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ON THE L-VALUED CATEGORIES OF L-E-ORDERED SETS

Olga Grigorenko

The aim of this paper is to construct an L-valued category whose objects are L-E-ordered
sets. To reach the goal, first, we construct a category whose objects are L-E-ordered sets and
morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category
we define the degree to which each morphism is an order-preserving mapping and as a result
we obtain an L-valued category. Further we investigate the properties of this category, namely,
we observe some special objects, special morphisms and special constructions.
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1. INTRODUCTION

The concept of order relation plays an important role in theoretical mathematics and
its applications. The first definition of a fuzzy order was introduced by L. A. Zadeh
in his paper [24] under the name of fuzzy partial ordering . Afterwards the interest of
many researchers was focused on the study and development of the theory of L-valued,
in particular fuzzy, orders (see e. g. [3, 4, 6, 7, 13, 21]). Recently the theoretical results
of the theory of fuzzy relations were involved for solving some applied problems (see e. g.
[5, 8]).

The aim of this work is to study L-E-ordered sets, where L is a cl-monoid, from L-
valued category theory point of view. This means that starting from the small categories
we already use the concept of L-valued category, defining the degree to which each
morphism is indeed the morphism in the L-valued category. The alternative approach
is to study generalized ordered structures in the frame of categories enriched over a
quantale Ω (or simply, Ω -categories), see e. g. [17, 18, 19].

In our work we use the notion of L-E-order relation and construct an analogue of
POS category (Partially Ordered Sets). In our category objects are L-E-ordered sets
and morphisms are order-preserving mappings (in a fuzzy sense). By constructing the
category from small categories, we show that the category is constructed in a natural
way from the point of view of L-valued category theory. To realize this goal we follow
the construction of the crisp POS category. We continue by studying the structure of
the constructed category. Namely, we consider some special morphisms, objects and
standard constructions such as product and coproduct.
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In order to fuzzify the constructed category, we introduce an L-valued subclass of
the class of all its morphisms as a mapping from the class of morphisms to a cl-monoid
L and thus we obtain an L-valued category. The intuitive meaning of the value of
this mapping for a given morphism is the degree to which this morphism is an order-
preserving mapping. Therefore we obtain the L-valued category whose objects are L-
E-ordered sets and morphisms are “potential” order-preserving mappings. Further we
study also the structure of this L-valued category and consider some operations such as
products and coproducts.

2. PRELIMINARIES

In this section we provide basic definitions which will be used in our consideration.

2.1. Commutative cl-monoid

Definition 2.1. (cf. [15])A commutative cl-monoid is a complete lattice (L,≤) enriched
with a further binary commutative operation ∗, satisfying the isotonicity condition:

∀α, β, γ ∈ L α ≤ β ⇒ α ∗ γ ≤ β ∗ γ

and the infinite distributive law:

∀α ∈ L and ∀{ βi : i ∈ I} ⊂ L α ∗
( ∨

i

βi

)
=

∨
i

(α ∗ βi).

A commutative cl-monoid is integral if and only if the unit element 1 is also the
universal upper bound in (L,≤). It is known that for the integral commutative cl-
monoid with zero element 0 (i. e. ∀α ∈ L α ∗ 0 = 0) the universal lower bound is zero
element 0.

Every integral commutative cl-monoid with zero is residuated, i. e., there exists a
binary operation “ 7→ ” (implication) on L satisfying the following condition:

∀α, β, γ ∈ L α ∗ β ≤ γ ⇔ α ≤ (β 7→ γ).

Explicitly the implication is given by

α 7→ β =
∨
{λ ∈ L : α ∗ λ ≤ β}.

For the given implication “ 7→ ” a biimplication “ ↔ ” is defined by:

α ↔ β = (α 7→ β) ∗ (β 7→ α).

Let us mention some properties of integral commutative cl-monoid which will be
useful in the sequel:

(i) α ≤ β and γ ≤ δ ⇒ α ∗ γ ≤ β ∗ δ;

(ii) α ∗ β ≤ α ∧ β;

(iii) (α 7→ γ) ∗ (γ 7→ β) ≤ α 7→ β.

In our work we use an integral commutative cl-monoid L with zero element but for
simplicity in the sequel we will write simply cl-monoid.
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2.2. L-valued categories

In this section, we recall the basic notions for L-valued categories. Main concepts and
results on the classical (crisp) category theory can be found in [1, 12].

Definition 2.2. [23]An L-valued category C consists of:

1. A class Ob(C) of potential objects.

2. An L-valued subclass ω of Ob(C):

ω : Ob(C) → L.

3. A class Mor(C) =
⋃
{MorC(X, Y ) : X, Y ∈ Ob(C)} of pairwise disjoint sets

MorC(X, Y ). For each pair of potential objects X, Y ∈ Ob(C) the members of
MorC(X, Y ) are called potential morphisms from X to Y and the members of
Mor(C) are called potential morphisms of the category C.

4. An L-valued subclass µ of Mor(C):

µ : Mor(C) → L,

such that if f ∈ MorC(X, Y ), then µ(f) ≤ ω(X) ∧ ω(Y ).

5. A composition ◦ of morphisms, i. e. for each triple X, Y, Z ∈ Ob(C) there exists a
map

◦ : MorC(X, Y )×MorC(Y, Z) → MorC(X, Z) ((f, g) → g ◦ f),

such that the following axioms are satisfied:

• preservation of morphisms:
µ(g ◦ f) ≥ µ(g) ∗ µ(f);

• associativity:
if f ∈ MorC(X, Y ), g ∈ MorC(Y, Z) and h ∈ MorC(Z,U),
then h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

• existence of identities:
for each X ∈ Ob(C) there exists an identity idX ∈ MorC(X, X) such that
µ(idX) = ω(X) and for all X, Y, Z ∈ Ob(C), all f ∈ MorC(X, Y ) and all
g ∈ MorC(Z,X) it holds f ◦ idX = f and idX ◦ g = g.

Remark 2.3. Let Obα(C) = {X ∈ Ob(C) : ω(X) ≥ α}.
The elements of Obα(C) will be referred to α-objects of the L-valued category C, while
the elements of Ob(C) will be called potential objects of C or C-objects.

Similarly, the elements of Morα(C) (Morα(C) = {f ∈ Mor(C) : µ(f) ≥ α}) will be
referred to α-morphisms of the L-valued category C, while the elements of Mor(C) will
be called potential morphisms of C or C-morphisms.

