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CAUCHY PROBLEMS FOR DISCRETE AFFINE
MINIMAL SURFACES

Marcos Craizer, Thomas Lewiner, and Ralph Teixeira

Abstract. In this paper we discuss planar quadrilateral (PQ) nets as discrete
models for convex affine surfaces. As a main result, we prove a necessary and
sufficient condition for a PQ net to admit a Lelieuvre co-normal vector field.
Particular attention is given to the class of surfaces with discrete harmonic
co-normals, which we call discrete affine minimal surfaces, and the subclass of
surfaces with co-planar discrete harmonic co-normals, which we call discrete
improper affine spheres. Within this classes, we show how to solve discrete
Cauchy problems analogous to the Cauchy problems for smooth analytic
improper affine spheres and smooth analytic affine minimal surfaces.

1. Introduction

Discrete differential geometry has attracted much attention recently, mainly due
to the growth of computer graphics. One of the main issues in discrete differen-
tial geometry is to define suitable discrete analogous of the concepts of smooth
differential geometry ([4]).

Some work have been done in discrete affine differential geometry of surfaces in
R3: In [3] a definition of discrete affine spheres is proposed, and the case of improper
affine spheres were considered in [9] and [11]. In [8], we gave a constructive definition
of discrete affine minimal surfaces with indefinite Berwald-Blaschke metric. In [3],
[9] and [11], surfaces with definite metric were modelled by planar quadrilateral
(PQ) nets, which are also called discrete conjugate nets. In [10], discrete affine
minimal surfaces are discussed, both in the definite and in the indefinite case.

The co-normal vector field associated with a PQ net is basic in this work. It is
defined by the discrete Lelieuvre’s equations and, when it exists, it is unique up
to black-white re-scaling. As a consequence, each co-normal vector is orthogonal
to the corresponding planar face. Also, similarly to the smooth case, the discrete
laplacian of the co-normal vector field is parallel to it.

But not every PQ net admit a Lelieuvre’s co-normal vector field. We prove here
a necessary and sufficient condition for this to occur in terms of certain volumes of
tetrahedra associated with the net. So we shall only consider in this paper PQ nets
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satisfying this condition and also an orientation condition insuring that the surface
is locally convex at the vertices.

Smooth affine minimal surfaces with definite metric are critical points of the
affine area functional. It was shown in [6, 7] that such surfaces in fact maximize
the affine area, and because of that they are sometimes called maximal surfaces.
In this paper we introduce a class of discrete surfaces that corresponds to these
surfaces. We shall call discrete affine minimal surface any member of this class.

The smooth affine minimal surfaces are also characterized by the fact that
the components of the co-normal vector fields are harmonic. We shall use the
corresponding discrete property as a definition of discrete minimal surfaces. A nice
consequence of this definition is that the discrete affine minimal surfaces admit a
discrete Weierstrass representation formula. In order to obtain explicit examples of
affine discrete minimal surfaces, it is better to start from the harmonic co-normal
vector fields.

We consider two Cauchy problems in this paper: one for improper affine spheres
and the other for affine minimal surfaces. The corresponding smooth analytic
problems were considered in [1] and [2]. We show here that the discrete problems
can be solved in a very simple way. The algorithms for solving these problems are
straightforward, although their implementations require some care with numerical
instabilities.

The paper is organized as follows: in Section 2 we review the basic equations of
smooth surfaces in affine geometry, with special attention to definite affine minimal
surfaces with isothermal parameters. In Section 3, we relate Lelieuvre’s co-normal
vector field with oriented PQ nets. In section 4, we discuss the definition of discrete
affine minimal surfaces and its consequences. In section 5, we consider the discrete
Cauchy problem for improper affine spheres, while in section 6 we consider the
discrete Cauchy problem for minimal surfaces.
Notation. Given two vectors V1, V2 ∈ R3, we denote by V1 × V2 the cross product
and by V1 · V2 the dot product between them. Given three vectors V1, V2, V3 ∈ R3,
we denote by [V1, V2, V3] = (V1 × V2) · V3 their determinant. For a discrete real
or vector function f defined on a domain D ⊂ Z2, we denote the discrete partial
derivatives with respect to u or v by

f1(u+ 1
2 , v) = f(u+ 1, v)− f(u, v)

f2(u, v + 1
2 ) = f(u, v + 1)− f(u, v) .

