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About Boundary Terms in Higher Order Theories

Lorenzo Fatibene, Mauro Francaviglia, Silvio Mercadante

Abstract. It is shown that when in a higher order variational principle one
fixes fields at the boundary leaving the field derivatives unconstrained, then
the variational principle (in particular the solution space) is not invariant
with respect to the addition of boundary terms to the action, as it happens
instead when the correct procedure is applied. Examples are considered
to show how leaving derivatives of fields unconstrained affects the physical
interpretation of the model. This is justified in particular by the need of
clarifying the issue for the purpose of applications to relativistic gravita-
tional theories, where a bit of confusion still exists. On the contrary, as
it is well known for variational principles of order k, if one fixes variables
together with their derivatives (up to order k − 1) on the boundary then
boundary terms leave solution space invariant.

1 Introduction
Recently the interest in higher order Lagrangian theories has been renewed within
the framework of covariant field theories in various contexts, aiming to suitably
extend standard (Hilbert-Einstein) General Relativity in order to model, at least
partially, dark energy/matter effects (see [1], [9] and references quoted therein) via
the use of gravitational Lagrangians depending non-linearly on the curvature.

In gravitational literature different attitudes towards boundary conditions in
GR and in alternative gravitational theories are presented (see [10] for a detailed
review). We shall here stress that mathematical consequences of different attitudes
must be considered before any physical interpretation is attempted and that of
course one is not free to ignore these consequences, that might be (and usually
are) rather crucial for a number of physically relevant issues, e.g. the definition of
conservation laws and their correct physical interpretation.

From the mathematical viewpoint, any attitude towards boundary conditions
should be dictated by Hamilton’s least action principle. This principle is a defini-
tion of the critical sections which have to be understood as physical configurations.
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Being it a definition one is logically free to choose the formulation which is more

suitable to the situation. However, there are physical and mathematical conse-

quences of this choice which must be in any case taken into account. Moreover, it

would be appreciated if a general guiding principle would avoid to treat each model

on its own on the base of physical considerations which in some cases (e.g. when

dealing with exotic physics or non-trivial generalizations of the models already

considered) could be unclear.

In particular, we shall hereafter show that if one assumes that only the value

of fields must be fixed while (higher order) derivatives are left unconstrained at

the boundary, then one cannot keep that pure divergences in the action leave the

solution space invariant, as it happens in the standard applications of Calculus of

Variations. This is particularly relevant for Gravity, since in the literature (see

e.g. [12]) it is often claimed that in standard GR one is free to choose not to fix

first derivatives of the metric at the boundary, since the boundary terms of the

Hilbert action can be written as a total variation and hence can be compensated

in various non-unique ways by adding suitable boundary terms to the action. Even

if this is mathematically correct in GR it is in any case rather misleading since

such a procedure fails to hold if one considers Lagrangians that are non-degenerate

and non-linear in curvature. Accordingly we believe that whenever such a choice

is adopted one should clearly state that this is done at the expense of changing the

space of solutions and affecting conservation laws which is unfortunately physically

disturbing; see also [7].

As a motivation for such an uncanonical choice it is often claimed that fix-

ing higher order variations of the fields may affect their physical interpretation

so that this standard attitude should not be embraced without considering these

effects. This is of course true and we fully agree that detailed discussions on

the role that different boundary conditions have in GR is extremely important.

However, it is also true the other way around, i.e. when leaving variations of

field derivatives free at the boundary one should always be careful about the

change of solution space, the interpretation of boundary fluxes as well as the

further spurious boundary equations that appear besides the (bulk) field equa-

tions.

Of course there are also other issues to be considered when fixing boundary

terms of variational principles. For example boundary terms affect also conserva-

tion laws and their effect should be considered as further criteria to choose among

boundary terms that leave the solution space unchanged; see [4], [8].

Hereafter, we shall present explicit examples in Mechanics and Field Theory.