Given an L-valued category C = (Ob(C), ω,Mor(C), µ, ◦) and X ∈ Ob(C), intuitively
we understand the value ω(X) as the degree to which a potential object X of the L-
valued category C is indeed its object; similarly, for f ∈ Mor(C) the intuitive meaning
of µ(f) is the degree to which a potential morphism f of C is indeed its morphism.
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Definition 2.4. (Sostak [22]) Given an L-valued category C = (Ob(C), ω,Mor(C), µ, ◦)
one can construct a crisp category C0 = (Ob(C),Mor(C), ◦) by taking all potential ob-
jects and potential morphisms as objects and morphisms of L-valued category C and
leaving the composition law unchanged. C0 is called the bottom frame of
L-valued category C. We also denote the top frame C1 = (Ob1(C),Mor1(C), ◦), where
Ob1(C) = {X ∈ Ob(C) : ω(X) = 1}; Mor1(C) = {f ∈ Mor(C) : µ(f) = 1} and where 1
is the universal upper bound in (L,≤).

A general scheme for fuzzification of classical categories [23]

Let C = (Ob(C),Mor(C), ◦) and D = (Ob(D),Mor(D), ◦) be two ordinary categories
and let Φ : C → D be a functor. We define a new ordinary category Cat by set-
ting Ob(Cat) = Ob(C) and MorCat(X, Y ) = MorD(Φ(X), Φ(Y )). Thus the mor-
phisms from X to Y in Cat are the same as the morphisms from Φ(X) to Φ(Y ) in
D. The composition law in Cat is naturally induced by the composition law in D.
Now, defining in a certain way an L-subclass of objects: ω : Ob(Cat) → L and an
L-subclass of morphisms µ : Mor(Cat) → L satisfying Definition 2.2 we come to an
L-valued category (Ob(Cat), ω,Mor(Cat), µ). The category Cat could be also denoted
as CDΦ or CD.

We continue with the definition of a functor between two L-valued categories.

Definition 2.5. [23] Let C = (Ob(C), ωC,Mor(C), µC, ◦) and
D = (Ob(D), ωD,Mor(D), µD, ◦) be L-valued categories, then a functor F from C to D
is a function that assigns to each C-object A a D-object F (A), and to each C-morphism
f : A → A′ a D-morphism F (f) : F (A) → F (A′), in such way that the following
properties are satisfied:

1. F preserves composition, i. e. F (g ◦ f) = F (g) ◦ F (f) provided the composition
g ◦ f is defined;

2. F preserves identities, i. e. F (idX) = idF (X) for any X ∈ Ob(C);

3. µC(f) ≤ µD(F (f)) for any f ∈ Mor(C).

We now proceed with the definitions of some special objects and special morphisms
for an L-valued category.

Let X, Y ∈ Ob(C), where C is an L-valued category and let α, β ∈ L.

Definition 2.6. (Sostak [22]) An object I in the L-valued category C is called α-initial
if for every α-object X there exists a unique α-morphism f : I → X. An object I is
called initial if it is α-initial for every α.

Definition 2.7. (Sostak [22]) An object T in the L-valued category C is called α-
terminal if for every α-object X there exists a unique α-morphism f : X → T . An
object T is called terminal if it is α-terminal for every α.

Definition 2.8. (Sostak [22]) An object Z in the L-valued category C is called α-zero
if it is both α-initial and α-terminal. An object Z is called zero-object if it is α-zero for
every α.
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Definition 2.9. (Sostak [22]) An α-morphism f : X → Y is called a β-mono-α-
morphism, (or just a β-monomorphism for short) provided for all β-morphisms
h : Z → X and k : Z → X such that f ◦ h = f ◦ k it follows that h = k.

Definition 2.10. (Sostak [22]) An α-morphism f : X → Y is called a β-epi-α-
morphism, (or just a β-epimorphism for short) provided for all β-morphisms h : Y → Z
and k : Y → Z such that h ◦ f = k ◦ f it follows that h = k.

Definition 2.11. (Sostak [22]) An α-morphism f : X → Y is called a β-bi-α-morphism,
(or just a β-bimorphism for short) if it is both β-monomorphisms and β-epimorphism.

2.3. L-valued relations

First time the definition of fuzzy order relation was introduced by L. A. Zadeh in 1971
under the name of fuzzy partial ordering. Slightly modifying Zadeh’s definition we
demonstrate the following concept of L-valued order relation (we use the term “fuzzy”
when L = [0, 1] and “L-valued” for an arbitrary cl-monoid L).

Let L be a fixed cl-monoid.

Definition 2.12. (cf. e. g. [24]) Let X be a set. By an L-valued order relation we call
an L-valued relation P : X ×X → L such that the following three axioms are fulfilled
for all x, y, z ∈ X:

1. P (x, x) = 1 - reflexivity;

2. P (x, y) ∗ P (y, z) ≤ P (x, z) - transitivity;

3. x 6= y ⇒ P (x, y) ∗ P (y, x) = 0 - antisymmetry.

Fifteen years later U. Höhle and N. Blanchard in their paper [13] proposed to involve
L-valued equality1 for the definition of L-valued order (partial ordering). For more
resent results about fuzzy order defined with respect to the fuzzy equality see [3].

Let us first define an L-valued set and related category:

Definition 2.13. (cf. e. g. [13]) By an L-valued set we call a pair (X, E) where X
is a set and E is an L-valued equality, i. e. a mapping E : X × X → L such that the
following three axioms are fulfilled for all x, y, z ∈ X:

1. E(x, x) = 1 - reflexivity;

2. E(x, y) ∗ E(y, z) ≤ E(x, z) - transitivity;

3. E(x, y) = E(y, x) - symmetry.

A mapping f : (X, EX) → (Y, EY ) is called extensional if

EX(x1, x2) ≤ EY (f(x1), f(x2))

for all x1, x2 ∈ X. L-valued sets and extensional mappings between them obviously
form a category which is denoted L-SET.

1in the original work the term L-equality was used
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Remark 2.14. In the paper [13] an L-valued set is called as an L-underdeterminate
set and an L-valued equality as an L-equality relation. For the particular choices of
cl-monoid an L-valued equality could be also called an M -equivalence relation (where
M = (L,≤, ∗)) [7], an L-equivalence [2], an M -valued similarity relation or an M -
similarity [14], a fuzzy equivalence relation w.r.t ∗ [3, 4],[6] and also a global M -valued
equality, ∗-equality and ∗-equivalence.