The second order partial derivatives are defined by

f11(u, v) = f(u+ 1, v)− 2f(u, v) + f(u− 1, v)
f22(u, v) = f(u, v + 1)− 2f(u, v) + f(u, v − 1)

f12
(
u+ 1

2 , v + 1
2
)

= f(u+ 1, v + 1) + f(u, v)− f(u+ 1, v)− f(u, v + 1) .

Acknowledgement. The first and second authors want to thank CNPq and
FAPERJ for financial support during the preparation of this paper.
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2. Review of affine concepts for smooth surfaces

In this section we review some affine concepts and equations of smooth surfaces.
Although we shall not use them explicitly, they are important for comparing with
the corresponding concepts and equations for discrete surfaces defined along this
paper.

An affine transformation of R3 is determined by an invertible linear transfor-
mation and a translation. An affine transformation is called equi-affine if the
determinant of its linear part is one. The affine concepts considered in this section
are all invariant under equi-affine transformations.

2.1. Affine concepts in isothermal coordinates. Consider a parameterized
smooth surface q : U ⊂ R2 → R3, where U is an open subset of the plane and
denote

L(u, v) = [qu, qv, quu] ,
M(u, v) = [qu, qv, quv] ,
N(u, v) = [qu, qv, qvv] .

The surface is non-degenerate if LN−M2 6= 0, and, in this case, the Berwald-Blaschke
metric is defined by

ds2 = 1
|LN −M2|1/4

(Ldu2 + 2Mdudv +Ndv2) .

If LN−M2 > 0, the metric is definite while if LN−M2 < 0, the metric is indefinite.
The Berwald-Blaschke metric is conformal to the second fundamental form. In the
definite case, the surface is locally convex, while in the indefinite case, the surface
is locally hyperbolic, i.e., the tangent plane crosses the surface.

Assume that the affine surface has definite metric. We can make a change of
coordinates such that L − N = M = 0. Such coordinates are called isothermal.
Moreover, we may assume that L = N > 0, and we define Ω by Ω2 = L = N . In
this case, the metric takes the form ds2 = Ω(du2 + dv2).

The vector field ν = qu×qv
Ω is called the co-normal vector field and satisfies

Lelieuvre’s equations

qu = −ν × νv ,
qv = ν × νu .

It also satisfies the equation νuu + νvv = HΩν, where H is a scalar function called
the affine mean curvature. The normal vector field is defined as ξ = quu+qvv

2Ω .
Affine minimal surfaces. A surface is called affine minimal if H = 0, or equi-
valently, if νuu + νvv = 0. Since ν is harmonic, we can consider an holomorphic
function Ψ(u, v) with imaginary part ν. The representation of q in terms of ν is
called the affine Weierstrass representation formula (see [12]).
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Improper affine spheres. An affine minimal surface is called an improper affine
sphere if the normal vector field ξ is parallel to a fixed direction, or equivalently, if
all co-normal vectors are co-planar. An improper affine sphere is locally the graph
of a function f satisfying the Monge-Ampère equation det(D2(f)) = 1. Considering
q(u, v) = (p(u, v), f(u, v)), with p(u, v) ∈ R2, in isothermal coordinates (u, v), the
Monge-Ampère equation can be re-written as
(1) fuu + fvv = 2[pu, pv] .

2.2. The analytic Cauchy Problem for improper affine spheres. We can
pose the Cauchy problem for improper affine spheres as follows: Given an analytic
curve q(s) in R3 and an analytic co-normal vector field ν(s) = (φ(s), 1), with
φ(s) ∈ R2, satisfying the compatibility condition ν · qs = 0 and the non-degeneracy
condition ν · qss > 0, find an improper affine sphere that contains q(s) with
co-normal ν(s) along it.

In [1] it is proved that this problem admits a unique solution. Moreover, they
describe a Weierstrass representation for the solution: Let z = s+ it be a conformal
parameter. Writing q = (p, f), we extend p1(s) + iφ2(s) and p2(s) − iφ1(s) to
holomorphic functions p1 + iφ2(z) and p2− iφ1(z). The component f is determined
by the condition ∇(f) = (−φ1,−φ2).

