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Conformal vector fields on Finsler manifolds

József Szilasi, Anna Tóth

Abstract. Applying concepts and tools from classical tangent bundle ge-
ometry and using the apparatus of the calculus along the tangent bundle
projection (‘pull-back formalism’), first we enrich the known lists of the
characterizations of affine vector fields on a spray manifold and conformal
vector fields on a Finsler manifold. Second, we deduce consequences on
vector fields on the underlying manifold of a Finsler structure having one
or two of the mentioned geometric properties.

Introduction
The theory of ‘geometrical’ – projective, affine, conformal, isometric – vector fields
on a Finsler manifold has a vast literature, mainly from the period dominated tech-
nically by the classical tensor calculus, visually, ‘the debauch of indices’. Chapter
VIII of K. Yano’s book ‘The theory of Lie derivatives and its applications’ presents a
survey of the main achievements from the beginning of the 20th century to 1957. A
good overview of the developments of the next decades can be found in R. B. Misra’s
paper [15], written in 1981, revised and updated in 1993. It is important to note
that in a 2-part paper, see [13], [14], M. Matsumoto clarified and improved some
results of Yano in the framework of his theory of Finsler connections.

From the (relatively) modern, but partly tensor calculus based literature the
works of H. Akbar-Zadeh [2], [3], J. Grifone [9], [10] and R. L. Lovas [12] are worth
mentioning. Grifone applies systematically the ‘τTM : TTM → TM formalism’,
combining with the Frölicher-Nijenhuis calculus of vector-valued forms; Lovas for-
mulates and proves his results in terms of the ‘pull-back formalism

◦
π :
◦
TM ×M TM →

◦
TM ’.

Our paper is a continuation of both Grifone’s and Lovas’s works. Although we are
going to develop the greater part of the theory in terms of the pull-back bundle,
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the concepts and techniques of the tangent bundle geometry, including the vertical
calculus on TM , also play an eminent role in our considerations. To make the
paper more readable, in section 1 we summarize in a coherent way the various
concepts and tools which will be indispensable in the following.

We apply two types of a Lie derivative operator: besides the classical Lie deriva-
tive operator Lξ on TM (ξ ∈ X(TM)) we need a further operator, denoted by L̃ξ,
which acts on the tensor algebra of the C∞(TM)-module of the sections of the

vector bundle π : TM ×M TM → TM (or of the bundle
◦
π). To assure the validity

of the crucial identity [L̃ξ, L̃η] = L̃[ξ,η] in case of the ‘new’ operator, we are forced
to differentiate with respect to projectable vector fields on TM . In section 2 some
basic properties of the operator L̃ξ are established.

The affine and projective properties of a Finsler manifold depend only on its
canonical spray, so it is natural to examine affine and projective vector fields in the
(virtual) generality of spray manifolds. A vector field X on a manifold M is said
to be an affine vector field or a Lie symmetry for a spray S : TM → TTM if S is
invariant under the flow of the complete lift Xc of X, that is, if LXcS = [Xc, S] = 0.
In Lovas’s paper [12] various equivalents of this property are established. In sec-
tion 3 we enrich his list with some new items, which will be technically useful in
the next section.

By a conformal vector field on a Finsler manifold (M,F ) we mean a vector
field X on M satisfying

L̃Xcg = ϕg,

where g is the metric tensor of the Finsler manifold (the vertical Hessian of the
energy function E = 1

2F
2) and ϕ is a function, defined and continuous on TM ,

smooth on the deleted bundle
◦
TM . It turns out at once that ϕ has to be fibrewise

constant, i.e., of the form ϕ = f ◦ τ , where f is a smooth function on M and τ is
the tangent bundle projection. Homothetic and isometric (or Killing) vector fields
are the particular cases for which ϕ is a constant function, resp. identically zero. In
section 4 we present further characterizations of conformal vector fields on a Finsler
manifold (Proposition 2), one of them has already been proposed by Grifone in [10].
We show that if a vector field X ∈ X(M) is both affine and conformal on a Finsler
manifold (M,F ), then Xc is a conformal vector field for the Sasaki extension of
the metric tensor of (M,F ) (Proposition 3).