We continue with the definition of an L-E-order relation and an L-E-ordered set:

Definition 2.15. (cf. e. g. [13]) Let (X, E) be an L-valued set. By an L-E-order
relation on the L-valued set (X, E) we call an L-valued relation P : X ×X → L such
that the following three axioms are fulfilled for all x, y, z ∈ X:

1. E(x, y) ≤ P (x, y) - E-reflexivity;

2. P (x, y) ∗ P (y, z) ≤ P (x, z) - transitivity;

3. P (x, y) ∗ P (y, x) ≤ E(x, y) - E-antisymmetry.

A pair (X, P,E) is called L-E-ordered set.

In the sequel we use Definition 2.15 of L-E-order relation and we also give some
comments how concrete results depend on the definition of reflexivity and antisymmetry.

Remark 2.16. For the particular choices of cl-monoid an L-E-order relation could be
also called an M -E-partial ordering (where M = (L,≤, ∗)) [7] , a fuzzy ordering w.r.t ∗
or ∗-E-ordering [3, 4].

3. CATEGORY WHOSE OBJECTS ARE L-E-ORDERED SETS

3.1. Construction of the category

Our aim is to construct an analogue of the category of partially ordered sets (POS
or POSET). As we know in classical mathematics POS category can be constructed
from small categories (categories, where the class of objects is a set and the class of
morphisms is also a set). Actually we can observe each ordered set (X,≤) as a small
category where elements of a set are objects and morphism from an object x to an object
y exists if and only if x ≤ y. Then the functors between these small categories must
be order-preserving mappings of the corresponding ordered sets. Thus category POS
can be observed as a category whose objects are small categories and morphisms are
functors between them.

Our aim now is to construct a category whose objects are L-E-ordered sets. To realize
this construction we follow the construction of the crisp POS category. Thus, first we
observe a small category whose objects are elements of an L-E-ordered set. Further
we involve the degree to which each morphism is indeed the morphism of the category
and the degree to which each object is indeed the object of the category, thus we get
an L-valued category (a small L-valued category). Then we construct functors between
small categories. Finally we observe the category whose objects are small categories
and morphisms are functors between them. By the construction of category from small
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categories we show that this category is constructed in a natural way from the point of
view of L-valued categories.

For construction of the following small category we have to use a cl-monoid without
zero divisors.
Let L be a cl-monoid without zero divisors (α ∗ β = 0 ⇒ α = 0 or β = 0), P be
an L-E-order relation and (X, P,E) be an L-E-ordered set. Let us construct a small
category pos(X,P,E) which has as objects elements of L-E-ordered set:

• Objects: Ob(pos(X,P,E)) = {x : x ∈ X};

• Morphisms: f : x → y, f ∈ Mor(pos(X,P,E)) ⇔ P (x, y) > 0.

Now we should check that all properties of a category are fulfilled:

1. We first prove that if f ∈ Mor(pos(X,P,E)) and g ∈ Mor(pos(X,P,E)) then
f ◦ g ∈ Mor(pos(X,P,E)).
Let g : x → y, g ∈ Mor(pos(X,P,E)) and f : y → z, f ∈ Mor(pos(X,P,E)).
Then P (x, y) > 0 and P (y, z) > 0.
Thus P (x, z) ≥ P (x, y) ∗ P (y, z) > 0. Hence we obtain the existence of morphism
f ◦ g ∈ Mor(pos(X,P,E)). Here we used the property that the cl-monoid L is
without zero divisors to establish that P (x, y) ∗ P (y, z) > 0 since P (x, y) > 0 and
P (y, z) > 0.

2. Let us prove the associativity condition for morphisms:
f, g, h ∈ Mor(pos(X,P,E)) ⇒ (f ◦ g) ◦ h = f ◦ (g ◦ h).

Assume that h : t → x, g : x → y, f : y → z. From the previous consideration
we can conclude that compositions (f ◦ h) ◦ h and f ◦ (g ◦ h) exist. We know that
from t to z exists only one morphism, hence (f ◦ g) ◦ h = f ◦ (g ◦ h).

3. P (x, x) = 1, this means that there exists an identity morphism idx : x → x.
Obviously f ◦ idx = f for all f : x → y and idx ◦ h = h for all h : z → x.

Remark 3.1. Since the antisymmetry is defined by the means of L-valued equality,
there could exist morphisms in the both ways between objects x and y: from x to y and
from y to x. But in the case of antisymmetry from Definition 2.12, since L is without
zero divisors we conclude that for all x 6= y P (x, y) = 0 or P (y, x) = 0. This means that
only one morphism between objects x and y could exist: either from x to y or from y
to x.

Now let us involve an L-valued subclass of the class of morphisms as a mapping from
the class of morphisms to the cl-monoid L

µ : Mor(pos(X,P,E)) → L

in the following way:
f : x → y ⇒ µ(f) = P (x, y)

and an L-valued subclass of the class of objects as a mapping from the class of objects
to the cl-monoid L

ω : Ob(pos(X,P,E)) → L
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x ∈ X ⇒ ω(x) = 1.

We have constructed a small L-valued category

L-pos(X,P,E) = (Ob(pos(X,P,E)), ω,Mor(pos(X,P,E)), µ, ◦).

Remark 3.2. Intuitively the value µ(f) is the degree to which a potential morphism
f : x → y of the category is indeed its morphism, this means the degree to which x is
less or equal to y, what is actually characterized by the value P (x, y).

Let us verify all necessary properties for the L-valued category:

• The condition that µ(f) ≤ ω(x) ∧ ω(y) for all x, y ∈ Ob(L-pos(X,P,E)) and

for all f : x → y is obvious since ω(x) = ω(y) = 1.

• The next property we have to prove is µ(g ◦ f) ≥ µ(g) ∗ µ(f) , if the morphism
g ◦ f exists:

Let f : x → y and g : y → z.

Then by transitivity of the L-E-order P we have
µ(g ◦ f) = P (x, z) ≥ P (x, y) ∗ P (y, z) = µ(f) ∗ µ(g).

• Obviously µ(idx) = ω(x), where idx is the identity morphism.

Thus we have proven that the category L-pos(X,P,E) is constructed correctly.

Let us construct a functor F from one small category to another. Let L-pos(X,P,E)

and L-pos(Y,P ′,E′) be L-valued categories. We construct a functor F from the category
L-pos(X,P,E) to the category L-pos(Y,P ′,E′) such that E(x1, x2) ≤ E′(F (x1), F (x2)).

The necessary condition for F to be a functor is:

∀f ∈ Mor(L-pos(X,P,E)) µL-pos(X,P,E)(f) ≤ µL-pos(Y,P ′,E′)(F (f)).