Example 1. Let q(s) = (s, s3 − 3s, 2s), s > 0, and ν(s) = (1 − 3s2, 1, 1). Then
p1(s) + iφ2(s) is a restriction of the holomorphic function z = s+ it to t = 1, and
p2(s)− iφ1(s) is a restriction of the holomorphic function z3 = (s+ it)3 to the same
line. Thus we have (p1, p2)(s, t) = (s, s3 − 3st2) and (φ1, φ2)(s, t) = (t3 − 3s2t, t).
The third coordinate f(s, t) is obtained from

fs = −φ1p1
s − φ2p2

s = 2t3

ft = −φ1p1
t − φ2p2

t = 6st2 ,

and so f(s, t) = 2st3. Note that Ω(s, t) = 6st > 0.

Surfaces with singular sets. Sometimes we can relax the non-degeneracy condi-
tion ν · qss > 0 and even so obtain an improper affine sphere, but in this case, with
singularities at the original curve. At the singular curve, the metric degenerates,
i.e., Ω = 0 (for details, see [1]).

Example 2. Let q(s) = (p1(s), p2(s), 0) be a convex plane curve and ν(s) = (0, 0, 1).
Following [1], we can obtain an improper affine sphere

q(s, t) = (p1(s, t), p2(s, t), f(s, t) with t = 0
as its singular set. It is also proved in [9] that f(s, t), t > 0, is the area of a plane
region bounded by some isothermal lines starting at (p1(s, t), p2(s, t)), tangent to
the curve, and an arc of the curve.

As a particular example, consider p(s) = (cos(s), sin(s), 0). Since cos(t+ is) =
cos(s) cosh(t) + i sin(s) sinh(t) is a holomorphic function extending p1(s, 0) and
−i sin(t + is) = sin(s) cosh(t) − i cos(s) sinh(t) is a holomorphic function exten-
ding p2(s, 0), we conclude that p1(s, t) = cos(s) cosh(t), p2(s, t) = sin(s) cosh(t),
φ1(s, t) = cos(s) sinh(t) and φ2(s, t) = sin(s) sinh(t). The third component f is
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obtained from fs = 0 and ft = − sinh(t)2. Thus f(s, t) = 1
2 (t− sinh(2t)

2 ). Observe
that Ω(s, t) = sinh(t) cosh(t)

2 vanishes at t = 0.

2.3. The analytic affine Cauchy Problem. The Cauchy problem concerns
finding affine maximal surfaces containing a prescribed strip. It is also called affine
Björling problem.

We shall call Problem I the following analytic affine Cauchy problem for minimal
surfaces: Given a curve q(s) together with a co-normal vector field ν(s) and a
normal vector field ξ(s) satisfying the compatibility equations qs · ν = 0, ξ · ν = 1,
ξs · ν = 0 and the non-degeneracy condition qss · ν > 0, find an affine maximal
surface containing q(s) with co-normal ν(s) and normal ξ(s) along the curve. In
[2], Problem I is shown to have a unique solution.

We can also consider Problem II, which is equivalent to Problem I: Given a
curve q(s) together with co-normal vector field ν(s) and a transversal derivative
vector field w(s) = νt(s) satisfying qs = w(s)× ν and ρ(s) = [ν, νs, w(s)] > 0, find
an affine maximal surface containing q(s) with co-normal vector field ν(s) and
transversal derivative w(s) along the curve.

To show that Problem II also admits a unique solution, define

ξ(s) = 1
ρ(s)νs × w(s) .

It is easy to see that the triple (q, ν, ξ) satisfies the conditions of Problem I and
thus there exists a unique surface q(s, t) with co-normal ν(s) and normal ξ(s) along
the initial curve. And this surface has transversal derivative w(s).

Let us describe the solution of Problem II: Given analytic functions ν and w, one
can obtain η(s) analytic satisfying ηs = w along the curve. Then extend η + iν(s)
to a holomorphic function η + iν(s, t). We remark that ν(s, t) is in fact the unique
harmonic extension of ν(s) with transversal derivative w(s). Finally use Lelieuvre’s
formulas to calculate q(s, t).

