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Homogeneous variational problems: a minicourse

David J. Saunders

Abstract. A Finsler geometry may be understood as a homogeneous varia-
tional problem, where the Finsler function is the Lagrangian. The extremals
in Finsler geometry are curves, but in more general variational problems we
might consider extremal submanifolds of dimension m. In this minicourse
we discuss these problems from a geometric point of view.

1 Introduction

This paper is a written-up version of the major part of a minicourse given at
the sixth Bilateral Workshop on Differential Geometry and its Applications, held
in Ostrava in May 2011. Much of the discussion at these workshops is on Finsler
geometry, where the interest is in variational problems defined on tangent manifolds
by a ‘Finsler function’, a smooth function defined on the slit tangent manifold
(excluding the zero section) and satisfying certain homogeneity and nondegeneracy
properties. The extremals of such problems are geometric curves in the original
(base) manifold, without any particular parametrization but with an orientation.

For this particular workshop it was felt that it might be worthwhile to describe
slightly more general problems, looking at variational problems where the extremals
were submanifolds of dimension m, but where the action function still depended
upon no more than the first derivatives of the submanifold [2], [4]; for example,
minimal surface problems would be included in this description. This minicourse
introduces a version of the geometric background needed to express such problems,
in terms of velocity manifolds. There is an alternative approach to such problems
involving manifolds of contact elements (quotients of velocity manifolds); we refer
to this only briefly, when we consider the action of the jet group.

Although we consider only first order variational problems, we nevertheless need
to use second order velocities: for instance, the Euler-Lagrange equations for first
order variational problems are second-order differential equations. We do this in
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a slightly unusual way, looking at a particular submanifold of the double veloc-
ity manifold. Having done this, we look at some geometrical and cohomological
constructions, before obtaining a version of the first variation formula for varia-
tional problems with fixed boundary conditions. The final part of the minicourse,
which considered various concepts of regularity, has been omitted from this paper
for reasons of space; the concepts described may be found in a recent paper [1].
We give only a few other references: [3] provides extensive background material on
various types of jet manifold and the actions of the jet groups; [5] introduces in
a more general context the type of cohomological approach we use these types of
variational problem; and [6], with a philosophy similar to that of the present paper,
compares these problems with those defined on jets of sections of fibrations.

I should like to thank the organisers of the Workshop for inviting me to give this
course. I acknowledge the support of grant no. 201/09/0981 for Global Analysis
and its Applications from the Czech Science Foundation; grant no. MEB 041005 for
Finsler structures and the Calculus of Variations; and also the joint IRSES project
GEOMECH (EU FP7, nr 246981).

2 \Velocities

In this section we see how to construct manifolds of first order and second order
velocities, and also how certain groups, the jet groups, act on these manifolds.

2.1 First order velocities

Let F be a connected, paracompact, Hausdorff manifold of class C'°° and of finite
dimension n; let O C R™ (with m < n) be open and connected, with 0 € O. A
map v : O — E will be called an m-curve in E. The 1-jet jiv of v at zero will
be called a velocity (or m-velocity), and the set T;,, E = {jlv} of velocities of all
m-curves in FE will be called the velocity (or m-velocity) manifold of E. We map
T, FE to E by

TmE : ImE — E | TmE(jé"}/) =~(0).

We shall show that T,, E really is a manifold (and is connected, paracompact
and Hausdorff, and indeed is a vector bundle over F) by identifying it with the
Whitney sum over E of m copies of the tangent manifold TFE.

Lemma 1. There is a canonical identification T,,E = @™ TE.

Proof. Let i : R — R™ be the inclusion ix(s) = (0,...,0,s,0,...,0). Then each
v o1 is a curve in F, and the map

dov = (Go(voin),. . dg (v 0 im))
is a bijection T,, E — @™ T'E preserving the fibration over E. U
Corollary 1. Let {dt'} be the canonical basis of R™*; then
TwE — TE ®R™, (€1,...,6n) = & @dt

is a vector bundle isomorphism. O
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If (U;u®) is a chart on E then (U';u® u?) is a chart on T,, F, where
U'=rp5(U),  ui(iey) = Dy (0) = Di(u” 04)(0).

If jiy = (&1, .., &n) then it is clear that u¢(jivy) = u?(&;). The rule for changing
coordinates on T, F is therefore

b
vi (o) = % uf (jo) -
7(0)
We can see from this that the superscript a labeling the coordinate function
depends on the original choice of chart u® on E, whereas the subscript 7 is inde-
pendent of this choice and so is the index of a component of the velocity (namely,
the tangent vector &;). We call indices of this latter type counting indices rather
than coordinate indices.

We shall be particularly interested in the subsets of T,,F containing those
velocities jivy where the m-curve v has certain properties. Write TmE for the
subset

{jé € T, E : v is an immersion near zero} ;

if jdy = (&1,...,&m) and jivy € T, E then {1, . .., &, } will be linearly independent.
An element of me C T, E will be called a regular velocity.

Proposition 1. The regular velocities form an open-dense submanifold.

Proof. To show that TmE is open in T}, F, define the map A : T, E — \™ TE by
(&1, &m) & A~ A Then

e The map A is fibred over the identity on F and is continuous (it is polynomial
in the fibre coordinates u?);

o jly e T E exactly when A(jiv) # 0;
e the zero section of A" TFE is closed.

To show that T Eis dense in T, E, define the map f : U — R by f(jjv) =
det(u](j87)), where (ul) is the m X m submatrix containing the first m rows of
the n x m matrix u¢. If jly € O C U! where O is open and O N TmE = () then f
vanishes on O. But

omf
- =1. O
Out Oud - --oum | 4

2.2 Second order velocities

We define a second-order m-velocity in the same way as a 2-jet at zero of an
m-~curve, and write

T2 FE = {524}, T2 E = {j2~ : v is an immersion near zero} .
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We also let T%E :T2E — E, Tn211E : T2 E — T, FE be the projections
; 21 . .
Top(or) =1(0),  7ip(i8Y) = Jov-

We take charts on T, E to be (U?;u®, uf, u;) where U? = (72,5) "' (U) and

ul(j57) = Diy*(0),  uf;(jgy) = DiD;v*(0)

so that uf; = uf; (this constraint will cause complications in certain coordinate
formulee). These charts form an atlas such that T2 F becomes a manifold with
the standard properties. We shall not demonstrate this directly; we shall show
instead that it may be identified with a closed submanifold of a larger manifold,
the manifold of double velocities.

2.3 Double velocities

We know that T;, F is a manifold, so it has its own velocity manifold
T ThmE = {]éﬁ}

where 4 is an m/-curve in T,,E. This is the (m’,m) double velocity manifold.
Charts on T,/ T,, FE are therefore

(@5l uly)

where 1 <43 <mand 1< j < m/, corresponding to the charts (Ul; u® ul) on T E.
In most applications we have either m’ = m or m’ = 1. We shall be interested in a
particular submanifold of double velocities, known as holonomic double velocities.

2.4 Holonomic double velocities

If v is an m-curve in E then its prolongation is the m-curve 7'v in T, E where

7'(t) = jo(y o)

and T, : R™ — R™ is the translation map T,(s) = t + s. Thus ji7*vy € T, T E.
We use the notation 7'+ rather than jlv; the latter would be a map satisfying
jty(t) = jiv whose codomain would be a set containing jets at arbitrary points
of R™ rather than just at zero.

Proposition 2. The map
L Tr%LE = TnThk, 4(387) = j(%j17

is an injection. Its image is the submanifold described in coordinates by

The image of the chart (U?;u®, ug, ug;) under the injection is the restriction of the
chart (U')';u® uf,ul,uf;) to the submanifold.
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Proof. Suppose 71, 72 are two m-curves in E such that ji7'y; = ji7'v2. Then
for v,

and similarly for 7,, so that j3y; = j372 and the map is an injection.
For any m-curve v in E

ul (jo7' ) = Di(u® 0 7'7)(0) = D;(u® 0 7)(0) = ug (7v(0)) = uf (jo7'7)
and
ul;(jo7' ) = Ds(u§ 0 7'7)(0) = Ds(D;(u® 04))(0)

so that uf = uf; and uf; = uj,

Furthermore, if 4 is an m-curve in T,, E satisfying

when restricted to the image of the injection.