This means that P (x1, x2) ≤ P ′(F (x1), F (x2)).

x1
F−−−−→ F (x1)

f

y yF (f)

x2
F−−−−→ F (x2)

P (x1, x2) ≤ P ′(F (x1), F (x2))

Let us prove that this is also a sufficient condition for F to be a functor:

1. f ∈ MorL-pos(X,P,E)(x1, x2) ⇒ P (x1, x2) > 0 ⇒
⇒ P ′(F (x1), F (x2)) > 0 ⇒ F (f) ∈ MorL-pos(Y,P ′,E′)(F (x1), F (x2)).

2. If the composition g ◦ f is defined, then F (g ◦ f) = F (g) ◦ F (f)

(f ∈ MorL-pos(X,P,E)(x1, x2), g ∈ MorL-pos(X,P,E)(x2, x3)) , because of the existence
of only one morphism from F (x1) to F (x3).
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3. F (idx) = idF (x) for all x ∈ Ob(L-pos(X,P,E)), because of the existence of only one
morphism from F (x) to F (x).

We have proven that the functor was constructed correctly.
Let us define the category POS(L) (the analogue of crisp POS category) as a cat-

egory of small categories. The objects of POS(L) will be L-E-ordered sets (categories
of the type L-pos) and the morphisms will be functors between them.

POS(L) = (Ob(POS(L)),Mor(POS(L)), ◦)

• Objects: Ob(POS(L)) = {(X, P,E)} where (X, P,E) are L-E-ordered sets;

• Morphisms: Mor(POS(L)) = {f : (X, P,E) → (Y, P ′, E′) | ∀x1, x2 ∈ X
E(x1, x2) ≤ E′(f(x1), f(x2)); P (x1, x2) ≤ P ′(f(x1), f(x2))}.

Remark 3.3. If we use Definition 2.12 the constructions of the category
L-pos and the category POS(L) are the same. We only have to skip the property
E(x1, x2) ≤ E′(f(x1), f(x2)) for the morphisms of the category POS(L).

Remark 3.4. In the sequel we say that a mapping f : (X, P,E) → (Y, P ′, E′) is order-
preserving if for all x1, x2 ∈ X P (x1, x2) ≤ P ′(f(x1), f(x2)).

Remark 3.5. The property that a cl-monoid L is without zero divisors was useful only
for the construction of the category of the type pos and, namely, for the existence of
composition. If we are not interested in the construction we can define the category
POS(L) straightway and skip the above mentioned condition for a cl-monoid.

3.2. Properties of the category

Our next aim is to consider some properties of the category POS(L). We are going
to study some special objects, morphisms and some standard constructions of POS(L)
category.

We begin by studying some properties of POS(L) category.

Proposition 3.6. The category POS is a full subcategory of the category POS(L).

P r o o f . We have to prove that for all (X,≤) and (Y,≤′), MorPOS((X,≤), (Y,≤′)) =
MorPOS(L)((X, χ≤, χ=), (Y, χ≤′ , χ=′)), where χ≤ : X ×X → L such that χ≤(x, y) = 1
if x ≤ y and χ≤(x, y) = 0 otherwise; χ=(x, y) = 1 if x = y and χ=(x, y) = 0
otherwise. This is obvious since for crisp ordered sets (X,≤) and (Y,≤′) the condi-
tion of preserving order for the function f is equivalent to the condition χ≤(x1, x2) ≤
χ≤′(f(x1), f(x2)). �

Proposition 3.7. Let L1 and L2 be two isomorphic cl-monoids (ϕ is an isomorphism)
and POS(L1), POS(L2) correspondent categories. Then we can define the functor
F : POS(L1) → POS(L2) such that F ((X, P1, E1)) = (X, P2, E2), where
E2(x1, x2) = ϕ(E1(x1, x2)), P2(x1, x2) = ϕ(P1(x1, x2)) and F (f) = f . Thus defined
functor F is an isomorphism and categories POS(L1) and POS(L2) are isomorphic.
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Proposition 3.8. If L1 and L2 are cl-monoids and ϕ : L1 ↪→ L2 is an order-embedding
and operation-preserving mapping then POS(L1) is isomorphic to POS(ϕ(L1)), which
is a full subcategory of the category POS(L2).

P r o o f . We define the functor F : POS(L1) → POS(ϕ(L1)) as in previous proposition.
Thus defined functor F is an isomorphism and categories POS(L1) and POS(ϕ(L1))
are isomorphic. It is easy to see that Ob(POS(ϕ(L1))) ⊆ Ob(POS(L2)) and that
MorPOS(ϕ(L1))((X, P ), (Y, P ′)) = MorPOS(L2)((X, P ), (Y, P ′)), where (X, P ), (Y, P ′) ∈
Ob(POS(ϕ(L1))). �

Proposition 3.9. The category POS(L) is a connected category.

P r o o f . To prove that the category POS(L) is a connected category we should show
that for every two objects (X, P,E) and (Y, P ′, E′) (X and Y are nonempty sets)
MorPOS(L)((X, P,E), (Y, P ′, E′)) 6= ∅, that means there exists a morphism
f : (X, P,E) → (Y, P ′, E′).
Let us fix objects (X, P,E) and (Y, P ′, E′). Further we build a morphism
f : (X, P,E) → (Y, P ′, E′) in the following way: f(x) = y0 for all x ∈ X where
y0 is a fixed element from the set Y . Obviously E(x1, x2) ≤ E′(f(x1), f(x2)) since
E′(f(x1), f(x2)) = E′(y0, y0) = 1 and P (x1, x2) ≤ P ′(f(x1), f(x2)) since
P ′(f(x1), f(x2)) = P ′(y0, y0) = 1. �

We continue by considering special objects in the category POS(L).

Proposition 3.10. Empty set is the unique initial object in POS(L).

Proposition 3.11. The singleton set with the uniquely constructed L-valued equality
E1 and L1-E1-order is the terminal object in POS(L).

Proposition 3.12. There are no zero objects in POS(L).

We continue by considering special morphisms in the category POS(L).

Proposition 3.13. A morphism f : (X, P,E) → (Y, P ′, E′) is a monomorphism if and
only if f is an injective mapping.