Example 3. Let ν = (−1,−s, 2s), w(s) = (−1, 0, 2s). Then η(s) = (−s, 1, s2 + 1)
and so Φ(z) = (−z,−iz, z2). Thus ν(s, t) = (−t,−s, 2st). Thus we can calculate qs
and qt from Lelieuvre’s formulas obtaining

qs = (2s2, 0, s)
qt = (0, 2t2, t) .

One concludes that

q(s, t) =
(2s3

3 ,
2t3

3 ,
s2 + t2

2

)
.

Surfaces with singular sets. As in the case of improper affine spheres, we
can relax the non-degeneracy condition and even so obtain a solution to the
Cauchy problem. For example, consider a planar curve q(s) = (q1(s), q2(s), 0),
ν(s) = (0, 0, 1) and w(s) = νt(s) = (−q2

s , q
1
s , h). Applying the same algorithm as

above, we obtain an affine minimal surface with the original curve as its singular
set ([2]).
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Example 4. Let q(s) = (s, s
2

2 , 0) and h(s) = 3s2. Then νt(s) = (−s, 1, 3s2). We
can extend ν harmonically to ν(s, t) = (−st, t, 3s2t− t3 + 1), satisfying the initial
conditions at t = 0. Lelieuvre’s equations imply that qs = (2t3 + 1, 2st3 + s, 0) and
qt = (6st2, 3s2t2 + t4 − t, t2). Thus q(s, t) = (2t3s+ s, s2t3 + s2 + t5/5− t2/2, t3/3).
Observe that Ω(s, t) = t+ 2t4, thus vanishing at t = 0.

3. Discrete co-normal vector fields and oriented PQ nets

A PQ net is defined to be a R3-valued function defined on a subset D of Z2,
such that faces are planar, i.e., q(u, v), q(u+ 1, v), q(u, v + 1) and q(u+ 1, v + 1)
are co-planar (see [5, Definition 2.1]).

We say that the discrete conjugate net is definite if the sign of the following four
quantities is the same and does not depend on (u, v):

Ω1(u, v) :=
[
q1
(
u+ 1

2 , v
)
, q1
(
u− 1

2 , v
)
, q2
(
u, v + 1

2
)]
,

Ω2(u, v) :=
[
q1
(
u− 1

2 , v
)
, q2
(
u, v − 1

2
)
, q2
(
u, v + 1

2
)]
,

Ω3(u, v) :=
[
q1
(
u+ 1

2 , v =
)
, q1
(
u− 1

2 , v
)
, q2
(
u, v − 1

2
)]
,

Ω4(u, v) :=
[
q1
(
u+ 1

2 , v
)
, q2
(
u, v − 1

2
)
, q2
(
u, v + 1

2
)]
.

All PQ nets considered in this paper will have Ωi(u, v) > 0, ∀(u, v) ∈ D, 1 ≤ i ≤ 4.

Lemma 5. Assume that Ωi(u, v) > 0 for two consecutive values of i and any
(u, v) ∈ D. Then the PQ net is definite. Any definite PQ net is convex.

Proof. Assume, without loss of generality, that Ω1(u, v) > 0 and Ω2(u, v) > 0.
Then the points q(u+1, v) and q(u, v−1) must be at same side of the plane passing
through q(u, v), q(u − 1, v) and q(u, v + 1). Thus Ω3(u, v) > 0 and Ω4(u, v) > 0.
We also conclude that the definiteness assumption guarantees the convexity of the
discrete surface. �

We take Lelieuvre’s formulas as a definition of the co-normal vector field: A
co-normal vector field ν with respect to a PQ net q is a vector-valued map defined
at any face (u+ 1

2 , v + 1
2 ) of the net satisfying the discrete Lelieuvre’s equations

q1
(
u+ 1

2 , v
)

= ν
(
u+ 1

2 , v −
1
2
)
× ν
(
u+ 1

2 , v + 1
2
)

(2)

q2
(
u, v + 1

2
)

= ν
(
u+ 1

2 , v + 1
2
)
× ν
(
u− 1

2 , v + 1
2
)
.(3)

It is easy to see that, when it exists, the co-normal vector field ν is unique up to
black-white re-scaling, i.e., up to multiplication by a non-zero constant ρ, if u+ v
is even, and by ρ−1, if u+ v is odd.

Given a net ν : (Z2)∗ → R3, define the discrete laplacian of ν by

∆ν
(
u+ 1

2 , v + 1
2
)

= ν11
(
u+ 1

2 , v + 1
2
)

+ ν22
(
u+ 1

2 , v + 1
2
)
.