~ 1=~

ui (Jo¥) = u?i(jo’Y) ) U?g (j(%’Y) = U?;i(jé’)’)
then the m-curve v in E given in coordinates near 7,,z(5(0)) by
V(1) = u (Goy) + uf Go Mt + Fuit; (jo7)E't!

so that ji7'y = ji7; thus the image of the injection is described locally by the
equations uf = uf}, uf; = uf,; and is therefore a submanifold of 7}, T,, E.

The relationship between the charts (U?; u®, ug, ug;) and ((Ul)lg u, ud, uly, ufj)
is immediate. U

The image of T2 E in T, T, E is called the submanifold of holonomic double
velocities. There is no canonical projection T, T, E — T2 E; we may, however,
consider a tubular neighbourhood v : N — T2 E of T2 E in T,,T}, E, and then the
condition v o = idr2 g (where + : T2 E — T, T, E is the injection) gives rise to
the constraints

ov? ov?® ov?® ov® ov®
c = 6? ! c + c = O’ c c = O’
ou 3up 8u;p 8up;q Guq;p
9 e O I I
1/10:0, VZC+ Z/Z; :5‘;5?, V; Vbz —0,
ou 3up 8u;p aup;q 8uq;p
ove. ovd:  ov: ovs, ovd

vJ vJ 4 vj 0 v] +
)

=0
Ouc ’ oug — Oug,

U §a(§P60 + 6761
s Tz = (O8] + 85)

a:p
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for the coordinates of v, and hence to the conditions

ove

Due (du — duf,) + 3 Sl - (dug;q dug.,,)
Up
a ayi 81/1' c c 8 c c
dvit = §(duf + du) + (8uc - o, )(dup — dus,) + %(Mp;q (duy,, — dug.,,)
a 1 a a 8 ZJ 1 Vla] c c
dviy = §(dui;j + dujn-) o : (du — du; ) + 2 5ye (dup;q duy, p)
piq

We shall use these conditions later on.

2.5 The exchange map

There is another way of describing the submanifold of holonomic velocities.
Amap ¢ : O’ xO — E, where O C R™, O’ ¢ R™ are open and connected, and
where Ogm € O and Og.s € O, is called a double (m’, m)-curve. For each s € O/

Vs : 0= FE, ¢s(t)=1/f(57t)
is then an m-curve in E, so that jivs € T, E. Thus
3o (s > jows) € T T ..

Lemma 2. The exchange map e : Ty, T, E — T, Ty E is well-defined by ¥ 1[)
where ¥(t, s) = 1(s,t) and is a smooth bijection.

Proof. The element of T,, T, F defined by v satisfies

u® (o (s = Jows)) = u® (Jotbo) = 5 (0) = ¥(0,0),
uf (jo (s = Jows)) = uf (Jotbo) = Di(u® 00)(0) = D23%(0,0)
ufy(Jo (s = Jows)) = Dj(u o (s = jg1hs))(0) = Dj(s = ¥7)(0) = D1;;4%(0,0),
uf;(Jo(s = Jows)) = Dj(ug o (s = jg1s))(0)
= Dj(s = Dig(0))(0) = D15 D2:9*(0,0)

and carrying out the same calculation for zﬁ shows that e is a well-defined injection.
It is clearly an involution, and hence is a bijection. The coordinate formulae

show that it is smooth. O

Proposition 3. The holonomic submanifold of T,,T,,E is the fixed point set of the
exchange map.

Proof. This is immediate from the coordinate formulae for e. O
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2.6 Jet groups

If we consider m-curves in R™ rather than in some other manifold, then we have
the possibility of composing two such m-curves. If we insist that the origin must
map to itself then the composition will always exist, although possibly with a
smaller domain then the domains of the two original m-curves. We shall want
the jets of these m-curves to have inverses, so that the curves themselves will
need to be immersions near zero; it is convenient to assume that they are, in fact,
diffeomorphisms onto their images.

So let O C R™ be open and connected with 0 € O, and let ¢ : O — ¢(O) C R™
be a diffeomorphism with ¢(0) = 0. The first and second order jet groups are

Ly = {500}, Li=1{iie}
The products for Ll and L2 are given by
Jodr - dode = Jo(droda),  Godr-jgde = jg(droda).
Lemma 3. The product rules define group structures on L} and L2,.

Proof. The products are well-defined because the first (or second) derivatives of
a composite depend only upon the first (or second) derivatives of the individual
maps, by the first (or second) order chain rule; sssociativity of the products is
inherited from that of composition. The diffeomorphism idg= satisfies

Jo(idz) - joo = jg (idzm 0 ) = jo 5
the map ¢ : $(O) — O given by ¢ = ¢! satisfies ¢(0) = 0, and
Jo® Jo¢ = o (é 0 ¢) = jj (ido) = jg (idmn) .
Similar formulae hold for second-order jets. O

The map L. — ]Rmz, Joo (quﬁi(O)) defines global coordinates on L}, , and
identifies it with GL(m, R). The map L2, — R™ (m+3)/2,

Jod = (D;¢'(0), D;Dy¢'(0))
defines global coordinates on L2,. Writing
A;=D;¢'(0), B, = D;Di(0)
where det A;- # 0 because ¢ is a diffeomorphism, the product rule in L} is
(AA); = A AR
and the product rule in L2 is

(4, B)(A.B)), = 4,47,
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the latter formula arising from the second order chain rule

D;Di(¢$)'(0) = D;(Dy¢" o ) Did')(0)
= Dy¢'(0)D; D1¢' (0) + Dy D¢ (0)D;¢"(0) D' (0)

using ¢(0) = ¢(0) = 0.
Corollary 2. The groups L}, and L2, are Lie groups. O

Lemma 4. The oriented subgroups L:t and LZF, where ¢ preserves orientation,

are connected.

Proof. As L}, may be identified with GL(m, R), the subgroup L}, where ¢ preserves
orientation may be identified with GL™ (m, R), the subgroup of matrices satisfying
det A > 0, which is connected.

The map L}, — L2, given by jl¢ — jggzg, where ¢ is the linear map g{)i(t) = A;-tj
with (A;) being the matrix corresponding to jl¢, is continuous; the coordinates of
the image are (A;7 0). The image of the subgroup L. under this map is therefore
connected. But every element of L2 may be joined to an element of this image
by a path given in coordinates by

s (AL, sBY), s € [0,1] O

2.7 Group actions
The jet groups L. and L2, act on the velocity manifolds T}, F and T2 E by

GodsJo) = da(vod),  (i5.5gv) = Jg(vod).
These are right actions, and in coordinates they are
u® — u®
¢ ug AT

a a h Ak a nh
ui; = upp A A + up By

where A; and B;k are the global coordinates of j2¢.

Lemma 5. The action of L, on T, E restricts to me, and the restricted action

is free. The action of L2, on T2 E restricts to T2 F, and the restricted action is
free.

Proof. The map ¢ is a diffeomorphism onto its image, so if 7y is an immersion near
zero then so is v o ¢.

We use coordinates to show that the restricted actions are free. Suppose first
that j(y o ¢) = jiv, so that

uf (G57) = uf (o) AL
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as v is an immersion near zero and u?(j3v) = D;v%(0), it follows that the m x n
matrix u?(jlvy) must have rank m, so that Aé = 5;- and hence jio = jd (idgm ).
Now suppose that j2(y o ¢) = j27, so that u§ (j2v) = uf(jg’y)A; and now also

upi(767) = ud; (557) AL A, + ud (557) Bhy, -
As before we see that A; = (5;», so that

uik (367) = ik (367) + 4§ (367) Bk
and therefore that ug(j3v)Bi, = 0; the rank condition on uf(j3v) now tells us that
Bj, =0. O
2.8 Infinitesimal actions

Let (a%) be an element of the Lie algebra of Lj,; the identification of the group
with GL(m,r) means that its Lie algebra may be identified with gl(m,R) so that

(aé) is an arbitrary m X m matrix.

Lemma 6. The vector field on T,, E corresponding to (a}) is

; 7]
1,,Qa
ajly g -
J

Proof. The map o : (—¢,¢) — GL(m,R), defined for sufficiently small € by o(s) =
(5} + sa}), is a curve in GL(m,R) whose tangent vector at the identity is (a}). If
joyv € T E then the corresponding curve through ji~ is given in coordinates by

s = (4 (o), (85 + saf)ug (G5)) -
The resulting tangent vector £ € Tj1, Trn £ satisfies
W€ =0, a3(€) = aju(jg7)

so that the vector field on T,,, E defined by the Lie algebra element (a%) is

@‘%

S.o

i, b
a;u; t

We write d! for the Lie derivative operation of the basis vector field A7 =
ugd/ous.