At this stage, the following ‘expectable’, but non-trivial conclusions may be
deduced fairly easily:

(a) Homothetic vector fields on a Finsler manifold are affine vector fields (Propo-
sition 4).

(b) If a vector field on a Finsler manifold is both projective and conformal, then
it is a homothetic vector field (Proposition 5).

(c) If a vector field preserves the Dazord volume form of a Finsler manifold and
it is also projective, then it is an affine vector field (Proposition 6, (i)).

(d) If a vector field is both volume-preserving (in the above sense) and conformal,
then it is a Killing field (Proposition 6, (ii)).
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1 Basic setup
1.1 Generalities

Most of our basic notations and conventions will be the same as in [4], see also [16].
However, for the reader’s convenience, we present here a short review on the most
essential things.

(a) By a manifold we mean a finite dimensional smooth manifold whose underlying
topological space is Hausdorff, second countable and connected. In what follows,
M will be an n-dimensional manifold, where n ≥ 2. Let k ∈ N∪{∞}. We denote by
Ck(M) the set of k-times continuously differentiable real-valued functions on M ,
with the convention that C0(M) is the set of continuous functions on M . In
particular, C∞(M) is the real algebra of smooth functions on M .

(b) The tangent space of M at a point p ∈M is denoted by TpM ;

TM :=
⋃
p∈M

TpM .

The tangent bundle of M is the triplet (TM, τ,M), where the tangent bundle
projection τ is defined by τ(v) := p if v ∈ TpM . Instead of (TM, τ,M) we usu-
ally write τ : TM → M or simply τ . Similarly, the tangent bundle of TM is
(TTM, τTM , TM) or τTM : TTM → TM or τTM . In general, we prefer to denote
a bundle by the same symbol as we use for its projection.

A vector field on M is a smooth section of the tangent bundle τ : TM → M .
The vector fields on M form a C∞(M)-module which will be denoted by X(M).
The zero vector field o on M is defined by

p ∈M 7→ o(p) := 0p := the zero vector in TpM.

The deleted bundle for τ is the fibre bundle
◦
τ :
◦
TM →M , where

◦
TM := TM\o(M),

◦
τ := τ �

◦
TM .

(c) If ϕ : M → N is a smooth mapping between smooth manifolds, then we denote
its derivative by ϕ∗, which is a fibrewise linear smooth mapping of TM into TN .
Two vector fields X ∈ X(M) and Y ∈ X(N) are ϕ-related if ϕ∗ ◦X = Y ◦ ϕ; then
we write X ∼

ϕ
Y . A vector field ξ on TM is said to be projectable if there exists

a vector field X on M such that ξ ∼
τ
X.

(d) The classical graded derivations of the graded algebra Ω(M) :=
⊕n

k=0 Ωk(M)
of differential forms on M are

the Lie derivative LX (X ∈ X(M)),
the substitution operator iX (X ∈ X(M)),
the exterior derivative d,

related by H. Cartan’s ‘magic’ formula

LX = iX ◦ d+ d ◦ iX . (1)
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1.2 Canonical constructions and objects

(a) By the vertical lift of a smooth function f on M we mean the function

f v := f ◦ τ ∈ C∞(TM);

the complete lift of f is the function f c ∈ C∞(TM) given by

f c(v) := v(f), v ∈ TM.