We shall consider below nets ν whose laplacian is parallel to ν at every point. In
[3], such nets are called discrete affine harmonic, but we shall not use this term
in order to avoid confusion with the discrete harmonic co-normal field defined in
Section 4.
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Proposition 6. A vector field ν : (Z2)∗ → R3 is the co-normal vector field of a
PQ net if and only if its discrete laplacian ∆ν is parallel to ν.
Proof. Observe that
q12
(
u+ 1

2 , v+ 1
2
)

= ν
(
u+ 1

2 , v+ 1
2
)
×ν
(
u+ 1

2 , v+ 3
2
)
−ν
(
u+ 1

2 , v−
1
2
)
×ν
(
u+ 1

2 , v+ 1
2
)

and
q21
(
u+ 1

2 , v+ 1
2
)

= −ν
(
u+ 1

2 , v+ 1
2
)
×ν
(
u+ 3

2 , v+ 1
2
)
+ν
(
u− 1

2 , v+ 1
2
)
×ν
(
u+ 1

2 , v+ 1
2
)
.

So
q12 − q21 = ν

(
u+ 1

2 , v + 1
2
)
×
(
ν11(u+ 1

2 , v + 1
2
)

+ ν22
(
u+ 1

2 , v + 1
2
))
.

Assume that ν is a co-normal vector field of a PQ net. Then the first member of the
above equation is 0, and so ∆ν is parallel to ν. Reciprocally, given the vector field
ν, one define the immersion q(u, v) by Lelieuvre’s equations, and the condition of
∆ν being parallel to ν guarantees that q12 = q21. This proves that ν is a co-normal
vector field of the PQ net q(u, v). �

Observe that each co-normal vector is orthogonal to the corresponding planar
face. So we can write

q1
(
u+ 1

2 , v
)
× q2

(
u, v + 1

2
)

= α(u, v)ν
(
u+ 1

2 , v + 1
2
)

(4)
q1
(
u− 1

2 , v
)
× q2

(
u, v + 1

2
)

= β(u, v)ν
(
u− 1

2 , v + 1
2
)

(5)
q1
(
u− 1

2 , v
)
× q2

(
u, v − 1

2
)

= γ(u, v)ν
(
u− 1

2 , v −
1
2
)

(6)
q1
(
u+ 1

2 , v
)
× q2

(
u, v − 1

2
)

= δ(u, v)ν
(
u+ 1

2 , v −
1
2
)
,(7)

for some real maps α, β, γ, δ. We say that (q, ν) is oriented if the maps α, β, γ,
δ are all positive. We shall consider in this paper only oriented pairs (q, ν) (see
Figure 1).

Fig. 1: Four faces of the PQ net with the co-normal vectors.

In terms of the co-normals we have
α =

[
ν
(
u+ 1

2 , v −
1
2
)
, ν
(
u+ 1

2 , v + 1
2
)
, ν
(
u− 1

2 , v + 1
2
)]

β =
[
ν
(
u+ 1

2 , v + 1
2
)
, ν
(
u− 1

2 , v + 1
2
)
, ν
(
u− 1

2 , v −
1
2
)]

γ =
[
ν
(
u− 1

2 , v + 1
2
)
, ν
(
u− 1

2 , v −
1
2
)
, ν
(
u+ 1

2 , v −
1
2
)]

δ =
[
ν
(
u− 1

2 , v −
1
2
)
, ν
(
u+ 1

2 , v −
1
2
)
, ν
(
u+ 1

2 , v + 1
2
)]
.
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One can also verify that

(8) Ω1 = αβ , Ω2 = βγ , Ω3 = γδ , Ω4 = δα .

We conclude also that the underlying PQ net of an oriented discrete surfaces (q, ν)
is necessarily definite. Moreover, it must satisfy the condition

(9) Ω1Ω3 = Ω2Ω4 .

Next proposition shows that the converse is also true:

Proposition 7. Consider a definite PQ net q satisfying condition (9). Then there
exists a co-normal field ν such that (q, ν) is an oriented net.