From these examples it is clearly shown that if one artificially wants to describe a

system by a higher order Lagrangian adding pure divergences to the Lagrangian

itself, then in order to maintain the standard interpretation of the physical system

one is forced to fix variations and their derivatives at the boundary. The examples

will in fact show, en passant, how the solution space may drastically change and

even reduce to empty if the standard procedures of Calculus of Variations are not

used.
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2 The Relation between Higher Order Variations and Boundary
Terms

Let us consider the following Lagrangian

L′(q, q̇, q̈) = q̇q̈ +
1

2

(
q̇2 − ω2q2

)
+ ω2qq̇ (1)

which is easily found to be equivalent to the Lagrangian of an harmonic oscillator
and to give rise to the same dynamics via Euler-Lagrange equations (of order 2).
Varying it we have

δL′ = δq̇q̈ + q̇δq̈ + q̇δq̇ − ω2qδq + ω2δqq̇ + ω2qδq̇ =

=
d

dt
(δqq̈)− δq d

3q

dt3
+
d

dt
(q̇δq̇)− d

dt
(q̈δq) +

d3q

dt3
δq +

+
d

dt
(q̇δq)− q̈δq − ω2qδq + ω2δqq̇ +

d

dt

(
ω2qδq

)
− ω2q̇δq =

=
d

dt

(
q̇δq̇ +

(
q̇ + ω2q

)
δq
)
−
(
q̈ + ω2q

)
δq (2)

If following the standard prescriptions of Calculus of Variations we assume δq = 0
and δq̇ = 0 on the boundary of an interval [t0, t1] then we obtain in fact the equation
of motion of the 1d-harmonic oscillator

q̈ + ω2q = 0 (3)

This is no mystery since the Lagrangian (1) can be easily recasted as follows

L′(q, q̇, q̈) =
1

2

(
q̇2 − ω2q2

)
+
d

dt

(
1

2

(
q̇2 + ω2q2

))
so that it manifestly differs from the harmonic oscillator Lagrangian L(q, q̇) =
1
2

(
q̇2 − ω2q2

)
by a total time derivative (which is the mechanical equivalent of

a pure divergence term in field theory). Hence, in this case, we know that the
pure-divergence-term d

dt

(
1
2

(
q̇2 + ω2q2

))
in the Lagrangian L′ is totally unessential

with respect to the equation of motion. Let us stress that in this case the pure
divengence term is even zero on-shell because of the conservation of total energy,
since the boundary term is nothing but the total derivative of the Hamiltonian.

If one decides instead to fix only δq = 0 on the boundary, leaving δq̇ unfixed,
then extra boundary field equations are added in order to kill the extra boundary
contribution to the action. The equations of motion that follow form (2) in this
case are {

q̈ + ω2q = 0

q̇0 = 0

which in fact admit less solutions than Eq. (3). Notice that solutions to this problem
are in fact just a zero-measure set in the solution space of the 1d-harmonic oscillator!

If one decides not to keep the first derivatives fixed, by adding pure divergences
one can even invent nastier and nastier examples. For instance, by considering the
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following 1-parameter family of Lagrangians

L′′(q, q̇, q̈; Λ) =
1

2

(
q̇2 − ω2q2

)
+
d

dt

(
1

6
q̇3 +

(
ω2

2
q2 + Λ2

)
q̇

)
with Λ real, which produce equations of motion in the form{

q̈ + ω2q = 0

q̇2
0 + ω2q2

0 = −Λ2

wee see that, for any Λ 6= 0, one has no solution at all, since there are no initial
conditions satisfying the boundary equation. And even for Λ = 0 the solution space
is much smaller than the solution space of the harmonic oscillator, since it reduces
again to quiet.

3 Examples in General Relativity
Of course one could argue that field theory is not Mechanics and that in Field
Theory there is more space to play with. Such an assumption is of course true, but
still one has to pay a lot of attention when playing. . . ! Let us then present similar
situations in GR.

Let M be a 4-dimensional manifold with boundary Ω and let us consider the
metric Lagrangian

L =
√
gR−∇α

(√
ggµν

(
uαµν − ūαµν

))
=

=
[√
ggαβ(ΓρασΓσρβ − ΓσσρΓ

ρ
αβ) + dσ(

√
ggαβ ūσαβ)

]
ds (4)

where: ds is the standard local volume element induced by the coordinates; here
and below, Γαβµ are the coefficients of the Levi-Civita connection of the metric g; we

set uλµν = Γλµν − δλ(µΓαν)α and ūλµν = Γ̄λµν − δλ(µΓ̄αν)α for any connection Γ̄λµν chosen at

will on M . Γαβµ as well as uλµν are functions of the first derivatives of the field gµν ,

while Γ̄λµν is just a “fixed parametrization” i.e. a non-dynamical background (as one
could easily see by realizing that the Euler-Lagrange equations of (4) with respect
to Γ̄λµν are identities). As long as the background connection Γ̄αβµ is considered, one
is free to fix it at will: it can be a generic connection or the Levi-Civita connection
of a background metric ḡ (which could even have in principle a different signature)
depending on the situation.