(b) A vector field ξ on TM is vertical if ξ ∼
τ
o. The vertical vector fields form a

C∞(TM)-module Xv(TM), which is also a subalgebra of the Lie algebra X(TM).
The Liouville vector field on TM is the unique vertical vector field C ∈ Xv(TM)
such that

Cf c = f c for all f ∈ C∞(M). (2)

The vertical lift of a vector field X on M is the unique vertical vector field
Xv ∈ Xv(TM) satisfying

Xvf c = (Xf)v for all f ∈ C∞(M); (3)

the complete lift Xc ∈ X(TM) of X is characterized by

Xcf c = (Xf)c, f ∈ C∞(M) (4)

(see [19], Ch. I.3). Then we have

Xcf v = (Xf)v, f ∈ C∞(M). (5)

Both Xv and Xc are projectable: Xv ∼
τ
o, Xc ∼

τ
X. Lie brackets involving verti-

cal and complete lifts satisfy the rules

[Xv, Y v] = 0, [Xc, Y v] = [X,Y ]v, [Xc, Y c] = [X,Y ]c, (6a–c)

[C,Xv] = −Xv, [C,Xc] = 0. (7a–b)

(c) Let

TM ×M TM :=
{

(u, v) ∈ TM × TM | τ(u) = τ(v)
}
,

◦
TM ×M TM :=

{
(u, v) ∈

◦
TM × TM | ◦τ(u) = τ(v)

}
.

If

π := pr1 � TM ×M TM,
◦
π := pr1 �

◦
TM ×M TM,

then both π and
◦
π are vector bundles over TM and

◦
TM , resp., with fibres

{u} × Tτ(u)M ∼= Tτ(u)M ; u ∈ TM, resp. u ∈
◦
TM.

We denote by Sec(π) and Sec(
◦
π) the C∞(TM)-, resp. C∞(

◦
TM)-module of the

sections of these bundles. A typical section in Sec(π) is of the form

X̃ : v ∈ TM 7−→ (v,X(v)) ∈ TM ×M TM,
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where X : TM → TM is a smooth mapping such that τ ◦X = τ . X is called the
principal part of X̃. We have a canonical section in Sec(π), denoted by δ, whose
principal part is the identity mapping of TM . Every vector field X on M yields a
section X̂ in Sec(π), called a basic section, whose principal part is X ◦ τ . Locally,
the C∞(TM)-module Sec(π) is generated by the basic sections.

We denote by Tkl (π) the C∞(TM)-module of the type (k, l) tensors over the

module Sec(π); the meaning of Tkl (
◦
π) is analogous.

(d) We have a canonical C∞(TM)-linear injection i : Sec(π) → X(TM) given on
the basic sections by

i(X̂) := Xv, X ∈ X(M), (8)

and a canonical C∞(TM)-linear surjection j : X(TM)→ Sec(π) such that

j(Xv) := 0, j(Xc) := X̂. (9)

Then Im(i) = Ker(j) = Xv(TM). The mapping J := i ◦ j is said to be the vertical
endomorphism of X(TM). It follows immediately that

Im(J) = Ker(J) = Xv(TM),J2 = 0.

Due to their C∞(TM)-linearity, i, j and J have a natural pointwise interpretation.

1.3 Some vertical calculus

(a) We define the vertical differential ∇vF of a function F ∈ C∞(TM) as a 1-form
in T0

1(π) given by

∇vF (X̃) := ∇v
X̃
F := (iX̃)F, X̃ ∈ Sec(π). (10)

The vertical differential ∇vỸ of a section Ỹ ∈ Sec(π) is the type (1, 1) tensor
in T1

1(π) defined by {
∇vỸ (X̃) := ∇v

X̃
Ỹ := j[iX̃, η],

η ∈ X(TM), j(η) = Ỹ .
(11)

(It is easy to check that ∇v
X̃
Ỹ does not depend on the choice of η satisfying

j(η) = Ỹ .)
By the standard technique, to make sure that Leibniz’s rule holds, the operators

∇v
X̃

may be extended to tensor derivations of the full tensor algebra of Sec(π).