Proof. The idea is to define consistently the parameters α, β, γ and δ and define
the co-normal vector field by equations (4), (5), (6) and (7). Given one of the
parameters α, β, γ or δ at (u, v), one can determine the other three by solving
equations (8).

Now fix an initial value α(u0, v0) and define ν at the faces (u0 ± 1
2 , v0 ± 1

2 ) by

ν(u0 + 1
2 , v0 + 1

2 ) = α−1(u0, v0)q1(u0 + 1
2 , v0)× q2(u0, v0 + 1

2 )
ν(u0 − 1

2 , v0 + 1
2 ) = β−1(u0, v0)q1(u0 − 1

2 , v0)× q2(u0, v0 + 1
2 )

ν(u0 − 1
2 , v0 − 1

2 ) = γ−1(u0, v0)q1(u0 − 1
2 , v0)× q2(u0, v0 − 1

2 )
ν(u0 + 1

2 , v0 − 1
2 ) = δ−1(u0, v0)q1(u0 + 1

2 , v0)× q2(u0, v0 − 1
2 ) .

Observe that Lelieuvre’s equations hold. For example,

ν
(
u0 + 1

2 , v0 + 1
2
)
× ν
(
u0 − 1

2 , v0 + 1
2
)

= α−1β−1(u0, v0)Ω1(u0, v0)q2
(
u0, v0 + 1

2
)
,

which, from equations (8), equals q2(u0, v0 + 1
2 ).

The co-normals at the faces
(
u0 ± 1

2 , v0 ± 1
2
)

determine the value of α, β, γ and
δ at (u0 + ε1, v + ε2), where εi = −1, 0, 1. With this values we can extend ν to the
12 faces that touches the faces

(
u0 ± 1

2 , v0 ± 1
2
)
, and as above, Lelieuvre’s equation

still holds at each edge. In this way, we can define the co-normal vector field as far
as the orientability condition permits, thus proving the proposition. A more formal
proof can be done by induction. �

Example 8. Let q(u, v) =
(
u, v, u

2+v2

2
)
, (u, v) ∈ Z2. Then

q1(u+ 1
2 , v) = (1, 0, u+ 1

2 )

q2(u, v + 1
2 ) = (0, 1, v + 1

2 ) .

Taking ν
(
u+ 1

2 , v + 1
2
)

=
(
−
(
u+ 1

2
)
,−
(
v + 1

2
)
, 1
)
, one can verify that Lelieuvre’s

equations (2) and (3) hold. An illustration of this paraboloid is shown in Figure 2.
Since

q11 + q22

2 = (0, 0, 1) ,

this discrete paraboloid is in fact a discrete improper affine sphere, as we shall see
in next section.
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Fig. 2: Discrete paraboloid with co-normal vector field in green.

Discrete proper affine spheres. A definition of discrete proper affine spheres is
proposed in [3], and it can be seen as a particular case of the above construction.

A pair (q, ν) is a proper affine sphere if

ν1(u, v + 1
2 ) = q(u, v + 1)× q(u, v)

ν2(u+ 1
2 , v) = q(u, v)× q(u+ 1, v) .

These equations together with equations (2) and (3) show that, in the case of
proper affine spheres, q and ν have symmetric roles. Moreover, one can easily show
that q(u, v) · ν

(
u± 1

2 , v ±
1
2
)

= 1.
We can calculate the above parameters from the ν-net or from the q-net. For

example, one can verify that

α(u, v) = [q(u, v), q(u+ 1, v), q(u, v + 1)]
β(u, v) = [q(u, v), q(u, v + 1), q(u− 1, v)]
γ(u, v) = [q(u, v), q(u− 1, v), q(u, v − 1)]
δ(u, v) = [q(u, v), q(u, v − 1), q(u+ 1, v)] .

We have also that

q11 + q22 = −H(u, v)q(u, v)
ν11 + ν22 = −H∗(u+ 1

2 , v + 1
2 )ν(u+ 1

2 , v + 1
2 ) ,

where

H(u, v) = α(u, v) + γ(u, v) = β(u, v) + δ(u, v)
H∗(u+ 1

2 , v + 1
2 ) = α(u, v) + γ(u+ 1, v + 1) = β(u+ 1, v) + δ(u, v + 1) .