2.9 Second order infinitesimal actions

2

There is a similar result for the action of the Lie algebra of L7, .

Lemma 7. Let (a},b%;) be an element of the Lie algebra of L},. The corresponding
vector field on T2 E is

a

0 1 , »
 (2diu% 4 Bl
Bz FGR) vt )

where #(jk) equals 1 if j = k and equals 2 otherwise.

i,.a
3 i

9
usy, '
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Proof. Let « be the curve in L2, through the identity j2(id) given in coordinates
by S
s ((5; + sa;,sb;k) .

If j2y € T2 E then the corresponding curve through 53+ is given in coordinates by
s (u?(i5) uf (G57) (05 + sag), ui; (G5 7) (0 + saf) (3, + say) + su (jg7)bS,) -

The resulting tangent vector £ € T, 2y T 2 E satisfies

u*(§) =0
g (&) = alud (j5)
W (€) = apu;(757) + ajuss (55y) + b us (757)

so that the vector field on T2 E defined by the Lie algebra element corresponding

to (a}, bl is
o 0

a’ug (]

+ ¥(
oug — #(jk)

i i,,Q i ,a
5 20’]qu +u]kuz)ﬁ .
Ik

We write dg and df ¥ for the Lie derivative operation of the basis vector fields

ANyl 2 e O ko1 .0

k “ouf o #(jk) " Oufy ! #(jk) " Ougy,
Note the use of the symbol #(jk) to compensate for the fact that the coordinate
functions ufy, and uy,; are equal, so that summing over j and k could result in

double-counting.

3 Geometric structures

The special structure of velocity manifolds manifests itself in the existence of certain
differential operators (‘total derivatives’) and differential forms (‘contact forms’)
which capture certain aspects of the structure. The total derivatives and contact
forms may also be used to identify those maps between velocity manifolds, and
vector fields on velocity manifolds, which have been constructed by a process known
as prolongation. Finally, there is an algebraic method of lifting tangent vectors
from a manifold to its velocity manifold called the vertical lift, and this gives rise
to vertical endomorphisms.

3.1 Total derivatives
The identity map T,,F — T,, E defines a section of the pull-back bundle

Its components d; are the total derivatives, vector fields along 7,,. At a point jlv,
the identification T, F = @™ TFE from Lemma 1 gives the k-th component of jlvy

as
0)

, , 1. 9
dklj&'y = jo(yoir) = Ty(jir) = T’Y<(‘3tk
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Note that the subscript k is a counting index, not a coordinate index. In coordi-
nates, if f is a function on E then

9 (f o)
dkf|jéry:dkjéryf:T’Y<atko>f: otk |,
= Jue kY (O)ZUk(JéV) Out
"y "y
so that 3
dp = uf—.
k= Yk du®
It is clear from this coordinate formula that the image of (dy,...,dy,), a subspace

of T 0y corresponding to each point jov € T E, does not have constant rank on

T E. But its restriction to Jo“mE, where the m x n matrix «{ has maximal rank,
does have constant rank m.

3.2 Second order total derivatives

We take a similar approach to second order total derivatives. The inclusion map
T2 E — T,,T,, E defines a section of the pull-back bundle

o T T E — T2E;

its components d; are the second order total derivatives, vector fields along 7'731]15
At a point j2v,
)
0
0

— a a
e = Ui G s G
J

N
iz, = T(") < otk

in coordinates

Once again the image of (di,...,d,), a subspace of T, T™E corresponding to
each point j3v € T2 E, does not have constant rank on T2 F, but its restriction
to Jo“an does have constant rank m.

3.3 Contact 1-forms

Contact 1-forms on T,,E or on T2 E are the horizontal 1-forms which annihilate
total derivatives, so that 6 is a contact 1-form exactly when

(0,d) =0.

Here, ‘horizontal’ means horizontal over F for a 1-form on T,,F, and it means
horizontal over T, E for a 1-form on T2 E, so that it makes sense to evaluate such
forms on total derivatives; indeed, the modules of such horizontal 1-forms are dual
to the modules of vector fields along T}, E — E or along T2 E — T, E.

In fact we shall consider contact 1-forms, not on the whole of T,,E or T2 E,

but on the submanifolds of regular velocities Jo“mE and Zo“ﬁlE The reason is that,
as mentioned previously, the image of the map (dy,...,d,,) has constant rank m



102 D.J. Saunders

only on the regular submanifolds; it is, for example, zero on the zero section of
T E, and so every horizontal cotangent vector on that zero section is annihilated
by all the total derivatives. If we were to include non-regular velocities then there
would be ‘contact’ cotangent vectors which were not the values of any (smooth,
and hence continuous) contact 1-form.

The important property of contact 1-forms is that they always pull back to zero
under prolongations.

Lemma 8. If 6 is a contact 1-form on T, E then (j'7)*0 = 0. If it is a contact
1-form on T%E then (727)*0 = 0, where the prolonged m-curve 7?v is defined by
Py(t) = jg(vomy).

Proof. If § is a contact 1-form on 1) E then

CRIX > _ <<j1<mt>>*

otk

0
otk

)

< el oo >
0
(e ()
= <9‘j v dk?' >
The proof for a contact 1-form on JoﬁlE is similar. O

Proposition 4. If 0 is a 1-form on T, E satistying (7')*0 = 0 for every prolonged
m-curve 7' in TmE then 0 is horizontal over E, and is a contact 1-form. A similar
result holds for contact 1-forms on T2 E.

Proof. We show first that 0 is horizontal over F, by showing that it is horizontal
at each point ji~v € T . Write 6 in coordinates around such a point as

0 = O du® + 0° duf ;
then if v is a representative m-curve for the velocity jiv we have

(7'7)°0 = (0 © 7' 7) ((7'7)"du®) + (6, 0 7'7) (') " dug) -

But
oy® .
-1 * -1
(7'7) dut]y = d(u® 0 7')|y = dv"lo = . dt’|
_ _ vy " ;
1 \* a _ a 1
(777)" du; |0 = d(ui o] 'Y)| d(@t’)‘ ot ot |, j|0
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so that
B ~ a,.ya . B a,.ya .
=70 =((0.07 : 6! o7t | ) dt/
0= (7'7)0], = { (ba07'7)(0) 55 0+( 22T 0) 5555 ) lo
and hence 5 5
51 v il v .
90,(.707) 8tj 0 + 9@(]07) 8tl atj 0 -

Choosing a different representative m-curve 4 of jiv which differs in its second
derivatives from ~ (although necessarily having the same first derivatives) allows
us to conclude that 6% (jivy) = 0, so that 6 is horizontal at jiv and hence is a
horizontal 1-form. We also see from this argument that

1y O
0a (o) azj

0

Finally we observe that

a 8 a
0,dy) = <9adu ’“Zaub> = O,uf

so that
oy®
Otk

=0

(0,di)j1 = 0a(id)
0

for each point jiv € Tp, E, showing that (6, ds) = 0 and hence that 6 is a contact
1-form.

The proof for forms on ﬁ%E is similar in principle but involves more complicated
calculations. O

The coordinate expressions for contact 1-forms on velocity manifolds are quite
different from those on jet manifolds, and involve determinants: indeed, contact
1-forms on T, E are sums of scalar multiples of (m 4 1) x (m + 1) determinants

al as Am 41
ul ul ... u(ll

ai a m+1
u2 u2 .« .. u2

fe1a2: Ami1 —

ay az Gm+1
[ Thees U2 U,
du®t  du® ... du®mt

To see that such a determinant is indeed a contact 1-form, evaluate it on the total
derivative dj, = ul0/0u’ to give

ut u? ul™

ugt ug? g™
e dy = | 3 =0

ult  uf2 up

upt o up? uy ™
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To show that these forms span the local contact 1-forms, we show that their values
at each point span the contact cotangent vectors at that point. Let the coordinate
functions on the fibres of T*TmE corresponding to the coordinates (u®, u) on me
be (pa,pl); then horizontal cotangent vectors satisfy the equations p, = 0, and we
have seen that the condition (6,d;) = 0 corresponds to a coordinate condition
which may now be written as ufp, = 0.