(b) Next we consider the graded algebra Ω(TM) of differential forms on TM , and
we define an operator

dJ : Ω(TM) −→ Ω(TM)

by the rules

dJF := dF ◦ J, dJdF := −ddJF ; F ∈ C∞(TM). (12)

Then dJ is a graded derivation of degree 1 of Ω(TM), called the vertical differen-
tiation on TM . We have (and we shall need) the following important relation:

dJ ◦ LC − LC ◦ dJ = dJ. (13)
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For details, we refer to the book [6]. We mention that ∇v and dJ, at the level of
functions, are related by

dJF = ∇vF ◦ j, F ∈ C∞(TM).

(c) Let K be a type (1, 1) tensor on TM , interpreted as an endomorphism of the
C∞(TM)-module X(TM). It will be convenient to denote the Lie derivative −LηK
(η ∈ X(TM)) by [K, η]. Then, for any vector field ξ on TM ,

[K, η]ξ = [Kξ, η]−K[ξ, η].

We have, in particular,

[J, C] = J; [J, Xv] = 0, [J, Xc] = 0 (X ∈ X(M)). (14a–c)

In what follows, for simplicity, we shall denote also by i, j and J the restrictions

of these mappings to Sec(
◦
π) and X(

◦
TM).

1.4 Ehresmann connections

(a) By an Ehresmann connection in
◦
TM we mean a C∞(

◦
TM)-linear mapping

H : Sec(
◦
π) −→ X(

◦
TM)

such that
j ◦ H = 1

Sec(
◦
π)
.

We emphasize (cf. 1.2(d)) that the C∞(
◦
TM)-linearity of H makes it possible to

interpret an Ehresmann connection as a strong bundle map.

(b) Let H : Sec(
◦
π) → X(

◦
TM) be an Ehresmann connection in

◦
TM . Then

Xh(
◦
TM) := Im(H) is a submodule of X(

◦
TM), and we have the direct decompo-

sition X(
◦
TM) = Xv(

◦
TM) ⊕ Xh(

◦
TM). Vector fields on

◦
TM belonging to Xh(

◦
TM)

are called horizontal. Notice that they do not form, in general, a subalgebra of the

Lie algebra X(
◦
TM). The mappings

h := H ◦ j, v := 1
X(
◦
TM)

− h,

V := i−1 ◦ v : X(
◦
TM) −→ Sec(

◦
π)

are called the horizontal projection, the vertical projection and the vertical mapping

associated to H, respectively. h and v are indeed projection operators in X(
◦
TM),

while the mapping V has the properties

V ◦ i = 1
Sec(

◦
π)
, Ker(V) = Im(H).

The horizontal lift of a vector field X on M (with respect to H) is

Xh := H(X̂) = h(Xc).
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(X̂ and Xc are regarded here as a section in Sec(
◦
π) and a vector field on

◦
TM ,

resp.; for simplicity, we make no notational distinction.)

(c) An Ehresmann connection H is said to be homogeneous if

[C,Xh] = 0 for all X ∈ X(M).

Then H, as a strong bundle map of
◦
TM ×M TM to T

◦
TM , may be extended

continuously to a mapping TM ×M TM → TTM such that

H(0p, v) = (o∗)p(v) for all p ∈M,v ∈ TpM.

Thus, in what follows, we shall always assume that a homogeneous Ehresmann
connection is defined on the entire TM ×M TM (or on Sec(π)).

(d) If H is an Ehresmann connection in
◦
TM , then the mapping

∇ : X(
◦
TM)× Sec(

◦
π) −→ Sec(

◦
π), (ξ, Ỹ ) 7−→ ∇ξỸ

given by

∇vξỸ := ∇v
VξỸ

(11)
= j[vξ,HỸ ] (15a)

∇hξỸ := ∇h
jξỸ := V[hξ, iỸ ] (15b)

is a covariant derivative operator in the vector bundle
◦
π, called the Berwald deriva-

tive induced by H.

By the tension of H we mean the ∇h-differential t := ∇hδ of the canonical

section. Then, for any section X̃ ∈ Sec(
◦
π),

t(X̃) := (∇hδ)(X̃) := ∇h
X̃
δ = V[HX̃, C]. (16)

In particular,

it(X̂) = [Xh, C], X ∈ X(M);

therefore H is homogeneous if, and only if, its tension vanishes.

