—=1)" |2 <i <21 =1} U{2"*(a — 1)}
U{0-D@-1)"[1<i<2" =13 u{(b-1)%},

for3<n<k+1,

Bu(My(2) = {(a— 1) | n<i < 2 1+n—3}u{2k 2(q — 1)1}
u{2" b —1)(a — ) |1<i<n—2}
u{b—1)(a—1)"|n— z<2k Lo1yu{(b-1)"},

and for anyn > k+ 1,

B,(M(2)={(a—1)"|n<i<2* ' 4+n-3U{2*2(a—-1)"""}
U {2k~ Z(b—l)(a—l)"*lf(k*i) [1<i<k—1}
U{b-D@-1)"n-1<i<2" ' —(k+2)+n}u{(-1)"}

Then B, (My(2)) is a Z-basis for A™(Mj(2)).

Proof. We give the proof by induction on n > 1.
(I) n = 1. It is obvious by (1), (2) and the definition of the augmentation ideal.

(II) 2<n< k+ 1. For n =2, by Lemma 2.4 we have

A?(My(2)) = (b—1)27 + A(My(2))(a — 1) + 2 %(a — 1)Z

=(b-1)2%7+ i(a —1)'7 + i (b—1)(a—1)'Z +22(a—1)Z.
i=2 =1

Since

2k1

(12 _ok—1y 2k e
3) —(a—1) =2"""(a-1)+ 5 (a—1)24...+ k-1 _ 1 (a—1) ,
it follows that

By(My(2)) ={(a—=1)"|2<i< 2'“1—1}U{2k*2( -1}
U{b-D(a-1"[1<i<2" T =13 U{(b-1)*).
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Assume that the result is true for n (2 < n < k), then by (3) and Lemma 2.4,

A" (M (2)) = (b— )" Z + A" (M, (2))(a — 1)

ok=11p o i
= Z (a—1)'7 +2"2%(a — 1)"Z+ZQ"*i(b_1)(a_1)iZ
i=n+1 i—2
2k—171
+ Z b-—1)(a—-1)Z+b-1)"(a—1)Z+(b-1)""Z.

By Lemma 2.3,
b-1D"a—1)=2""Yb—1)(a—1)Z,

0 By 1(My(2)) is a set of Z-generators for A"+ (M}, (2)). Direct computation shows
|Bn(My(2))| = 2 — 1 = |My(2)| — 1. By Theorem 1.1, B, (My(2)) is a linearly
independent set. Therefore B,, (M} (2)) is a set of Z-basis for A™(M(2)).

(III) » > k + 1. The result is true for n = k + 1 by (II). Suppose it is true for
n 2 k+ 1. By Lemma 2.4, we have

AT (M(2)) = (b — 1) 7 + A" (M(2))(a — 1)
2k=14p_2

= > (a-1)Z+2" @ Z+Z2’“ 1)(a—1)"~ =7

i=n+1
2R~ — (k+2)+n+1
+ > (b—1)(a—1)Z+OB-1)"(a—1)Z+(b—1)"""Z

By our inductive hypothesis, Lemma 2.3 and (3), we deduce that
b-1)"a-1)=0-1[b-1)""(a-1)]

2F=141n—3
=(b-1)""7+ Z (b—1)(a—1)'Z+2*2(b-1)(a—1)"""'Z

k—1 2k =1 _(k42)4n
+Y 2K -1 a— )Rz Y (b—1)%(a—1)'Z
=1 i=n—1

= (b _ 1)n+lz + z_: zkfi(b _ 1)(& _ 1)n,(k,i)z

2k =1 _(k4+2)4n
+250-)(a-)"*Z2+ > (b-1)(a—1)Z.

i=n
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But

—2(b— 1)(a — 1) =0+t —ok(p _ 1) (g — 1)nF
9 2kt b—1)(a — 1)"—F+1 9 2kt b—1)(q— 1) —(+2)+n
w2(%, )o@ 2 (0 Y- 1@ 1) ,
50 2¥(b — 1)(a — 1)"~* can be generated by
{257 b -1 (a— 1) * D) |1 <i<k—1}
' i <2 — (b +2)+n+1},

|
U{b-—1)(a-1)|n<

Hence we obtain that A"T!(M(2)) can be generated by the set

Boyi(Mip(2) ={(a— 1) |n+1<i<2"  +n-2}U{2"%(a-1)"}
U2 b —1D(a—1)"* D |[1<i<k—1}
U{b—Da—1) n<i<2" = (k+2)+n+13U{(b-1)"},