Bobenko and Schief ([3]) also proposed a method for obtaining discrete affine
spheres by solving a discrete Cauchy problem: Begin with one line of points q(u, 0)
and one line of co-normals ν

(
u + 1

2 ,
1
2
)

and then extend then to a domain of Z2

by using Lelieuvre’s and dual Lelieuvre’s equations. One continues this extension
while α, β, γ and δ remain positive.
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4. Discrete minimal surfaces and improper affine spheres

We begin with a usual definition of discrete holomorphic functions. Consider a
pair of discrete harmonic functions A : Z2 → R and B : (Z2)∗ → R. We say that
(A,B) is discrete holomorphic if

A(u+ 1, v)−A(u, v) = B
(
u+ 1

2 , v + 1
2
)
−B

(
u+ 1

2 , v −
1
2
)

A(u, v + 1)−A(u, v) = B
(
u− 1

2 , v + 1
2
)
−B

(
u+ 1

2 , v + 1
2
)
.

It is easy to see that any discrete harmonic function A : Z2 → R, respectively
B : (Z2)∗ → R, admits a unique, up to a constant, discrete harmonic function
A : Z2 → R, resp. B : (Z2)∗ → R, such that the pair (A,B) is holomorphic.

4.1. Affine minimal surfaces. We define a pair (q, ν) to be a discrete affine
minimal surface if the co-normal vector field ν is discrete harmonic, i.e, if it satisfies

(10) ν11
(
u+ 1

2 , v + 1
2
)

+ ν22
(
u+ 1

2 , v + 1
2
)

= 0

(see Figure 3).

Fig. 3: Five faces of the PQ net with a discrete harmonic
co-normal vector field.

It is clear that, starting from the co-normal vector field, we can obtain the PQ
net by using Lelieuvre’s equations. Also, given ν : (Z2)∗ → R3 harmonic, there
exists a unique, up to translations, harmonic function η : Z2 → R3 such that each
coordinate of Ψ = (η, ν) is holomorphic. So we can also obtain the PQ net from
the holomorphic data Ψ. We can think of the formula that represents q in terms of
Ψ as a discrete Weierstrass representation formula.

4.2. Improper affine spheres. We say that a discrete minimal surface is an
improper affine sphere if the vectors ν(u, v), (u, v) ∈ D ⊂ Z2, are co-planar.

Proposition 9. Let (q, ν) be a discrete improper affine sphere. Then
(1) The vector field q11 + q22 : Z2 → R3 is parallel to a fixed direction.
(2) Let η = (q2,−q1, 0). Then the pairs (q2, ν1) and (−q1, ν2) are holomorphic.

Proof. We can assume without loss of generality that the third coordinate of ν
is 1. We write ν = (φ, 1) and q = (p, f), where p a planar vector consisting of the
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first two components of q. From Lelieuvre’s equations we obtain that
p1
(
u+ 1

2 , v
)

= φort
2
(
u+ 1

2 , v
)

p2
(
u, v + 1

2
)

= −φort
1
(
u, v + 1

2
)

−p1
(
u− 1

2 , v
)

= −φort
2
(
u− 1

2 , v
)

−p2
(
u, v − 1

2
)

= φort
1
(
u, v − 1

2
)
,

where (A,B)ort = (−B,A). Summing these equations, we conclude that p11 + p22
is zero, and so q11 + q22 points in the direction of the z axis. The second assertion
also follows from the above equations. �

Remark. In [11], an improper affine sphere is defined as a PQ net with q11 + q22
parallel. From the above proposition, we conclude that the PQ nets that satisfy
our definition must necessarily satisfy the definition of [11], but the reciprocal is
not true.
Discrete Monge-Ampère equation. Let q(u, v) = (p(u, v), f(u, v)) be an im-
proper affine sphere as above. Then it is proved in [9] that

f11 + f22 =
[
p(u+ 1, v)− p(u− 1, v), p(u, v + 1)− p(u, v − 1)

]
.

This discretization may be seen as a discretization of equation (1), which is
equivalent to the Monge-Ampère differential equation det(D2(f)) = 1.

4.3. Basic construction of discrete minimal affine surfaces. We now des-
cribe a basic algorithm to generate examples of discrete affine minimal surfaces.
This algorithm will be adapted in next sections to solve discrete Cauchy problems
for improper affine spheres and affine minimal surfaces.