P r o o f . The sufficiency is obvious. We continue by proving the necessity.
If the mapping f : (X, P,E) → (Y, P ′, E′) is not an injection then there exist two ele-
ments x1 and x2 in the set X such that x1 6= x2 but f(x1) = f(x2).
Let (Z,PZ , EZ) be an L-EZ-ordered set such that Z = {z}, PZ(z, z) = 1,
EZ(z, z) = 1 and let u, v : Z → X be functions such that u(z) = x1 but v(z) = x2.
Thus, obviously f ◦ u = f ◦ v but u 6= v. Hence f is not a monomorphism. �

Proposition 3.14. A morphism f : (X, P,E) → (Y, P ′, E′) is an epimorphism if and
only if f is a surjection.
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P r o o f . The sufficiency is obvious. We continue by proving the necessity.
If the mapping f : (X, P,E) → (Y, P ′, E′) is not a surjection then there exists an ele-
ment y0 in the set Y such that ∀x ∈ X f(x) 6= y0.
Let Z = Y

⋃
{z}, the L-valued equality E′′ and L-E′′-order P ′′ on the set Z we define

in the following way:

P ′′(y1, y2) = P ′(y1, y2), E′′(y1, y2) = E′(y1, y2) if y1, y2 ∈ Y ;

P ′′(z, y) = P ′(y0, y), E′′(z, y) = E′(y0, y) if y ∈ Y and y 6= y0;

P ′′(y, z) = P ′(y, y0), E′′(y, z) = E′(y, y0) if y ∈ Y and y 6= y0;

P ′′(y0, z) = 1, E′′(y0, z) = 1;

P ′′(z, y0) = 1, E′′(z, y0) = 1;

P ′′(z, z) = 1, E′′(z, z) = 1.

It is easy to verify that E′′ is an L-valued equality and P ′′ fulfills all necessary condi-
tion: E′′-reflexivity, transitivity and E′′-antisymmetry. Let us define now the functions
u : (Y, P ′, E′) → (Z,P ′′, E′′) and v : (Y, P ′, E′) → (Z,P ′′, E′′) in the following way:
u(y) = y for all y ∈ Y ; v(y) = 0 if y 6= y0, v(y) = z otherwise. Obviously, functions u
and v are extensional, order-preserving mappings and u ◦ f = v ◦ f but u 6= v. Hence f
is not an epimorphism. �

Remark 3.15. In the case of definition of L-valued order 2.11 the relation P ′′ for the
elements (z, y0) should be defined as P ′′(z, y0) = 0. The other part of the proof is
similar.

From the previous two propositions and the definition of bimorphism we get the
following proposition:

Proposition 3.16. A morphism f : (X, P,E) → (Y, P ′, E′) is a bimorphism if and only
if f is a bijection.

We know that in the category POS not every injection is a section, not every sur-
jection is a retraction and not every bijection is an isomorphism. Provided that the
category POS is a full subcategory of the category POS(L), in the category POS(L)
we can find injections which are not sections, surjections which are not retractions and
bijections which are not isomorphisms. Hence the category POS(L) is not balanced.

A morphism f : (X, P,E) → (Y, P ′, E′) is an isomorphism in the category POS(L)
if and only if it is a bijection, E(x1, x2) = E′(f(x1), f(x2)) and
P (x1, x2) = P ′(f(x1), f(x2)) for all x1, x2 ∈ X.

We now turn to the study of special constructions in the category POS(L).

Theorem 3.17. The product of a family ((Xi, Pi, Ei))i∈I of POS(L) objects is a pair
((

∏
i Xi, P∧, E∧), (πi)i∈I), where

∏
i Xi = {f : I →

⋃
i Xi | ∀i f(i) ∈ Xi},

E∧(f, h) =
∧

i∈I Ei(f(i), h(i)), P∧(f, h) =
∧

i∈I Pi(f(i), h(i)) and
πi : (

∏
i Xi, P∧, E∧) → (Xi, Pi, Ei) is defined by πi(f) = f(i).

If I is a finite set then the Theorem 3.17 reduces to the following (more lucid) form:
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Theorem 3.17’. The product of a family ((Xi, Pi, Ei))i∈{1,n} of POS(L) objects is a
pair ((X1 ×X2 × · · · ×Xn, P∧, E∧), (πi)i∈{1,n}), where
E∧((a1, a2, . . . , an), (b1, b2, . . . , bn)) =

∧
i Ei(ai, bi),

P∧((a1, a2, . . . , an), (b1, b2, . . . , bn)) =
∧

i Pi(ai, bi) and
πi : (

∏
i Xi, P∧, E∧) → (Xi, Pi, Ei) is defined by πi((a1, a2, . . . , an)) = ai.

Here we prove the general Theorem 3.17.

P r o o f .

• Let us prove that (
∏

i Xi, P∧, E∧) is an object in the category POS(L). This
means we should prove that E∧ is an L-valued equality and P∧ is an L-E∧-order
relation. We skip the proof that E∧ is an L-valued equality since it is similar to
the proof that P∧ is an L-E∧-order relation. We now turn to prove E∧-reflexivity,
transitivity and E∧-antisymmetry of the L-E∧-order relation P∧:

– Since all relations Pi are Ei-reflexive Ei(f(i), g(i)) ≤ Pi(f(i), g(i)) for all
i ∈ I. Therefore

∧
i Ei(f(i), g(i)) ≤

∧
i Pi(f(i), g(i)) for all f, g .

Thus E∧(f, g) ≤ P∧(f, g). We have proven the E∧-reflexivity of
L-E∧-order relation P∧.

– P∧(f, g) ∗ P∧(g, h) =
=

∧
i Pi(f(i), g(i)) ∗

∧
i Pi(g(i), h(i)) ≤

∧
i(Pi(f(i), g(i)) ∗ Pi(g(i), h(i))) ≤

≤
∧

i Pi(f(i), h(i)) = P∧(f, h). We have proven the transitivity of
L-E∧-order relation P∧.

– We have to prove that for all f, g P∧(f, g) ∗ P∧(g, f) ≤ E∧(f, g):
P∧(f, g) ∗ P∧(g, f) =
=

∧
i Pi(f(i), g(i)) ∗

∧
i Pi(g(i), f(i)) ≤

∧
i(Pi(f(i), g(i)) ∗ Pi(g(i), f(i))) ≤

≤
∧

i Ei(f(i), g(i)) = E∧(f, g). We have proven the E∧-antisymmetry of
L-E∧-order relation P∧.

• We proceed to show that πj are morphisms for all j ∈ I:

E∧(f, h) =
∧

i∈I Ei(f(i), h(i)) ≤ Ej(f(j), h(j)) = Ej(πj(f), πj(h)) for all j ∈ I;
P∧(f, h) =

∧
i∈I Pi(f(i), h(i)) ≤ Pj(f(j), h(j)) = Pj(πj(f), πj(h)) for all j ∈ I.