With the help of the induced Berwald derivative we define the torsion T of an
Ehresmann connection H by

T(X̃, Ỹ ) := ∇HX̃ Ỹ −∇HỸ X̃ − j[HX̃,HỸ ]; X̃, Ỹ ∈ Sec(
◦
π).

Evaluating on basic sections, we obtain the more expressive formula

iT(X̂, Ŷ ) = [Xh, Y v]− [Y h, Xv]− [X,Y ]v; X,Y ∈ X(M).
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2 Lie derivative along the tangent bundle projection
Let ξ be a projectable vector field on TM (1.1(c)). We define a Lie derivative

operator L̃ξ on the tensor algebra of the C∞(TM)-module Sec(π) by the rules

L̃ξϕ := ξϕ, if ϕ ∈ C∞(TM); (17a)

L̃ξỸ := i−1[ξ, iỸ ], if Ỹ ∈ Sec(π), (17b)

and by extending it to the whole tensor algebra in such a way that L̃ξ satisfies

the product rule of tensor derivations. Since ξ is a projectable and iỸ is a vertical
vector field, it follows that the vector field [ξ, iỸ ] is vertical, so L̃ξỸ is well-defined.
If v = i ◦ V is the vertical projection associated to an Ehresmann connection H in
TM , then i−1[ξ, iỸ ] = V[ξ, iỸ ], so we get the useful formula

L̃ξỸ = V[ξ, iỸ ]. (18)

Notice, however, that the Lie derivative operator L̃ξ does not depend on any Ehres-
mann connection in TM .

If, in particular, ξ := Xc or ξ := Xh, where X is a vector field on M , then (18)
takes the form

L̃Xc Ỹ = V[Xc, iỸ ], (19)

resp.

L̃Xh Ỹ = V[Xh, iỸ ]
(15b)
= ∇h

X̂
Ỹ . (20)

Since [Xc, iδ] = [Xc, C]
(7b)
= 0, it follows that

L̃Xcδ = 0. (21)

The Lie derivative of a basic section with respect to a complete lift leads essentially
to the ordinary Lie derivative. Namely, for any vector fields X, Y on M we have

L̃Xc Ŷ
(19)
= V[Xc, Y v]

(6b)
= V[X,Y ]v = V ◦ i[̂X,Y ] = [̂X,Y ] = L̂XY .

This relation indicates that our Lie derivative operator L̃Xc is a natural extension
of the classical Lie derivative LX on M .

Lemma 1. For any projectable vector fields ξ, η on TM ,

[L̃ξ, L̃η] = L̃[ξ,η]. (22)

Proof. Obviously, both sides of (22) act in the same way on smooth functions

on TM . If Ỹ is a section of π, then, applying (18) repeatedly,

[L̃ξ, L̃η]Ỹ = L̃ξV[η, iỸ ]− L̃ηV[ξ, iỸ ] = V([ξ, iV[η, iỸ ]]− [η, iV[ξ, iỸ ]])

= V([ξ, [η, iỸ ]] + [η, [iỸ , ξ]]) = −V[iỸ , [ξ, η]] = V[[ξ, η], iỸ ]

= L̃[ξ,η]Ỹ . �
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Lemma 2. Let X ∈ X(M), η ∈ X(TM). Then

L̃Xcjη = jLXcη. (23)

Proof. Since

0
(14c)
= [J, Xc]η = [Jη,Xc]− J[η,Xc],

we find
iL̃Xcjη = [Xc,Jη] = J[Xc, η] = i(jLXcη),

which implies (23). �

We end this section with the definition of the Lie derivative L̃ξD of a covariant
derivative D : X(TM)× Sec(π)→ Sec(π): it is given by the rule

(L̃ξD)(η, Z̃) := L̃ξ(DηZ̃)−Dη(L̃ξZ̃)−D[ξ,η]Z̃,

where η ∈ X(TM), Z̃ ∈ Sec(π).
Notice finally that the theory of Lie derivatives ‘along the tangent bundle pro-

jection’ sketched here works without any change also on the bundle

◦
π :
◦
TM ×M TM →

◦
TM .