The Lagrangian (4) is covariant and first order in gµν ; the connection Γ̄αβµ is
not subjected to any field equations so that it can be any connection both a priori
and a posteriori (we stress that connections exist globally on any manifold); bulk
field equations for g are vacuum Einstein field equations.

The background ūλµν is here added to preserve covariance. One could fix co-

ordinates so that ūλµν = 0 (usually at a point), or consider a fixed ūλµν(x) as a
point dependence (we stress that it is relegated into a divergence). Our procedure
is analogous to the one used by Hawking and Ellis (see [6]) to study the Cauchy
problem in Relativity; there a background (metric) is used at the level of field
equations, to show essential hyperbolicity, while here it is used at the level of the
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action. The two approaches are equivalent since the background is non-dynamical
and its fixing commutes with the derivation of field equations; see also [5].

The variation of this Lagrangian is given by

δL =
√
gGµνδg

µν −∇λ
(
√
g(δµ(αδ

ν
β) −

1

2
gαβ)(uλµν − ūλµν)δgαβ −√ggµνδūλµν

)
with Gµν = Rµν − 1

2Rgµν . Applying standard techniques of Calculus of Variation
one obtains only the bulk standard field equations Gµν = 0. If, instead, one fixes
only δgµν = 0 on the boundary, then a new boundary equation (associated to δūλµν)
is added √

ggµν |Ω = 0 ⇒ gµν |Ω = 0

This boundary condition is not only incompatible with the bulk field equations,
but with kinematics in the first place (metrics are assumed in fact to be non-
degenerate so that they are everywhere forbidden to vanish). Hence if one considers
the Lagrangian (4), that differs from standard GR by a divergence, and fixes the
metric only, then the solution space is empty !

One could argue that the background ūλµν is unphysical since it has no dynamics
and that therefore there is no need to consider its variations. That is certainly
reasonable though the argument can be reversed: since the field ūλµν is unphysical,
then physics should be independent of how one decides to treat it: keeping it fixed or
varying it, possibly varying an underlying metric ḡµν that fixes it on the boundary,
alone or together with its first derivative. The above example shows instead how
the physical predictions of the theory (in particular the solution space) do depend
on which unphysical degree of freedom is kept fixed on the boundary. Moreover,
conservation laws would result to be affected by terms ensuing form the divergence
(they can be easily calculated as in [5]).

Similar (but nastier) examples can be considered: e.g. the Lagrangian

L′ =
√
gR− 1

Λ
∇α
(√
ggµνR

(
uαµν − ūαµν

))
that is again classically equivalent to the Hilbert Lagrangian. The variation is now

δL′ =
√
gGµνδg

µν −∇λ
(

1

Λ
δ(
√
ggµν)R

(
uλµν − ūλµν

)
+

1

Λ
δR
√
ggµν

(
uλµν − ūλµν

))
+

−∇λ
(

1

Λ

√
ggµν(R− Λ)δuλµν −

1

Λ

√
ggµνRδūλµν

)
Here, if we fix δgµν = 0 leaving δR, δuλµν and δūλµν unconstrained on the

boundary, we have three boundary field equations
√
ggµν

(
uαµν − ūαµν

)
δR|Ω = 0 ⇒ uαµν |Ω = ūαµν |Ω

√
ggµν(R− Λ)δuλµν |Ω = 0 ⇒ R|Ω = Λ

gµνRδūλµν |Ω = 0 ⇒ R|Ω = 0

(5)

As in the previous example, these three conditions are incompatible and the re-
sulting solution space is again empty. Unlike the previous example, however, if in
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this case one decides not to vary the background the first two equations in (5) are
still obtained along with Einstein equation; they (in particular, the second one) are
enough to force the solution space to be empty. Here the troubles are generated
exactly from not fixing δuλµν at the boundary. If now one adds to the Lagrangian
a divergence that suitably counterbalance the first constraint, then this is enough,
for any Λ 6= 0, to prevent Minkowski spacetime from being a solution of the theory,
with a devastating effect on Newtonian limit and the physical interpretation of
the whole theory.) The first condition imposes in fact to gµν an arbitrary asymp-
totic; if ūλµν is suitably chosen, then one could impose to gµν to be asymptotically
anti-de Sitter, de Sitter or anything else. In any case, the solution space is again
empty !