• The task is now to prove that for each pair ((C,PC , EC), (pi)i∈I), where (C,PC , EC)
is a POS(L) object and for each j ∈ I,
pj : (C,PC , EC) → (Xj , Pj , Ej) is a morphism there exists a unique POS(L)
morphism q : (C,PC , EC) → (

∏
i Xi, P∧, E∧) such that for each j ∈ I, the triangle

(C,PC , EC)
q

> (
∏

i

Xi, P∧, E∧)

(Xj , Pj , Ej)

πj

∨
pj

>

commutes.
Let us first prove the existence of the morphism q.
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We define q : (C,PC , EC) → (
∏

i Xi, P∧, E∧) in the following way:

∀c ∈ C q(c) = fc : fc(j) = pj(c) ∀j ∈ I.

We have to prove that q is an extensional, order-preserving mapping:
We know that pj is an extensional, order-preserving mapping for all j ∈ I. This
means that EC(c1, c2) ≤ Ej(pj(c1), pj(c2)) and PC(c1, c2) ≤ Pj(pj(c1), pj(c2))
for all j ∈ I.
Thus EC(c1, c2) ≤

∧
i Ei(pi(c1), pi(c2)) = E∧(fc1 , fc2) = E∧(q(c1), q(c2));

PC(c1, c2) ≤
∧

i Pi(pi(c1), pi(c2)) = P∧(fc1 , fc2) = P∧(q(c1), q(c2)).

Now it is sufficient to prove that the above diagram commutes and that q is the
unique morphism for which this diagram commutes. The proof is similar as in the
case of product in the category SET.

�

The scheme of the proof for the following construction is similar, so we leave the
proposition without proof.

Theorem 3.18. A coproduct of a family ((Xi, Pi, Ei))i∈I of POS(L) objects is a pair
((µi)i∈I , (

⋃
i Xi, P∪, E∪)) where

⋃
i Xi is disjoint union,

E∪(a, b) =

{
Ei(a, b), if a, b ∈ Xi

0, otherwise
; P∪(a, b) =

{
Pi(a, b), if a, b ∈ Xi

0, otherwise

and µi : (Xi, Pi, Ei) → (
⋃

i Xi, P∪, E∪) such that µi(a) = a.

4. L-VALUED ANALOGUE OF POS(L) CATEGORY

We describe here three different L-valued categories whose objects are L-E-ordered sets:

1. Let us introduce the mapping µ for the category POS(L) described in the previous
section in the following way:

µ(f) = inf
x1,x2∈X

(P ′(f(x1), f(x2)) 7→ P (x1, x2))

where f : (X, P ) → (Y, P ′), f ∈ Mor(POS(L)) and the mapping ω:
ω((X, P,E)) = 1 where (X, P,E) is the objects of the category POS(L).
In this case we obtain the category, where the intuitive meaning of the value µ(f)
is the degree to which a morphism f is an order-reflecting mapping. Thus the
obtained L-valued category is something more than just an L-valued analogue of
POS category, because all morphisms are order-preserving mappings, but addi-
tionally we introduce the “order-reflecting” degrees for the morphisms. It is worth
to mention that the bottom frame of this L-valued category is exactly the category
POS(L). This approach was investigated in [20] and we do not discuss it here.
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2. The idea of the second approach is not to use the following order-preserving prop-
erty: P (x1, x2) ≤ P ′(f(x1), f(x2)) for the morphism f : (X, P ) → (Y, P ′), but to
use the graded order-preserving property described by the mapping µ:

µ(f) = inf
x1,x2∈X

(P (x1, x2) 7→ P ′(f(x1), f(x2))).

In this case we obtain an L-valued analogue of the POS(L) category. To be more
formal we describe this case by applying the scheme proposed in paper [23]. In
our case the scheme can be described as follows.

Let φ : POS(L) → L-SET be the functor assigning to each POS(L) object
(X, P,E) the support set (X, E) and leaving morphisms unchanged. Then accord-
ing to the scheme we come to the category POS(L)L-SET. Its objects are the
same as in POS(L), but its morphisms are all mappings between the correspond-
ing support sets. Starting from this category as the crisp bottom frame we define
the L-valued category L-POS(L) by setting ω((X, P,E)) = 1 for every L-POS(L)
object (X, P,E) and the mapping µ which is introduced above.

3. The idea of the third approach is not to use the following order-preserving property:
P (x1, x2) ≤ P ′(f(x1), f(x2)) for the morphism f : (X, P ) → (Y, P ′), but use the
graded order-preserving-and-reflecting property described by the mapping µ:

µ(f) = inf
x1,x2∈X

(P (x1, x2) ↔ P ′(f(x1), f(x2))).

In this case we obtain something more than just an L-valued analogue of the
POS(L) category.

In the section below we consider only constructions 2 and 3. But we study the
properties of the category of the form 2 only, because it is a direct L-valued ana-
logue of POS(L) category.

4.1. Construction of the category

Let us observe the category L-POS(L).
L-POS(L)-objects are L-E-ordered sets and L-POS(L)-morphisms are extensional

mappings between them.

L-POS(L) = (Ob(L-POS(L)), ω,Mor(L-POS(L)), µ, ◦),

where
µ(f) = inf

x1,x2∈X
(P (x1, x2) 7→ P ′(f(x1), f(x2)))

for f : (X, P,E) → (Y, P ′, E′) and

∀(X, P,E) ∈ Ob(L-POS(L)) ω((X, P,E)) = 1.

Theorem 4.1.

L-POS(L) = (Ob(L-POS(L)), ω,Mor(L-POS(L)), µ, ◦)

is an L-valued category.



158 O. GRIGORENKO

P r o o f . It is obvious that Ob(L-POS(L)) and Mor(L-POS(L)) form a crisp cate-
gory, thus we have to prove the conditions for the mappings µ and ω, the part which
characterizes the L-valued case.

1. µ(f) ≤ ω((X, P,E))∧ω((Y, P ′, E′)) for all (X, P,E), (Y, P ′, E′) ∈ Ob(L-POS(L))
and for all f ∈ MorL-POS(L)((X, P,E), (Y, P ′, E′)),
since ω((X, P,E)) = 1 and ω((Y, P ′, E′)) = 1.

2. Let us prove that µ(g ◦ f) ≥ µ(g) ∗ µ(f) where f : (X, P,E) → (Y, P ′, E′),
g : (Y, P ′, E′) → (Z,P ′′, E′′) and x1, x2 ∈ X :

µ(g ◦ f) = inf
x1,x2

(P (x1, x2) 7→ P ′′(g(f(x1)), g(f(x2)))) ≥

≥ inf
x1,x2

((P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗

∗ (P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2))))) ≥
≥ inf

x1,x2
(P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗

∗ inf
x1,x2

(P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2)))) ≥

≥ inf
x1,x2

(P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗

∗ inf
y1,y2

(P ′(y1, y2) 7→ P ′′(g(y1), g(y2))) =

= µ(f) ∗ µ(g).