Similarly to (II), we know that B, (My(2)) is a set of Z-basis for A™(My(2)). O

Theorem 2.6. Let M (2) be the nonabelian 2-group of order 28 (k > 4) as
defined in the previous section. Then
(1) Q1(Mg(2)) X Zor—2®Zs, and Q, (M (2)) 2 Zor—2PZo @ ... B Lo, if 2 < n < k;
—_————

n+1
(il) Qn(Mp(2)) 2 Zop-—2 D22 ® ... D Lo, if n 2 k+ 1.
N—————

k2
Proof. (i) It is easy to see that {(b— 1)} U{(a — 1)} is a Z-basis for Q1(My(2))
and {(a—1)2} U {2k 2(a—1)} U{(b—1)(a—1)} U {(b—1)?} is a Z-basis for
Q2(Mp(2)).

For 3 < n <k,

(@D u{2 = 1)la—1)i|1<i<n—2}
U= UG- D= DU (G- 17

is a set of Z-basis for Q,(My(2)).
(ii) Forn > k+ 1,

(@—D" U {26 —1)(a— 10— |1 <i < k—1}
U{282(a— 1) U{(b—1)(a— 1" FU{(b—1)"}

is a set of Z-basis for @, (Mg(2)).
By Lemma 2.2 and 2.3, we get the conclusion. (I
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3. STRUCTURE OF @, (SD) FOR THE SEMIDIHEDRAL GROUP SD

Let
SD=(a,b|a®  =1,02=1,b"lab=0a"'T2"")

be the semidihedral group of order 2%, where k > 4. It is an easy calculation to show
that

SD = {b'a* |0 <t < 1,0 <u<2' =1} and bla* - biad = biHige(-1+2" )47,
Hence we have

i

Lemma 3.1. SD; = <a2i> (i > 1). Furthermore, a®> — 1 € A"™1(SD).

. _ _ _ k—2
Proof. Since a 1b~tab=q 2+2

, we have
SDy = [SD,SD] = (a= 272"y = (a>t2" %) = (a?).
In fact, m(2 + 2F=2) = 2k=1s + 2¢ 50

(a2+2k_2)m _ (a2k_1)s(a2)t _ (a2)t

for any integer m, where s,t € Z. This can be seen as follows:
(i) If m is even, i.e., m = 2I(l € Z), then

m(2 4 2F72) = 21(2 + 277%) = 2711 4 2(20).
(ii) If m is odd, i.e., m = 2l + 1(I € Z), then
m(2+2572) = (20 + 1)(2 +2"2) = 2871 1 2(20 4 1 4 2873,

Notice that |<a2+2k_2>| = [(a?)| = 282 hence SD; = (a?) as claimed. We proceed
to the general case. Since
a ?b"ta®h = a"2(btab)? = a 2722 = a_4,
we have
SDy =[SD,SDy] = (a™*) = (a*).

Iteratively, we obtain '
SD; =[SD,SD; 1] = (a®).
It follows from Theorem 1.2 that the second assertion can be easily derived. (I

Then by Lemma 3.1 and the equality

we can obtain
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Lemma 3.2 (also see the proof in [10]). 2i(a — 1) € A™(SD) (i > 0).

Analogously to the proof of Lemma 2.3 in Section 2, we obtain the following
results.

Lemma 3.3. 2¢(b— 1) = (=1){(b— 1)L, (b — 1)+ = (=2)(b— 1)}, for i > 0,
1> 1.

Note that the n-th power A™(SD) of A(SD) is a free Z-module of rank |[SD|—1
for any n > 1, and is generated as an abelian group by the products

(x1—1)...(xn —1),21,...,2, € SD,

where SD = {b'a" |0 <t < 1,0 < u < 2’“_1‘ — 1} is the semidihedral group of order
2%(k > 4) and bla" - biad = bt+igu(=1+2"")'+i Now we give the recurrence relation
of A™(SD).

Lemma 3.4. A"*1(SD) = (b—1)"*17Z + A"(SD)(a — 1) +2"(a — 1)Z.
Moreover, if n > k,

A"H(SD) = (b— 1)"17 + A™(SD)(a — 1).