Other even more complicated examples can be studied under the form

Lf =
√
gR−∇α

(√
ggµνf(R; Λ, . . . )

(
uαµν − ūαµν

))
We stress that of course there are reasonable boundary terms which do not force

the solution space to be empty, but there is no guiding principle helping one in dis-
tinguishing good boundary terms from bad ones, so that such a procedure should
be better avoided (being misleading) or, if really necessary, treated with the cor-
rect mathematical instruments. All this in the case that the “real” Lagrangian we
start deforming is the Hilbert Lagrangian, that is known to be the only non-trivial
second order Lagrangian linear in the curvature of a metric field. Linearity implies
Hamiltonian degeneracy, so that the second order theory is essentially equivalent
to a first order theory with second order field equations. It is exactly this degener-
acy and the existence of a family of covariant first order (see [5]) that allows one
to play with a certain success with the addition of divergences. One should be
aware that such a method cannot hold any longer in more general families of grav-
itational theories, such as e.g. all f(R), Gauss-Bonnet, Lovelock, Chern-Simons
Lagrangians and so on, including all effective Lagrangians that ensue from low
limits of spacetime and/or quantum requirements.

4 Conclusions
We have here considered two attitudes in a variational principle of order k. Let
us summarize our point. A weakly critical configuration is a configuration that
extremizes the action for any deformation which vanishes along the boundary (while
the field derivatives are left unconstrained).

A critical configuration is instead a configuration which extremizes the action
for any deformation which vanishes together with its derivatives (up to order k−1)
along the boundary.

Of course a weakly critical configuration is also critical, while the converse is
false in general. From these simple examples we may easily conclude that, in
a theory of order k, pure-divergence-terms may be considered unessential with
respect to the field equations only if one considers critical configurations. On the
contrary, by adding boundary terms to the action one can easily force the space of
weakly critical configurations to be smaller or even empty.

Of course one is free to abandon the invariance of the action with respect
to boundary contributions (as in a sense is done in the Hamiltonian formalism).
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Unfortunately, such an attitude strongly impacts on conservation laws which are
an essential part of the physical interpretation of the theory as well.

Weakly critical configurations are considered in [12] (against the standard re-
sults in Variational Calculus and other important monographs in GR that more
correctly consider only critical configurations; see [2], [6], [11]). In our opinion
there is no real reason to impose an often artificial boundary term to a covariant
action, breaking general covariance, in order to allow more general deformations of
fields. Deformations in Lagrangian formalism have indeed no physical meaning. In
Mechanics they are called in fact virtual dispacements also to stress the fact that
they are not physical and they just need to be generically independent.

Any procedure that fixes fields and no derivatives at the boundary is certainly
very similar (if not technically identical) to a gauge fixing. Gauge fixing are useful
in practice in special situations but there is no reason to break gauge covariance by
fixing a gauge when a gauge covariant procedure allows to obtain the same result
from a more fundamentally satisfactory point of view.

Another way of considering these examples is from control theory in the Hamil-
tonian framework. Boundary terms of the action are exactly the way of mimiking
control theory at the Lagrangian level. In such a framework one is not concerned
with computing physical configurations (namely, solutions of field equations) but
how (and whether) physical configurations can respond to some constraint im-
posed at the boundary. For example, computing the electric field in a space with a
conductor, knowing that the boundary, i.e. the surface of the conductor, is equipo-
tential.

In this context the extra boundary equations are exactly interpreted as the
condition one wishes to impose at the boundary. Here (and only here) one should
guarantee that the boundary conditions imposed can be physically realized. It is no
surprise that in certain cases there exist no configuration obeying those boundary
conditions, meaning that one cannot physically impose those particular boundary
conditions.

We have to stress that in gravitational experiments we are now technologically
unable to impose any boundary conditions. It is therefore interesting to know that
some requirements are forbidden in principle.

We have also to stress that the framework of control theory is by no means
related to the determination of solutions of field equations, where by definition one
wants to obtain all possible field configurations. Moreover, if we unnecessarily rely
on boundary terms to obtain field equations, then this freedom cannot be exploited
to deal with conservation laws (see [3]). In fact, it is well-known that, although
divergences leave invariant critical configurations, they affect conservation laws and
conserved quantities that are an important part of the physical interpretation of
the model. If boundary terms are fixed for field equations one could only hope
conservation laws to turn out to make sense.
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