We obtain that µ(g ◦ f) ≥ µ(g) ∗ µ(f).

We have used the properties of the cl-monoid and the following inequality in the
proof :

inf
x1,x2

(P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2)))) ≥

≥ inf
y1,y2

(P ′(y1, y2) 7→ P ′′(g(y1), g(y2))).

This follows from the fact that:

{ P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2))) : x1, x2 ∈ X} ⊆
⊆ { P ′(y1, y2) 7→ P ′′(g(y1), g(y2)) : y1, y2 ∈ Y }.

3. µ(id(X,P,E)) = inf
x1,x2

(P (x1, x2) 7→ P (x1, x2)) = 1 = ω((X, P,E)).

�

Now let us define the category FL-POS(L) which we have discussed in the third
clause of the previous section. It is worth to mention that the only difference between
L-valued category FL-POS(L) and L-valued category L-POS(L) is in the choice of
mapping µ.
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FL-POS(L)-objects are L-E-ordered sets and FL-POS(L)-morphisms are exten-
sional mappings.

FL-POS(L) = (Ob(FL-POS(L)), ω,Mor(FL-POS(L)), µ, ◦), where
Ob(FL-POS(L)) = {(X, P,E) | (X, P,E) is an L-E-ordered set};
Mor(FL-POS(L)) = {f : (X, P,E) → (Y, P ′, E′) |
∀x1, x2 ∈ X E(x1, x2) ≤ E′(f(x1), f(x2))};
µ(f) = inf

x1,x2∈X
(P (x1, x2) ↔ P ′(f(x1), f(x2))), where

f : (X, P,E) → (Y, P ′, E′);
ω((X, P,E)) = 1 ∀(X, P,E) ∈ Ob(FL-POS(L)).

Theorem 4.2.

FL-POS(L) = (Ob(FL-POS(L)), ω,Mor(FL-POS(L)), µ, ◦)

is an L-valued category.

P r o o f . All properties of an L-valued category (except the property
µ(g ◦ f) ≥ µ(g) ∗ µ(f)) are straightforward. It is only necessary to prove that

inf
x1,x2

(P (x1, x2) ↔ P ′′(g(f(x1)), g(f(x2)))) ≥

≥ inf
x1,x2

(P (x1, x2) ↔ P ′(f(x1), f(x2))) ∗ inf
y1,y2

(P ′(y1, y2) ↔ P ′′(g(y1), g(y2)))

where f : (X, P,E) → (Y, P ′, E′), g : (Y, P ′, E′) → (Z,P ′′, E′′),
x1, x2 ∈ X and y1, y2 ∈ Y :

inf
x1,x2

(P (x1, x2) ↔ P ′′(g(f(x1)), g(f(x2)))) =

= inf
x1,x2

((P (x1, x2) 7→ P ′′(g(f(x1)), g(f(x2)))) ∗

∗(P ′′(g(f(x1)), g(f(x2))) 7→ P (x1, x2))) ≥
≥ inf

x1,x2
((P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗

∗(P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2)))) ∗
∗(P ′′(g(f(x1)), g(f(x2))) 7→ P ′(f(x1), f(x2))) ∗
∗(P ′(f(x1), f(x2)) 7→ P (x1, x2))) ≥

≥ inf
x1,x2

((P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗ (P ′(f(x1), f(x2)) 7→ P (x1, x2))) ∗

∗ inf
x1,x2

((P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2)))) ∗

∗(P ′′(g(f(x1)), g(f(x2))) 7→ P ′(f(x1), f(x2)))) ≥
≥ inf

x1,x2
((P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗ (P ′(f(x1), f(x2)) 7→ P (x1, x2)))) ∗

∗ inf
y1,y2

((P ′(y1, y2) 7→ P ′′(g(y1), g(y2))) ∗ (P ′′(g(y1), g(y2)) 7→ P ′(y1, y2)))) =

= inf
x1,x2

(P (x1, x2) ↔ P ′(f(x1), f(x2))) ∗ inf
y1,y2

(P ′(y1, y2) ↔ P ′′(g(y1), g(y2))).

�
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Remark 4.3. If the value of a mapping ω is equal to 1 for all objects of an L-valued
category we do not write it. For instance we will write

L-POS(L) = (Ob(L-POS(L)),Mor(L-POS(L)), µ, ◦).

4.2. Properties of the category

In this section we study properties of the category L-POS(L).

Proposition 4.4. If we consider the crisp category POS as an L-valued category
POS = (Ob(POS),Mor(POS), µPOS, ◦), where µPOS(f) is equal to 1 if and only if f
is an order-preserving mapping and 0 otherwise, then the category POS is an L-valued
subcategory of the category L-POS(L).

We continue by considering special objects and special morphisms in the category
L-POS(L).

Proposition 4.5. The empty set is the unique initial (1-initial) object in L-POS(L).

Proposition 4.6. The singleton set with the uniquely constructed L1-E1-order on it is
the terminal (1-terminal) object in L-POS(L).

Proposition 4.7. There are no α-zero objects in L-POS(L).

Proposition 4.8. An α-morphism f : (X, P ) → (Y, P ′) is a β-monomorphism (for any
β ∈ L) if and only if f is an injective mapping.

Proposition 4.9. An α-morphism f : (X, P ) → (Y, P ′) is a β-epimorphism (for any
β ∈ L) if and only if f is a surjection.

Proposition 4.10. An α-morphism f : (X, P ) → (Y, P ′) is a β-bimorphism (for any
β ∈ L) if and only if f is a bijection.

We continue by describing product in the category L-POS(L). To do this we define
the product in the context of L-valued categories.

Let C = (Ob(C),Mor(C), µ, ◦) be an L-valued category.

Definition 4.11. A pair (
∏

i Xi, (πi)i∈I) is an α-product of a family (Xi)i∈I of
C-objects if and only if:

•
∏

i Xi is a C-object;

• πi are C-morphisms such that infi µ(πi) ≥ α;

• for each pair (C, (pi)i∈I), where C is a C-object and for each j ∈ I,
pj : C → Xj is a C-morphism and µ(pj) ≥ µ(πj) there exists a unique
C-morphism qC : C →

∏
i Xi such that µ(qC) ≥ α and for each j ∈ I, the triangle

C
qC

>
∏

i

Xi

Xj

πj

∨
pj

>

commutes.
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Now we propose an alternative definition where we try to separate the “crisp” and
the “fuzzy parts”, but first we should define the notion of an α-source.