Proof. Since A™(SD) is generated by the elements {(z1 —1)...(z, —1) | z; €
SD} with

(4) ai—1=(>a—1 +(;)a—1 . (ijl)(a—l)"_l—i—(a—l)i,

b—1)(a' = 1)+ (b—1) + (a’ — 1),
— 1) =(b- 1)@ —
+a' — 1) (@22 _ 1) 4 (@242 g

for any ¢ > 1, we have

A"THSD) C (b—1)"TZ+ ANSD)(a—1)+ Y 2(b—1)(a—1)°Z
i+j+s=2n+1
C A™(SD).

There are two cases to consider.
(i) s> 1. For s > 1 or j # 0, by Lemma 3.2 and Lemma 3.3 we have

2'(b—1)(a—1)* = 2(b— 1) (a — 1)* (a — 1) C A™(SD)(a — 1).
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For s=1and j =0,
D 2a-1)=2"(a-1)Z.

=n
(ii) s = 0. Then
20(b— 1) = (=1)(b— 1) = (=1)/(=2) b —-1)"T e (b—1)"T'Z.
Hence we have

A™(SD) = (b—1)""'Z + A™(SD)(a — 1) + 2" (a — 1)Z.

n k—1
Forn>k—1, a*> =a? =1, we have

n

n 2 2" n
—2"(a—1)=—(a* —1)+ <2>(a—1)2+ (3)(a—1)3—|—...+(a—1)2
_ (% _ 2" 12 _2r=1,
=y (a—1)+ 3 (a—1)+...+(a—1) (a —1).
Let uw = 2™t > 2 where (¢,2) = 1. Then (Qu) = 2" ™y, v is an integer, and

<2u ) (a— 1)t =2"""y(q — 1)4 1 € AnTm 229Dy € A™(SD).

So 2"(a — 1)Z € A"(SD)(a — 1), and A"*(SD) = (b — 1)"**Z + A"(SD)(a —

forn>k—1.
Theorem 3.5. Let B, (SD) be as follows:

Bi(SD)={(b—-1)}uU{(a—1)"|1<i<2" ~1}
U{b—1D(a—1)" | 1<i<2¥ 1 —1},
By(SD)={(b—1)*}U{2(@—-1)}U{(a—1)"]|2<i<2" 1 —1}

U{b—1(a—1)"|1<i<2 —1},
for 3 < n <k,

B,(SD)={(b-1)"}u{2" (a—1)"|1<i<n—1}
Uf{la—1) |n<ig2k -1}
u{2n i b —1)(a—1)"|1<i<n—2}
U{b-1D(a—1)"|n—-1<i<2" —1},
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and for n > k,

B,(SD) = {(b—1)"}U {2 (e —1)" D |1 <i<k -1}
U{la—1)"|n<i<2" = (k+1)+n}
U{2P -1 (a—1)" D [1<i<k—2}
U{b-1D(a-1)"|n-1<i<2* 1 —(k+1)+n}.

Then B, (SD) is a Z-basis for A™(SD).

Proof. We give the proof by induction on n.
(I) n=1. It is obvious by (4), (5) and the definition of the augmentation ideal.
(I1) 2 < n < k. For n = 2, by Lemma 3.4 we have

A*(SD) = (b—1)?’Z + A(SD)(a — 1) +2(a — 1)Z

2k—1
=0-1°7+> (a—1)Z
=2

27(}71

+> (b—1)(a—1)'Z+2(a—1)Z.

i=1

By (3) we have

By(SD) = {(b_l)Q}U{Q(a— 1)}U{(a_1)i |2<i< ok—1 _ 1}
Uf{b-1(a—-1)"|1<i<2" " =1}

Assume that the result is true for n (2 <n < k — 1). Then by Lemma 3.4 we have

A" (SD) = (b—1)""7Z + A™(SD)(a — 1) + 2"(a — 1)Z
2k—1_q

:(b—1)”(a—1)Z+§n:2"+1*i(a—1)iz+ Y (a-1)z
i=2 i=n+1
+(a—1)2k_1l+i2"7i(b—1)(@—1)il+ Z_ (b—1)(a—1)'Z

+O0-Da-1)2"Z+0b-1)""Z+2"a-1)Z
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But