3 Affine vector fields on a spray manifold
3.1

By a spray for M we mean a C1 mapping S : TM → TTM , smooth on
◦
TM , such

that

τTM ◦ S = 1TM ; (24)

JS = C; (25)

[C, S] = S. (26)

Condition (25) is equivalent to the requirement τ∗ ◦S = 1TM , so a spray for M
is a section also of the secondary vector bundle τ∗ : TTM → TM . In view of (26),
a spray is a homogeneous vector field (of class C1) of degree 2. We say that a
manifold endowed with a spray is a spray manifold.

3.2

If H is a homogeneous Ehresmann connection in TM , then S := H ◦ δ is a
spray for M , called the spray associated to H. Indeed, for any vector w in TM ,
S(w) = H(w,w) ∈ TwTM , therefore τTM (S(w)) = w, so (24) is valid. Since

J ◦ S = i ◦ j ◦ H ◦ δ = i ◦ δ = C,

condition (25) also holds. To check (26), observe first that the vector field [C, S]−S
is vertical, and hence h[C, S] = hS. However, hS = H ◦ j ◦ H ◦ δ = H ◦ δ =: S, so
we get h[C, S] = S. On the other hand, by the homogeneity of H,

0 = −it(δ) = −v[H ◦ δ, C] = v[C, S],
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therefore h[C, S] = [C, S] and [C, S] = S. Finally, the C1 differentiability of S can
be shown using the ‘Observation’ in 3.11 (p. 1378) of [16].

Thus sprays exist in abundance for a manifold. Conversely, if S is a spray
for M , then there exists a unique torsion-free homogeneous Ehresmann connec-
tion H in TM such that the horizontal lifts with respect to H are given by

Xh := H(X̂) =
1

2
(Xc + [Xv, S]), X ∈ X(M). (27)

For a proof of this fundamental fact we refer to [16], 3.3, or to the original source [5].
The Ehresmann connection specified by (27) is said to be the Ehresmann connection
induced by the spray S.

3.3

Let (M,S) be a spray manifold. We say that a vector field X on M is a projective
vector field for (M,S) (or for the spray S) if there is a continuous function ϕ

on TM , smooth on
◦
TM , such that

[Xc, S] = ϕC. (28)

If, in particular, ϕ is the zero function, then we say that X is an affine vector field
for (M,S), or a Lie symmetry of S.

Proposition 1. Suppose (M,S) is a spray manifold. Let H be the Ehresmann
connection induced by S, and let ∇ be the Berwald derivative arising from H. For
a vector field X on M , the following conditions are equivalent:

(i) X is a Lie symmetry of S;

(ii) [h, Xc] = 0;

(iii) [v, Xc] = 0;

(iv) L̃Xc∇ = 0;

(v) [Xc, Y h] = [X,Y ]h, for any vector field Y on M ;

(vi) [L̃Xc , L̃Y h ] = L̃[X,Y ]h , Y ∈ X(M);

(vii) L̃Xc ◦ V = V ◦ LXc .

Proof. The equivalence of conditions (i), (ii) and (iv) has already been proved
in [12].
(ii) ⇐⇒ (iii) This is evident, since v = 1 − h (1 := 1X(TM)) and [1, ξ] = 0 for
all ξ ∈ X(TM).
(ii) ⇐⇒ (v) For any vector field Y on M ,

[h, Xc]Y c = [hY c, Xc]− h[Y c, Xc] = [Y h, Xc]− h[Y,X]c = [Y h, Xc]− [Y,X]h,
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so the vanishing of [h, Xc] implies that [Xc, Y h] = [X,Y ]h. The converse is also
true, since [h, Xc] annihilates the module of vector fields: for any vector field ξ on
TM we have

[h, Xc]Jξ = [h ◦ J(ξ), Xc]− h[Jξ,Xc] = 0.