Definition 4.12. An α-source in an L-valued category C is a pair (X, (fi)i∈I), where
X is a C-object and (fi : X → Xi)i∈I is a family of C-morphisms each with domain X
and infi µ(fi) ≥ α.

Definition 4.13. An α-source (
∏

i Xi, (πi)i∈I) in an L-valued category C is an
α-product of a family (Xi)i∈I of C-objects if and only if it is a product in a crisp category
C = (Ob(C),Mor(C), ◦) and for each α-source (C, (pi)i∈I) (for all j ∈ I, pj : C → Xj

and µ(pj) ≥ µ(πj)) such that qC is a unique morphism qC : C →
∏

i Xi

µ(qC) ≥ α.

We observe some α-products of a family ((Xi, Pi, Ei))i∈{1,n} of L-POS(L) objects,
where L is a concrete cl-monoid in the next examples.

Example 4.14. Let L be a cl-monoid. A pair ((X1 × · · · ×Xn, P∧, E∧), (πi)i∈{1,n}) is
a 1-product of a family ((Xi, Pi, Ei))i∈{1,n} of L-POS(L) objects, where
E∧((a1, a2, . . . , an), (b1, b2, . . . , bn)) =

∧
i Ei(ai, bi),

P∧((a1, a2, . . . , an), (b1, b2, . . . , bn)) =
∧

i Pi(ai, bi) and
πi : (

∏
i Xi, P∧, E∧) → (Xi, Pi, Ei) are defined by πi((a1, a2, . . . , an)) = ai.

In the next two examples for the brevity of explanation the relations Ei for all i are
crisp equivalence relations: Ei(a, b) = 1 if a = b, Ei(a, b) = 0 otherwise and the relation
E∧ will be defined as follows:
E∧((a1, a2, . . . , an), (b1, b2, . . . , bn)) =

∧
i Ei(ai, bi).

Example 4.15. Let L = ([0, 1],≤,∧,∨, T, 7→T ) be a cl-monoid, where T is a t-norm
without zero divisors, 7→T is a corresponding residuum and let Aω be the weakest ag-
gregation function defined by:

Aω(x1, x2, . . . , xn) =

{
1, x1 = x2 = . . . = xn = 1
0, otherwise

.

The requirement on a family ((Xi, Pi, Ei))i∈{1,n} of L-POS(L)-objects is that sets Xi

are not empty sets and there exists an index j such that ∃ aj , bj ∈ Xj :
Pj(aj , bj) ∈ (0, 1).

Then a pair ((X1 × · · · ×Xn, PAω , E∧), (πi)i∈{1,n}) is a 0-product of a family
((Xi, Pi, Ei))i∈{1,n} of L-POS(L) objects, where
PAω ((a1, · · · , an), (b1, . . . , bn)) = Aω(P1(a1, b1), . . . , Pn(an, bn)) and
πi : (

∏
i Xi, PAω , E∧) → (Xi, Pi, Ei) are defined by πi((a1, a2, . . . , an)) = ai.

For example, for L-POS(L)-morphism
h : (X1 × · · · ×Xn, P∧, E∧) → (X1 × · · · ×Xn, PAω , E∧) µ(h) is equal to 0 if the above
conditions are fulfilled.
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Example 4.16. Let L = ([0, 1],≤,∧,∨, TL, 7→TL
) be a cl-monoid, where TL is  Lukasiewicz

t-norm and 7→TL
is the corresponding residuum.

Then a pair ((X1 ×X2, PTL
, E∧), (πi)i∈{1,2}) is a 0.5-product of a family

((Xi, Pi, Ei))i∈{1,2} of L-POS(L) objects, where
PTL

((a1, a2), (b1, b2)) = TL(P1(a1, b1), P2(a2, b2)) and
πi : (

∏
i Xi, PTL

, E∧) → (Xi, Pi, Ei) are defined by πi((a1, a2)) = ai.

P r o o f . We know that for the  Lukasiewicz t-norm TL (as it is a left-continuous t-
norm) x 7→TL

y = 1 ⇔ x ≤ y. Obviously TL(P1(a1, b1), P2(a2, b2)) ≤ Pi(ai, bi) for
all i and for all ai, bi ∈ Xi. Thus µ(πi) = 1 for all i. So for every other source
((C,PC , EC), (fi)i∈{1,2}), where µ(πi) ≤ µ(fi) we know that µ(fi) = 1 and then PC(c1, c2)
≤ Pi(fi(c1), fi(c2)) for all c1, c2 ∈ C.

Thus there exists unique morphism hC : (C,PC , EC) → (X1 × X2, P∧, E∧) such that
PC(c1, c2) ≤ P∧(hC(c1), hC(c2)) (Proposition 3.15.), where
P∧((a1, a2), (b1, b2)) = P1(a1, b1) ∧ P2(a2, b2). This gives µ(hC) = 1. Thus for ev-
ery morphism qC : (C,PC , EC) → (X1 × X2, PTL

, E∧) the following inequality holds:
µ(qC) ≥ µ(eX1×X2) ∗ µ(hC), where eX1×X2 : (X1 ×X2, P∧, E∧) → (X1 ×X2, PTL

, E∧)
such that eX1×X2((x1, x2)) = (x1, x2). It is easy to calculate that µ(eX1×X2) ≥ 0.5, thus
µ(qC) ≥ 0.5. �

In the same way we could define and investigate other special constructions, but for
the sake of brevity we do not do it here.

5. CONCLUSION

In the paper we have constructed the L-valued category whose objects are L-E-ordered
sets and morphisms are “potential” order-preserving mappings. To realize the construc-
tion we have introduced the degree (for the class of potential morphisms) to which each
morphism is an order-preserving mapping, or, in other words, monotone mapping. In
the natural way we can use this idea for some practical applications. For example to
construct an aggregation process in the context of L-valued POS categories and by this
define the graded property of monotonicity for the aggregation function (see e. g. [10]).

It is also possible to apply the above idea to the aggregation of fuzzy relations,
namely, to the aggregation of fuzzy orders. Our proposition is to involve the degree to
which aggregation operator preserves properties of fuzzy relations. So we will be able
to calculate this degree for any aggregation function (not only for aggregation operators
which preserve properties of fuzzy relations), see e. g. [11].

In the future we are going to apply the properties of constructed categories for the
above mentioned practical applications.
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