Now observe that at each point jlv there is at least one set of m coordinates

uit,ug?, ..., udm) suc at the determinant detu;* does not vanish at jjv; sup-
T ug? ar h that the determinant detuj d t h at j§
pose, without loss of generality, that this set is (ui,u3,...,u"), for we may always

rearrange the order of the base coordinates u® if necessary. It is clear that the

cotangent vectors
912A..m7m+1 912~~m,m+2

912~-~m,n
3o a6y

SR

are linearly independent, so that the subspace of the space of contact cotangent

vectors at j}y spanned by them has dimension n—m. But dim 7, E(T;IWE) =n and
0

the m equations ujp, characterising contact 1-forms are linearly independent for

regular velocities, so that the dimension of the space of contact cotangent vectors

at jovy is n —m.

3.4 Contact r-forms

We define contact r-forms using the pull-back condition, so that an r-form w on
T E is a contact r-form if (7'7)*w = 0, and an r-form w on T2 E is a contact
r-form if (7%y)*w = 0. Note that contact r-forms need not be horizontal if r > 1.

We now see another important difference between contact forms on velocity
manifolds and contact forms on jet manifolds. In the latter context, the contact
r-forms are generated by the contact 1-forms and their exterior derivatives; but this
is not the case on velocity manifolds. For example, on 70“2R3 the contact 1-forms
are generated by the single 1-form

up oui U
_ |1 2 3.
0= |us Uz Ug |5

dul  du?  du

but (uldu? —uidul) Adu3 — (uldu® —uddu') Adu? is a contact 2-form which cannot
be written in terms of § and df.

3.5 Prolongations of maps

Let Ey, F5 be manifolds, and let f : F; — E5 a map. The prolongation of f to
T,nE1 is the map
Tmf : TmEl — TmE2

defined by
Tmf(](%y) = ]é(f © 7) .
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It is immediate from this definition that T,,(fog) = T, foT,,g and that T,,,(idg) =
idr,, g, so that T}, is a covariant functor. In coordinates,

UaOTmf:faa U?OTmf:difa~

It is important to note that T, f might not restrict to a map TmEl — meg,
because f o~ might not be an immersion, even though ~ is an immersion.

3.6 Prolongations and the exchange map

As a particular example, the prolongation of the vector bundle projection 7, g :
TmE — E to Ty T E is

T Tmpi : T T B — T B
Lemma 9. The exchange map e : T,/ Ty B — T, T, E satisfies
Tm’TmE oce = Tm(Tm/E) .

Proof. From Lemma 2, e may be expressed in coordinates as

u*oe=u", uj oe=ugy, uloe=uj, uj;oe=uj,
Thus
a . a _ a
U OTm(T, E) = U Uiy © Tm(T,,,  E) = U;
whereas
u o TyyTmpoe=uoe=u", uy o TpyTmpoe=usoe=uj. ]

In other words, the exchange map interchanges these two diagrams.

T,/ TmE Tm (T E)
T TnE v T E T T B —v Ty E
e
-~
Tm! (T E) Tm!E TiTom' B Tm!E
T, E E T E E
TmE TmE

3.7 Prolongations of vector fields

A vector field X on F is a map E — TE, and so its prolongation (as a map) is
ThX  Thb = T,TE.

Lemma 10. The composition X}, = e o T,, X, where e : T,,TE — TT,,E is the
exchange map, is a vector field on T,, E
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Proof. From Lemma 9,

mr,pocec T, X =T,tpoT,X
=Tn(tE 0 X)
:Tm(idE)
=idr, & . O

The vector field X} is called the prolongation of X to T,,E.

Proposition 5. If v is the flow of X then T,,1s is the flow of X} .

Proof. We first compute a coordinate formula for the vector field whose flow
is Tintps.

Choose a point jiv € T,,E and let ¢ be the flow of X in a neighbourhood
of v(0). Let (U, y) be a chart around ~(0) so that, if

0
X =X
oue’
 satisfies
a a
; =X,
1,

Let ¢ denote the map (s, q) — Tines(q), so that
¢t =", g =dip®

where we define (d;0%)(s,q) = (d;¢%)(q). Then

ogf | _ oldie")| _ O (ubaw“>
0s ©0,) Os ©,) Os ©0,) b oub
), = (5 0)
b a
= u; = di (Oa ) = le ’
Oub Os ©,) 0s ©,)

so that, in coordinates, the vector field whose flow is T},15 is

) )
dus (d:X )8u‘; '

XO.

On the other hand, regarding X as a map E — TFE, and writing u® as u{,
u®o X =u®, uf o X =X
so that

u o T, X =u”, ufo T X =X*,
ugy o Ty X = uy ul; o Ty X = d; X%,

K3
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thus
u®oeoT, X =u®, ufoeoT,X =X,
ujoeoT X =uf, ujjoeo T, X =d; X
so that
X} =eoT, X:X“i—s—(an)i O
" " Ju® T oug

Unlike prolongations of maps, prolongations of vector fields do restrict to me.

3.8 Second prolongations
By extending the first order approach, maps f : F; — FEs may be prolonged to
maps T2 f : T2 E1 — T2 Eo, and vector fields X on E may be prolonged to vector
fields X2, on T2 E. In coordinates,

uoThf=f"  wufoTnf=dif",  ujoT,f=dd;f*
and if X = X*9/0u” then

0 ) 1 "
B + (d; X?) + ——(d;d; X*)

0
X2 =X — :
m ould — #(ij) ou;

The calculations are similar in principle to those given for the first order case, but
more complicated in detail. Again T2 f might not restrict to a map T2 By — 12 Es,
whereas X2, does restrict to ﬁ%E

3.9 Prolongations, contact forms, and total derivatives

Let f: Ey — E5 be a map. If 6 is a contact form on TmEQ and if T}, f restricts to
T Ey then (T, f)*0 is a contact form on T, E1, because

TN (T f) 0 = (T f 0790 = (7' (f07)) 0 =0.

If X is a vector field on E and 6 is a contact form on YO”mE then the Lie derivative
Lx1 6 by the prolongation of X is also a contact form, because the flow of XL
is the prolongation of the flow of X. These results, using the characterisation of
a contact form by vanishing pullback, apply to both 1-forms and to r-forms with
> 1. They also hold for contact forms on T2 E.

The corresponding result for total derivatives is more complicated, as these
operators are vector fields along a map rather than on a manifold.

Lemma 11. Prolongations and basis total derivatives commute, so that

diOLXZEX}nOdi, dio‘cX}n,:‘CanOdi'
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Proof. We check this using coordinates. In the first order case, if f is a function

on F then
. _ W Of p [ 0X® Of . Of
dilLxf) = (X ou? ) i ( oub du® X Aub u®

whereas

7] 0 7]
£X3n<dzf) ‘CXl (uqf) (d Xb)aj; +u; X aub‘gua :

A similar but slightly more lengthy calculation is used in the second order case. [J

3.10 Vertical endomorphisms

We have seen that T,,F — FE is a vector bundle and so, as with every vector

bundle, it has a canonical vertical lift operator. Denote the vertical lift to (n;) €

@"TE =T,E by
Tt B = Ty TnE, (&) = (&)1

in coordinates this is

(&)1 = (fk)
(m)

For each vector ¢ € T(,,\ T &/ define the vector S7¢ € Ty T E by
Si¢c = 0,...,0,T7,(¢),0,... ,())T(m)

where the non-zero vector T'7,,,(¢) is in the j-th position. It is evident that S7 is a
vector bundle map T'T,,E — TT,,E, or alternatively a type (1, 1) tensor field on
TwE, called a vertical endomorphism. Note that the superscript j is a counting
index, not a coordinate index. In coordinates

0
ou

S = du® ®

a

J

There is a close relationship between vertical endomorphisms and total derivatives.
Lemma 12. Ifw is an r-form on E then

S dpw = r6) ( T EW) .