(b-1)"a-1)=0-1)]0b- 1)"_1(a - 1]

= (- "+1z+22" i a—1)z+2kil(b—1)(a—1)iz
+ Sz”“(b —1)2*(a—1)'7 + %kil(b —12*(a—-1)"Z
=0b-1)""17 + nz__:l 2" b —1)(a—1)"Z + ka_lfl(b —1)(a—1)Z
22" ib—1)(a—1) Z+2kz::_l(b—1)(a—1)iz

by our inductive hypothesis and (b — 1) = —2(b — 1). So again by equality (3) we
obtain

2k—1_1

AMTHSD) = (b—1)"MZ+) 2" a—1)'Z+ ) (a-1)Z
i=1 i=n+1
n—1 ok—1_1q
+) b —1)(a—1)Z+ D (b—1)(a—1)Z
=1 i=n

and hence B, ;1(SD) is a set of Z-generators for A"*1(SD). Direct computation

shows
|B,(SD)| =2 —1=1|SD| - 1.

By Theorem 1.1, B, (SD) is a linearly independent set. Therefore B, (SD) is a set
of Z-basis for A™(SD).
(III) n > k. The result is true for n = k by (II). Suppose it is true for n. By

Lemma 3.4, we have

A"H(SD) = (b—1)""Z + A"(SD)(a — 1)
= (b —1)"M74+(b-1)"(a—1)Z

+Z2’“ —1)rti=k=idg 4 Z (a—1)'Z

1=n—+1

+ z_: 2k=1=i(h —1)(a — 1)"FL1-k=7 4 i(b —1)(a —1)'Z,

i=n
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where m = 28~ — (k 4+ 1) + n + 1. By induction we deduce that

b=1"a=1)=0-1D[b-1)""(a—1)]

k—1 A A 2k (k4+1)4n ‘
=(b-1"Z+Y 21— * 2+ Y (b-1)(a—1)'Z
i=1 i=n

k—2 A ‘ 2" —(k+1)4n .
n Z ok=1=i(y _ 1)2(q — 1)n~(k=i)7 4 Z (b—1)2(a—1)Z
i1

1=n—1
_ (b . 1)"+1Z + 2k—1(b _ 1)(@ _ 1)"—(k—1)z
o 251 (k+1)4n
+3 - -z Y (b-1)(a— 1)L
i=1

i=n

Since
—(b . 1)(@ B 1)2k—1_(k+1)+n+1 _ 2k—1(b _ 1)(@ _ 1)n—(k—1)

2Pt 1
+22(0 - 1) (a— )Pz 4 Y (2 l )(b —1)(a — 1)k,
=3

it follows that 2°=1(b — 1)(a — 1)~ *~1) can be generated by

{2F 1 — (e — )" 1 i<k —2)
U{b-1D(a—1)"n<i<2" —(k+1)+n+1}.

Therefore A"T1(SD) can be generated by the set

Bni1(SD) = {(b— )" u {2 i(a — )"0 1 <<k -1}
U{la—1)"|n+1<i<2" ' —(k+1)+n+1}
U2 — 1) (a — )" TR0 1 1 < < k- 2}
U{b-Da—-1"n<i<2" ' —(k+1)+n+1}

Similarly to (II), we know that B, (SD) is a set of Z-basis for A™(SD). O

Theorem 3.6. Let SD be the semidihedral group of order 2% (k > 4). Then
(1) Q,ASD)%ZQ@@ZQ, if1<n<k-1;
—_——

2n
(il) Qn(SD) 2 Zy®...® Zs, if n > k.
N———

2k

Proof. (i) Itis easy to see that {(b —1)} U {(a —1)} is a Z-basis for Q1(SD).
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For2<n<k-1,

{o-1Drpu{2ri(a-1)" 1<
U{2 =i —1)(a—1) |1

n—1}U{(a—1)"}
i<n=2}U{(b-1)(a- 1)1}

<
<

is a set of Z-basis for Q,(SD).

(

ii) For n > k,

(G-—DrU{2Fi(a— 1) 9 [1<i<k-1}U{la— 1)}
U{2F1=i(b—1)(a — 1) [1<i<k—2}U{(b— D(a— 1)1}

is a set of Z-basis for Q,(SD).

The result follows immediately from Lemma 3.2 and 3.3. (]
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