We start with two lines of co-normal vectors ν
(
u + 1

2 ,±
1
2
)

satisfying α, β, γ
and δ positive. Since ν must be harmonic, we calculate ν

(
u + 1

2 , v + 1
2
)
, for any

(u, v) ∈ Z2, by formula (10) and deduce q(u, v) from Lelieuvre’s equations (2) and
(3). Then we consider the maximal domain D ⊂ (Z2)∗ containing

(
u+ 1

2 ,±
1
2
)

such
that α, β, γ and δ remains positive.

5. The Cauchy Problem for improper affine spheres

We consider the discrete Cauchy problem for improper affine spheres. Given
q(u) = (p(u), f(u)), u ∈ Z, and ν

(
u+ 1

2
)

=
(
φ
(
u+ 1

2
)
, 1
)

satisfying q1 ·ν = 0, find an
improper affine sphere (q, ν) such that q(u, 0) = q(u) and ν

(
u+ 1

2 ,−
1
2
)

= ν
(
u+ 1

2
)
.

From the initial data, calculate ν
(
u + 1

2 ,
1
2
)

by the condition that the pairs
(p1, φ2) and (p2,−φ1) are holomorphic. We must also assume that

(11)
[
q1
(
u+ 1

2
)
− q1

(
u− 1

2
)]
· ν
(
u± 1

2 ,±
1
2
)
> 0 ,

which can be thought as being discrete conditions equivalent to the non degeneracy
condition ν · qss > 0. These conditions may also be written as α, β, γ and δ, defined
in section 3, being positive. Thus they guarantee the correct orientation of the
surface.

The solution to the Cauchy problem is now straightforward: extend ν to a domain
D ⊂ (Z2)∗ by using the fact that ν is discrete harmonic. This extension is done
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while α, β, γ and δ remains positive. Then calculate q from Lelieuvre’s equations.
In Figure 4 we can see an improper affine sphere obtained by this procedure.

Fig. 4: Solution of the Cauchy problem for improper affine spheres:
Original curve in red, co-normal vector field in green.

Improper affine spheres with singular sets. We consider here discrete examples
analogous to example 2. Starting from a convex plane polygon, define ν

(
u+ 1

2 ,−
1
2
)

=
(0, 0, 1) and apply the above algorithm. Although condition (11) is not satisfied,
the algorithm works well. At the end we obtain a discrete surface with the original
polygon as its singular set. For details of this construction, see [9]. In Figure 5 we
can see an improper affine sphere with the original curve as a singular set.

Fig. 5: Solution of the Cauchy problem for improper affine spheres
with the original curve (circle) as a singular set.

6. The affine Cauchy problem for minimal surfaces

We consider now the discrete analogous of Problem II of Section 2.3: Assume
that we are given a poligonal curve q(u, 0) and two lines of co-normals ν

(
u+ 1

2 ,±
1
2
)

satisfying
q1
( 1

2 , 0
)

= ν
(
u+ 1

2 ,
1
2
)
× ν
(
u+ 1

2 ,−
1
2
)
.

The non degeneracy condition can be stated as α, β, γ and δ being positive at (u, 0).
Then there exists a unique discrete minimal surface (q, ν) extending q(u, 0) and
ν(u+ 1

2 ,±
1
2 ).

The calculation of this minimal surface is straightforward: Extend ν to a domain
of (Z2)∗ by the harmonic condition, while the parameters α, β, γ and δ remain
positive. Then calculate q from Lelieuvre’s equations. A discrete affine minimal
surface obtained by this procedure is shown in Figure 6.
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Fig. 6: Solution of the Cauchy problem for affine minimal surfaces:
Original curve in red, co-normal vector field in green.

Minimal surfaces with singular sets. We can also obtain discrete minimal
surfaces with a given curve as its singular set. Start with a planar polygon and
define ν

(
u + 1

2 ,−
1
2
)

= (0, 0, 1). Define also ν
(
u + 1

2 ,
1
2
)

= (−q2
1 , q

1
1 , h), for an

arbitrary map h. If h 6= 0, then the minimal discrete surface obtained with the
above algorithm has the original polygon as its singular set. An illustration of this
procedure is shown in Figure 7.

Fig. 7: Solution of the Cauchy problem for affine minimal surfaces
with the original curve as a singular set.
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