Proof. Suppose first that 6 is a 1-form; we shall give a proof in coordinates, omitting
explicit mention of the pullback map. If § = 6,du® then

STdp0 = S7((dpe)du® + O,dul) = 610,du = 510.
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We now use induction on 7. Suppose w is an r-form and that S7/dyw = rﬁf;(T;@Ew);
then

STdy (0 Aw) = S7(dd AT} pw + T p0 A dyw)
= STdpO AT pw + T RO A ST dw
= 0L (1 g0 AT pw) + 1O (T 0 AT W)

= (r+1)8 75 p(0 Aw)

using the fact that 77 » and 7, pw are horizontal over . The result now follows
by linearity. O

3.11 Second order vertical endomorphisms

There is also a version of the vertical endomorphism defined on second order ve-
locity manifolds. This cannot be constructed in the same way as the first order
vertical endomorphism, as T2 FE — T,,E is not a vector bundle but is instead
an affine sub-bundle of T,,T,,E — T,,E. We shall establish our construction by
modifying the first-order vertical endomorphism on 7,,7T;,E. There is an alterna-
tive method, based on the construction of vertical lifts using double (1, m)-curves,
which may be used in both first and second order cases, but we shall not describe
that here.

So let v : T2 E — T,,E be some tubular neighbourhood of T2 E in T, T, E,
and let ¢+ : T2 E — T, T, E be the inclusion from Proposition 2. As before, let
e: T, TnE — T,T,FE be the exchange map.

Proposition 6. Let 0 be a 1-form on T2 E; then the operation
0 (Sk 10+ e '),

where S* is the vertical endomorphism on T,,T;, E), does not depend on the choice
of tubular neighbourhood map v and hence defines a vertical endomorphism on
T2E.

Proof. We use coordinates to show that the result is independent of v. Let 6 =
Oodu® + 0 dul + Héjdufj; then
V0 = (V*0,)dv® 4 (v*0!)dvd + (V*ng)dufj

ov® ov®
= (v*0,) (dua + 820 (duf, — dus,) + 5 Y
P

p

(du;;q - dug;p)>

) ovd ovd
*00 Y L(dy a 1 i Y7 c_ g.c
+ (v°0) (2(dul +du) + 5 (3ug 3Ufp> (dug, — dus,)

c
8up§q

al/la C C
+ %Bu (dug,, — d“q;p)>

c
piq

* N1J 1 a a ayl@j c c 1 (r“)y% c c
+ (v i ) §(dui;j + duj;i) + Auc (dup o du;p) +3 (dup;q - duq;p)
P Piq
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using the coordinate formulee for the tubular neighbourhood map given in Section 2

Thus
SkJU*GZ (V*0G)<_al/ duc-i-%( ov _ 8V>d’u,;)
ous, 6u;;k 3ug;p
. ovd  ov?
* )1 klj,a 1 i ) c
+ (v*0,) (51‘ sdu 5 (8% (“)ufk)du
ovd ovd
1 i 1 du’
2 <6u;;k aui;p) U’P)
*eij 1 5kd a (Skd a al/lqjd c
+ (v*07) | 3(05dug + 0; “j)_au; U
oV ovd.
(- e
? aup;k auk;p g
so that
(SF v 0) =0, 1 0" u ¢4 Ly dus
ous, 2¢ aukp P
i (§F gy — 1+ vy ov§ .
0ot b <6k 8u;>d
ovf ove
1% _ Vi c
ok (au i, )s)
eij 1 5kd a (;kd a * 8”% du
+ 05 5(65 dui + 67 duf) — o o u

a a
10]% 5 ov§ P\ g ) -
c c p )7

and similarly

ov ov® ov®
k koK) * ok _ c
ST Je*v*h = (e*v Ga)( <3uk>d +3 (aui;p 8u;;k)du”>
* k) a * ayg ayg c
+ (e*v 9,1)<§5§du + 2e (8112 - 8u;ck)du

NS A

‘ <8ui‘;p - auz;k>dup>

+ (e*v*09) <§(5’-“du‘-1 + 0Fdul) + e* (ayi])duc
“ S e ous,

Ll oy, B o T
? 8ui;p auzcuk ?

DO

+
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so that, using (*e* = ¢*,

(SP Jer ( ( ) < 812 ai)dué)
Uksp 8“1);’6
ov§ ov?
i 1 l 7 c
+ 0, (25 + 5t (8% 3ufk>du

* 61/1('1 _ ay'i dut
oug.,,  Ous, P

v
1% k a k a * ? c
ovg ove:
* ij G ) que )
' <5U2;p aug;k) up)

C(SF O (0 + e vt h)) = 08 du® + 20°F du?

+

N\H

t\)\»—l

Thus, adding, we obtain

using 6% = gk, O

In coordinates, therefore, the second order vertical endomorphisms may be
written as tensor fields

2
dul ® 0

St =dut® g+ gl © g

the factor 1/#(ik) arises here because the contraction of 9/0uf;, with dug, equals
$#(ik)0S(556F + 610%), so that

c # ik c(sT 7 - 7
Ju, 2 (0P9dus,) = (2 )5a(5p5§ + 5367)0PT = #(ik) 0iF .

The relationship given in Lemma 12 between vertical endomorphisms and total
derivatives may now be extended to a kind of homotopy formula.

Lemma 13. Ifw is an r-form on T,,E then
STdpw — dpS7w = r 6l (T2 W) .

Proof. Suppose first that 6 is a 1-form; we shall give a proof in coordinates, omitting
explicit mention of the pullback map. If = 6,du® + 0% du? then

A = (dpba)du® + Opdul + (dipbl)du® + 60 dus,

so that _ 4 _ o _
S7d0 = (6%9(1 + (dkﬁé))dua + 5%0;du§’ + 62 duy; .

On the other hand, S70 = 67 du®, so that

dpS70 = (dpb?)du® + 6 duf
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and hence ' ‘ _ o _
S7d6 — dS70 = 670,du® + 670, dui = 6,0 .
We now use induction on r. Suppose w is an r-form and that S7dpw — dpS7w =

T(Si (Tgl’}g*w); then, as both S7 and dj, are derivations of degree zero, their commu-

tator is a derivation of degree zero, and so

(S7dy — dpS7) (O Aw) = (S7dy, — dpSNO AT W+ T2L O A (STdy, — dipS7)w

m
2,1 % 2,1 % 2,1 %

_ .57 2,1% J
=70, T g ONT g WA O ONT 5w

= (r+ )82 (O Aw).
The result now follows by linearity. O

4 \Vector forms

We often use vectors of operators, tensors, forms, and so on. For instance, we
have defined the total derivatives dj, and the vertical endomorphisms S7, where
j and k are counting indices rather than coordinate indices. These operators fit
into a framework of vector forms, to which we can associate a cohomology the-
ory. Although the full cohomology theory requires the use of higher-order velocity
manifolds, we can see some aspects of the theory in the first and second order cases.

4.1 Vector forms
We consider differential forms on E, ID“mE and Jo“an taking values in the vector
space R™* and its exterior powers. Write YO%E with £ =0, 1,2 and put

o = (U TLE) @ (NR™) .
Then a typical element of Q" is
E=Xiyoi, @A AL AdE € Q)°

where the scalar forms x;,..;, are skew-symmetric in their indices, and where, as
in Corollary 1, {dt'} is the canonical basis of R”™*. It is clear that ;’* is a module

over the algebra of functions on 7% E.

4.2 Operations on vector forms

Define the operators d and dr on the modules of vector forms by their actions on
decomposable forms,

d:Qp° Q" dxew) =dyew
dr: Q7 = Q2T dr(x®w) =dix ® (dt' Aw),
so that

ddr(x ® w) = d(dix ® (dt' Aw)) = dd;ix ® (dt' Aw)
= didx @ (dt' ANw) = dr(dy @ w) = drd(x @ w)
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and
di(x ®w) = djd;ix @ (dt! Adt' Aw) =0,

showing that ddr = drd and d% = 0. We say that d= is the differential of the
vector form =, and that drZ= is its total derivative.

The total derivative of a vector form is a type of Lie derivative, and so we can
also define the corresponding contraction operation. Put

ip Q)7 — QZ;?SH , ir(x @w) = (d; 1) @dt' Aw

where d; J x denotes the contraction of the ‘vector field along a map’ d; with the
scalar form y, so that
dr = dit +i7d.

4.3 Equivariant vector forms
Let aju g T E — T, E denote the right action of ji¢ € L+ on T, E by

m
aj16(i07) = Jo(v 0 )5
also, let A.1, : R™* — R™* denote the linear map
J0¢
Ajig(dt’) = (D;e'(0))dt?

and extend this by multilinearity to Aj14 : AR™ — A"R™*. The vector form
Xiy i, @ (dtE A -+ Adtts) € Q7° is said to be equivariant if, for every jio,

a;3¢(Xi1~“is) ® (dtil A A dtis) = Xiy-is @ Ajéd)(dtil A A dtis) .

Thus an equivariant form, regarded as a map from objects defined on a velocity
manifold to elements of a vector space, commutes with the action of the jet group on
the manifold and the vector space. We use the oriented jet group in our definition,
as our application will be to problems in the calculus of variations where we need
to integrate the forms.

We shall be particularly interested in equivariant elements of Q(l)’m, namely
0-forms (functions) taking their values in the one-dimensional vector space A" R™*.
Then

Ajg(dtt A= AN dt™) = TP(0)(dt' A --- AdE™)

where J ¢ = det(D;¢") is the Jacobian of ¢, and so, writing d™t for dt' A--- Adt™,
an element A = L d™t is equivariant when

(Lo ajiy)d™t = det(D;¢'(0)) Ld™t.

Thus, writing an element of T,,E = @™ TE as (£1,...,&x), A is equivariant when
for each matrix A € GLT(m,R),

L(&A}) = (det A)L(g;)
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As the oriented jet group L1F is connected, there is an infinitesimal condition

T?

for equivariance. For a vector form x;,...;, ® (dt'* A--- Adt's) € Q7 we require
@ (Xiyoiy) @ (AN - NdE*) = Xy iy @ Lygpyon (A A - Adt'™)
In the particular case where s = m we have Ly;5/5,:d™t = (55 d™t, so the condition
simplifies to ‘ ‘
dix = 0ix.-

4.4 The bicomplex

It is clear that for —1 < s < m — 2 we can use the operators d and dr to construct
a bicomplex:

0,8 1,s 2,5 3,s
0 — QO —_— QO —_— QO —_— QO —

i | i | i | i |

0 ﬁ(l),erl Qi,s+1 Q?,s+l Qil’>,s+1

i | i | i | i |

0 ﬁg,5+2 Q%’S+2 Qg,s+2 Qg,s+2
. o =0,
where if s = —1 then Q® = 0. In this bicomplex {2, means ‘modulo constant

functions’, and is used instead of the usual beginning 0 = R — Q0 — ... of the de
Rham sequence.

An important property of the bicomplex is that all columns (apart from the first)
are globally exact, we show this by obtaining a homotopy formula for dr. Strictly
speaking the homotopy formula involves third order forms which are horizontal
over E, because the operator P, defined in the statement of the theorem involves
applying a total derivative to (scalar) second-order forms which are horizontal
over F; but if drZ = 0 then the operator P, is not involved and the formula is
genuinely second order. We feel, nevertheless, that it is worthwhile giving the more
general statement, on the understanding that the definition of the total derivative
of a second order form, and the consequent generalisation of Lemma 13, follow
exactly the same pattern as before. We also use the operator P> when studying
equivalents of first-order Lagrangians, although in that context the image of Ps is
always second-order rather than third-order.

Theorem 1. If = € Q)*" with r > 0 then, to within a pullback,
Pydr=+dr P ZE=Z,

where

A A 1
Pl (Xil.-<1;5+1 ®dt“ ARE '/\dtszrl) = m

SJXi1<-~is+1 & <8tj Jdt" A /\dtzSJrl)
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for first-order r-forms X, ...i,, ,, and

Py (771'1...1'5+2 ® dtil VANRERIVAN dti5+2)

1 . 4
= i, — lain
(T(ms 1)S Miwiore T30 Y im — 5 — 1)dlS 5 mlmls”) ?

9 . ,
— Jdt" A Adtt T

¢ (o )
for second-order r-forms 1;,...;_,-

Proof. This is a consequence of Lemma 13. Put

1

Plj = mgi
R M T er e L
then
Podr= = Po(diXiyeinyy ® At AdE A~ Adtir)
= szdeiln-iSH ® <881§J JdtF AdEE A A dtis+1)
= PldrXiyivyy ® Ok dt Ao At
- PgdenmiSH @ dt* A (;t] JdtT A A dtis+1>
= P2kdei1~~i§+1 ® dt A - A dttstr
—(s+ 1)P2jd1‘1in2‘..is+1 R dt™ Adt?2 A - A dEtett
whereas
drPE = dr <P1in1~~z's+1 ® (a(zj Jdtt A A dtis+1)>
= dp Pl X1,y ® dt™ A (;t)j QdET A A dtml)
= (5 + 1)diy P} Xjipoinoy @ At Adt2 Ao A dtt+
so that

PydrZ + dr P E = PYdiXiy iy, ®@ dt™ A Adtit
- (S -+ 1)P2]d11XJ1219+1 (29 dtil JANCRRIVAN dtis+1
(84 )iy P Xjigin,y @ At A~ Adtisr
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But, using Lemma 13, the operators acting on Xj,...;,,, satisfy

1
r(m—s—1)
1

_ J (o ok
r(m—s—1) %, (iS4 mr)

1

J pk g _
0, Py = r2(m—s)(m—s—1)

&7 Skdy, — &7 dS'Skd,

! J I ok .
_ 4 )
7’2(771, — 5)(m _s— 1)611(dldks S + (m+ )leS )
m_ i s+1 o
T(m - S)(m — s — 1) i1 kS )

m—s—1"

using the fact that S'S*x;,...,,, = 0 because the x;,...;,,, are first-order forms.
Similarly

j +1 . s+1 ]
(s+1)Pid, ——— 3T  gig. =
(s + DFzd, 7“(mfsfl)sd“+7“2(mfs)(mfsf1)dlSSdl1
s+1 . )
r(m—s—l)( W57+ rd)

+ s+1
r?(m—s)(m—s—1)

(didi, S'S” +rd;, S + 6] d, S

(m—s—1)" r(m-—2s) S
s+1 ;
&7 dy,S*
Jr7°(m—s)(m—s—1) o i
and 41
Vd;, Pl = > g, g9
(5+ ) 141 r(m—s) 15;

from which we see that
&/ PYdy — (s +1)Pid;, + (s + 1)d;, P| = 57,
and the result follows. O

4.5 The bottom left corner

The part of the bicomplex which holds the major interest for the calculus of vari-
ations is in the bottom left-hand corner; we shall repeat it, with a pull-back map
shown explicitly where appropriate.

1,m—1
Ql
/ dr
—0, 1 1
Q m Q ,m Q ,m
1 d 1 1 2
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Take [A] € ﬁ(lhm’ so that, for some function L on 7}, F, we have for any represen-
tative
A=Ldt"A---Adt"™ =Ld™t.

Here, L will play the role of a (first order) Lagrangian function in the calculus
of variations, and the vector-valued function A will have the capability of being
integrated along m-curves in Zo’mE (and, in particular, along prolongations to JO“mE
of m-curves in E). So, given the equivalence class [A], define

0, =8d\, & =72 dA —dr©,,

where the choice of representative in the equivalence class is immaterial as we
consider only dA in the definition. We may compute ©; and &y in coordinates;

they are
. OL oL 0
— qJ u® - 1 . m
6, S(@ Dt >®<8ﬂj(dt Adt ))
= ( ) ( J(dt A -/\dtm)>
and

(oL , ., OL  , 1 m
€0<8uadu +au;ldui)®(dt A ANdE™)

oL )
—d d dtF A | = J(dt* A~ A dE™
’“(au; “>® (atﬂ“ )>

oL oL W .
(2 - a2 Ja s @ e,

5 Variational problems

Our main application of the theory of vector forms, and their associated cohomol-
ogy, will be to problems in the calculus of variations. These will be parametric
problems: that is, problems where the solutions are submanifolds without a given
parametrization (although with a particular orientation). In the one-dimensional
case, as exemplified by Finsler geometry, all the vector forms are essentially scalar
forms, and so this theory only provides further insight in the case where the sub-
manifolds have dimension two or more.

5.1 Homogeneous variational problems

We now study m-dimensional variational problems on F, with fixed boundary con-
ditions. As before, a vector function A = Ld™t € Q(l)’m will be called a Lagrangian
for a variational problem. It will be called homogeneous if it is equivariant with
respect to the action of the oriented jet group LLT. Thus A is homogeneous when
the scalar function L satisfies the infinitesimal condition

iL=4'L
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or, equivalently, the finite condition
Loaji, = (det D;¢"(0))L

for every every jl¢ € LLF.

We now consider submanifolds of E of the form (C) where v : R™ — E is an
immersion and C C R™ is a connected compact m-dimensional submanifold with
boundary 0C. The fixed-boundary variational problem defined by A is the search
for extremal submanifolds v(C) C E satisfying

/ ()" Lxs L)d™ = 0
C

for every variation field X on E satisfying X| woc) =0

Theorem 2. If A is homogeneous and v(C) is an extremal submanifold then o ¢
is also an extremal submanifold, for any orientation-preserving reparametrization
¢ whose image contains C'.

Proof. We shall show that if A is homogeneous then, for any immersion -,

/ (Lo (yod))dmt = / (Logty)dmt
9¢~1(C)

c

so that the integral itself is invariant under reparametrization; hence extremals will
be invariant under reparametrization. As

C

o Eedaeaani= [@h(wes o m)am)
= [@werttosoo) @y e,
it will be sufficient to show that
(Loj'(yop)op™!) (¢~ ") d™t = (Log'y)d™t.
Now for any s € R™
d"t|, = (Tdo¢~)(s) (671)"d™|, ,
and so it will be sufficient to show that, for each s,
(Log'(vod)oo™)(s) = (Log')(s)(Tdoo™")(s).

Note that we do not require the diffeomorphism ¢ to satisfy the condition ¢(0) = 0.

To see how this can be obtained from the homogeneity condition, write the
latter as

Loay, = (T@)0)L
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where ¢ is a diffeomorphism which does satisfy ¢(0) = 0; then, for any immersion
v:R™ = F,

(TP O)L(jo (v o 1s)) = L(ja, (do (v 0 Ts)))
= L(js(yoTsoyp)).
Now put ¢ = T_, 0 ¢ o Ty-1(,, and note that ¢(0) = 0; also

(voTs)op=70¢0Ts1(s

and
(T9)(0) = (T) (67 (),
so that
(To) ¢ ()L(jo(vors)) = L{jo(vodoTy1(s))
and hence

(T )&~ ($))L(7(s)) = L(T (vo9) 0 7' (s)) - U

5.2 Equivalents of Lagrangians

Let A € Q(l)’m be a homogeneous Lagrangian. Any scalar m-form 6,,, € Q;"’O which
is horizontal over F will be called an integral equivalent of A if

_ (_1)m(m—1)/2 . .
A= (S e
any vector r-form ©, € Q""" which is horizontal over E will be called an inter-
mediate equivalent if

-1 r(r—1)/2 — )
A:( ) '(m r) 0O, 0<r<m-—1.
m!

Lemma 14. If ©,; is an equivalent of A then

-1
@r = ( ) Z-T®7"—0—1
m—rT

is also an equivalent.
Proof. If ©,; is an equivalent of A then by definition

L1y — 1))
A = ( ) fnf' ) Z%+1@r+l>

so that

(=1)"=D/2(m — )l
m!

(=1)"=D/2(m — p)!
m!

_1 T
O, = ig(fn)r iT®r+1) —A. O

In the case r = m we use the term ‘integral equivalent’ for the following reason.
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Lemma 15. If v is an m-curve in E then (7'7)*A = (717)*©,,, so that

/C(J’lv)*A=/C(J’17)*@m~

It follows that A = ©¢ and ©,, have the same extremals.
Proof. Suppose © € Q™™~" may be written in coordinates in the particular form
O = Ouyap iy T ugmdu™ A Adu® @ diFT A A dE

where the functions Oy, ...q,, are skew-symmetric in their indices; then

m

ke Gub

@ dt*r Adth A dtR

. ) 0
iTO = ®a1~-amuz7r:1 T “Z?ﬁ <ub Jdu™ A Adut ) ®

krt1

r
=3 )G (uzidu‘“ Ao dun o duar) ®
p=1

® dtFr Adti e A A dtE
= r(—1)7'_1@a1...amuz:uZ:1 ceugmdu®™ A ANduttt @
@ dthr A dtFrr A A diF
Thus if © € Q™Y we see that
1O =ml(=1)"" V20, L uft - ufmdtt A A dE
= ml(=1)™" D20, L, det(uf )dt' A A dET

so that

()" im0 = mi(~1)™=D/2(@, o Jly) det (Z’Zk) A A dE

On the other hand,
(770 = (Oaywap ©77) (717)" (du™ Ao A du)

~ oy
= (@al"'“m o jlry) det < atkj

)dtl/\-~-/\dtm. O

5.3 Euler forms

Let O, be an integral equivalent of A. Define the scalar (m+1)-form &, € QTH’O

by
Em = dO,,

and the vector forms &, € Q5" by
& = Tsz,lE*d@T —(=1)"d1O, 41 0<r<m-1.

The forms &, are called the Euler forms of ©,,.
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Lemma 16. The Euler forms satisfy the recurrence relation
(_1)r+1

57«: iT5r+1 OSTSm—l,

consequently if dO,, = &, =0 then £ = 0.

Proof. This follows from the definition and Lemma 14. We have, omitting the
pull-back maps,
1€ = i1dO, 1 (—1)  irdrO, 42
=drO,41 — dirO©p 41 — (—1)"driTO, 42
=drO,41 — (-1)"dO, + (m —r — 1)drO, 11
=(m—7)(drO,41 — (-1)"d®,)

when r + 1 < m, so that

(_1)r+1 - r+1 r
mZTng,_l = (—1) dT@7-+1 + de" = 57« .

Similarly,
i€ = i7dO,,
=dr0,, — diTO,,
= dTem - (_l)mild@m—l
so that

(_1)miT£m = (_1)de®m +dOp_1=En 1. U

The different spaces containing the various equivalents and Euler forms may be
seen in this diagonal part of the bicomplex.

d
0 +1,0
Onc O — Q1T 3¢,

“ s

®r = iT®T+17 @O =A
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5.4 Lepagian forms

Let A be a homogeneous Lagrangian, and let O, be an equivalent of A (1 < r <m).
We shall say that O, is Lepagian if the corresponding Euler form &y € Qé’m satisfies

S& =0,
so that & is horizontal over F.
Theorem 3. The vector 1-form

0, = SdA

is an integral equivalent of A (m = 1) or an intermediate equivalent (m > 2), and
is Lepagian. It is called the Hilbert equivalent of A = L d™t.

Proof. From the definition of S,
S= =Sy @d" 't;,
so that
iTSdA = i7S(dL ® d™t)
=ir(S7dL @ d™'t))
=i, STdL @ dt* A d™ 't
=i;S7dL ® d™t.
But for any 1-form 6 on TmE, if in coordinates 0 = 0,du® + 0% du¢ then
;570 = (67 du®) = ujﬁg ,

so that

- oL .
ijS7dL = uf oue = dj-L =mL

using the homogeneity of the Lagrangian.
To show that ©; is Lepagian, note that

Sdr©; = SdrSdA
= Sdr(S7dL @ d™'t;)
= S(d;S7dL & (dt' A d™ ')
= S(d;S7dL ® d™t)
= S'd;S7dL @ d™'t;
= (d;S" +6;)S7dL @ d™'t;
= SdL®d" 't
= S(dL ® d™t) = SdA

using Lemma 13 and the fact that L is defined on TmE so that S'S7dL = 0; thus
S& = 0, as required. O
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Theorem 4. If él is another Lepagian vector 1-form equivalent to A, with corre-
sponding Euler form &y, then

go = 50 s él — 0O, =dtd ((I) S Qé,m—2) .

Proof. Tt follows straightforwardly from the Lepagian condition SE = 0 that
P&y = 0, so that we may use the homotopy condition of Theorem 1 to see that

0= P& = Py(dA — d1O1) = ©1 — Pydr©y = Oy — (1 — dpPy)Oy
giving 0, -0, =drP,6, (or 0, =0,ifm= 1). Thus
& — & = (dA — d1Oy) — (dA — dpO;) = —d3 PO, = 0.
(Note that, as dA is a first-order vector 1-form, P,dA = SdA = ©,.) O

5.5 The First Variation Formula

Theorem 5. Let C' be a compact connected m-dimensional submanifold of R™
with boundary OC, let v be an m-curve in E whose domain contains C, and let

X be a variation field on E vanishing on v(0C) with prolongation X} on Jo“mE .
Then

/(71’7)*£X3RA=/(527)*¢X50;
c c

consequently -y is an extremal of A precisely when &, vanishes along the image
of 7?7.

Proof. We note first that
[ @exa= [ i
C C
:/C(j%)*ixgnrfﬁ;dA

:/(,727)*1'X3L50+/(J_Q’Y)*Z'andT@la
C C

using the definition of the Euler form &. But prolongations commute with basis
total derivatives and ©; is horizontal over F, so that

/ (7°7)"ix2 dr©) = / (7°7)*drix: ©1 = / d(7'7)*ix61 =0
c c c
and we see that the second integral vanishes; thus
[@rega= [ @i = [ Prise
c c c
because & is horizontal over E.
Now let v be an immersion. If & = 0 at every point in the image of 7%y, then

for any vector field X on E and any ¢t € C we will have (jzw)*ixé'oyt = 0, so that
the integral over C' will vanish and v will be an extremal.
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If, instead, ¢ = j2(y o T;) is some point in the image of 72y where 50|q is non-
zero, then there must be a vector field X on E such that the vector-valued function
1x & gives a strictly positive multiple of d™t when evaluated at ¢, and hence when
evaluated in some neighbourhood U of ¢. Let b be a positive bump function on E
whose support lies in the interior of U and which satisfies b(q) = 1. Then

/ (79" Loy A = / () ioxEo > 0,
C C

so that v cannot be an extremal. O

5.6 Integral equivalents for m > 2

Let A = Ld™t be a homogeneous Lagrangian with m > 2, and write its Hilbert
equivalent ©1 as

@1 = 19i ® dm_lti 5

the scalar 1-forms 9J; are called the Hilbert forms of A. If A never vanishes, define
the Carathéodory equivalent ©,, € QT’O by

- 1 "
i=1
Theorem 6. The Carathéodory equivalent ém is an integral equivalent of A.

Proof. We must show that i'©,, = (—1)™(m=1/2mIA, so rewrite ©,, as

1

mlLm—1

0,, = Z (=1)797 M A A 9T

O'Eem

where G, is the permutation group, and use induction. The calculation uses
dj 19" = 0;L, the proof of which is similar to that used to show that it1©1 = mA;
we also define 7, ; € &, by

m—s (i=r)
Trs(i)=<Qi—1 (r+1<i<m-—s)
) otherwise .
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Now

iT( S (217070 A A 97 g gy dta(m))

oS,

= Z (_1)0dj N (190(1) Ao A ﬂa(m—s)) ®dt? A do(m=s+1) A ... A gro(m)
eSS,

— Z Z o’ r 1(,(90(1) A - (d] J,ﬂa(r))/\.“/\,ﬂa(m—s)) ®

r=1oceG,,
® dtj A dtem=st) Ao e m)

L Z Z o’ 7‘ 1 (190(1 N 190(7"—1) A ,190(7‘-1-1) Ao A 190'(m—s)) ®

r=1ceG,,
® dto(r) A dto(m—s—i—l) NN dto(m)

LZ Z r 1( 1)mrs{

r=1c€eG,,
(7‘9(77'“5(1) A A 1907-7‘3(7‘—1) A 19(773«,5(7‘—%1) A A ﬁo'rr,s(m—s)) ®

® dtUTT’S(T) A dtO'TT,S(m_S‘i‘l) A A dtUTT’S(m)}

— m s— 1LZ Z 1947(1) A - ﬁa(m—s—l)) ®

r=1 Uebm
® dto(m=s) g gro(m=s+1) \ .. A gro(m)

= ()" Hm=s)L Y ()7 (@D A A7) @
oc€G,
@ dt7m=5) A qpem=s+D) A LA gem)

so if

-1 s(2m—s—1)/2
e

(m —s)lLm—s—1

S (—1)707 W A A 97 g gt dta(m)}
€S,

is+1@ B (_1)5(2m—s—1)/2
T 7m T (m — s)lLm—s—1

()" M m=s)L Y (=17 (@D A A7)

€S,

% =) A getm=—st) AL A dta(m)}
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_ ( 1)(e+1)(2m =2/ o(1) o(m—s—1)
= s i T A AY ) ®
UGGm

© dt7m=9) A gtem—s+1) A L. p gro(m)

as required. Hence

-1 m(m—1)/2
ine, - ()T S (C1)Pd D A A de
e,
= (=)™ D2l Lt A A dE™
= (=1)™m=D/2 1A O

We see also from the induction formula that
im0, = (—~1)™m=U/2 (m —1)l6,

where ©1 is the Hilbert equivalent; consequently ©,, is Lepagian. Then, as d©,,, =

£,
/ (') Lx1 O = / (79 ixs Em
C C
= (e [ ()i
C

for any vector field X on E vanishing on (9C), because contractions by vector
fields anticommute, so that i'ix1 &y, = (=1)"ix1 iTEp.

5.7 Another integral equivalent

When m = 1 then the only Lepagian integral equivalent of a Lagrangian is the
Hilbert equivalent. But when m > 1 there may be other integral equivalents. Put

(=1)"
<
Op41 = r 1)2Sd®r (I1<r<m)

where, as usual, ©g = A.

Lemma 17. Each ©, is a first-order vector form, an element of Q""" horizontal
over F.

Proof. Each O, is first-order because neither S nor d increases the order of a vector
form. By definition ©g is horizontal over E, and if ©,. is horizontal over E then
the contraction of dO, with any vector field on j’“mE vertical over F will again be
horizontal over F; thus 0,1 will also be horizontal over E. O

Theorem 7. The scalar m-form ©,, is a Lepagian integral equivalent of A called
the fundamental equivalent of A.
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Proof. We first show that, in coordinates,

1 o"L 0 0
— a1 A L. ar e | —— m
© (r)2 oug! - - dugr dut A N AU <8ti7‘ 4o d t) '

This formula clearly holds for » = 1 (and, indeed, for » = 0); so suppose that it
holds for a given value of . Then

717"
Ory1 = D g0,

(r+1)2
(- 1 oL .
= a d _T+1 . /\
(r+1)2 (r!)? oui! -+ Qugr 6%::11 Uippy T
ay Qr a 8 m
Adu A--- ANdu ®(8tﬂ'J8tirJ Jatle t)

1 oL
= = du®r A - A dulrtt
((T+1)!)2 8u;111 e u U X

irt1

& 0 NI i 1d™t
Otir+ ott

so that the formula also holds for the case r 4+ 1. In particular, therefore, we have

1 oO™L

a1 A, 0 0 m
@m_(m!)26u§‘11--~8uijdu A Ndu X(atimj'”Jatljd t)
R E
= Gl Gar g T A A dut :
b e o

1 o™L
— 77(&1111 A A dua‘"l .
m! ouit -+ Oupy

Thus, using the calculation in the proof of Lemma 15,

im0, = m!(—l)m(m—l)ﬂ(é!M
oL

- dugy

= (=)™ =D2  Latt Ao A dE™

= (—1)™m=D/2mIA a

det(ug;)>dt1 Ao AdE™

= (=1)mim—1)/2 det (uj )dt' A --- A dt™

Theorem 8. The fundamental equivalent ©,,, of a homogeneous Lagrangian A has
the property that d©,, = &,, = 0 if, and only if, & = 0.

Proof. If &,, = 0 then & = 0 by the recurrence relation of Lemma 16. So show
the converse, we use the definition

_ (=D
®r+1 - (T‘+ 1)2 Sd@r
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and the fact that dO©, € Q)T " to see that the homotopy operator P; from
Theorem 1 takes the form

P (Xil'“im—r@dt“ /AR '/\dtlmfr) = mSinl...im_r(@ <8tj Jdt" A-- '/\dtZ"LT)

(the formula in the proof of Theorem 1 was for an element of Q]*!): thus we may
rewrite the definition of ©,.41 as

6r+1 == (—1)TPd@T .

Now from
& =dO, — (—-1)"drO, 11
we obtain
PydE, = —(—1)"PodrdOy11 = (1) (dr P1dO, 11 — dOy11)
so that

(1) PodE, = dO, 41 — dTP1dO, 41

using the homotopy formula of Theorem 1; but

Erp1 =dO,p1 — (—1)"d1O, 40 = dO, 11 — d7P1dO, 11

so that
Eri1 = (—1)"TIPydE, .
Similarly,
PodEpy 1 = —(—1)"" 1 Pydrd®,, = (—1)™dO,, = (—1)"&,, .
It follows that if & = 0 then &,,, = 0. O
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