(v) ⇐⇒ (vi) This is an immediate consequence of the identity

[L̃Xc , L̃Y h ] = L̃[Xc,Y h]

(see Lemma 1).
(iii) ⇐⇒ (vii) For any vector field ξ on TM ,

iL̃Xc(Vξ) = [Xc,vξ], iV(LXcξ) = v[Xc, ξ],

hence L̃Xc(Vξ) = V(LXcξ) if, and only if,

0 = [vξ,Xc]− v[ξ,Xc] = [v, Xc]ξ. �

4 Conformal vector fields on a Finsler manifold
4.1

Let (M,F ) be a Finsler manifold. We recall that the Finsler function F : TM → R
here is assumed to be smooth on

◦
TM , positive (F (v) > 0, if v ∈

◦
TM), positive-

-homogeneous of degree 1 (F (λv) = λF (v) for all v ∈ TM and positive real num-
ber λ), and it is also required that the metric tensor

g :=
1

2
∇v∇vF 2

is fibrewise non-degenerate. The function E := 1
2F

2 is the energy function of

(M,F ). The homogeneity of F implies that over
◦
TM we have

CF = F, CE = 2E.

The Hilbert 1-form of (M,F ) is

θ̃ := ∇vE = F∇vF – in the pull-back formalism,

θ := dJE – in the τTM formalism.

It is easy to check that

θ̃(X̃) = g(X̃, δ) for each X̃ ∈ Sec(
◦
π).

θ̃ and θ are related by
θ = θ̃ ◦ j. (29)

The 2-form
ω := dθ = ddJE

on
◦
TM is said to be the fundamental 2-form of (M,F ). Its relation to the metric

tensor is given by

ω(Jξ, η) = g(jξ, jη); ξ, η ∈ X(
◦
TM). (30)

The non-degeneracy of g implies the non-degeneracy of ω – and vice versa.



160 J. Szilasi, A. Tóth

Lemma 3. With the notations introduced above, let (M,F ) be a Finsler manifold,
and let X be a vector field on M . Then

(L̃Xc θ̃) ◦ j = LXcθ; (31)

(L̃Xcg)(jξ, jη) = (LXcω)(Jξ, η); ξ, η ∈ X(
◦
TM). (32)

Proof. We check only the less trivial second relation:

(LXcω)(Jξ, η) = Xcω(Jξ, η)− ω(LXcJξ, η)− ω(Jξ,LXcη)

(23),(30)
= Xcg(jξ, jη)− ω(LXcJξ, η)− g(jξ, L̃Xcjη).

Since LXcJξ = [Xc,Jξ] = −[J, Xc]ξ + J[Xc, ξ] = JLXcξ, the second term at the
right-hand side of the above relation takes the form

ω(LXcJξ, η) = ω(JLXcξ, η)
(30)
= g(jLXcξ, jη)

(23)
= g(L̃Xcjξ, jη).

So we obtain

(LXcω)(Jξ, η) = Xcg(jξ, jη)− g(L̃Xcjξ, jη)− g(jξ, L̃Xcjη) = (L̃Xcg)(jξ, jη). �

4.2

We continue to assume that (M,F ) is a Finsler manifold. The 2n-form

σ :=
(−1)

n(n−1)
2

n!
ωn,

where ωn = ω ∧ · · · ∧ ω (n factors) is a volume form on
◦
TM , called the Dazord

volume form of (M,F ). By the divergence of a vector field ξ on
◦
TM (with respect

to σ) we mean the unique function div ξ ∈ C∞(
◦
TM) such that

Lξσ = (div ξ)σ.

Lemma 4. If (M,F ) is a Finsler manifold, then the divergence of the Liouville

vector field C on
◦
TM with respect to the Dazord volume form is n = dimM .

Proof. LCω = LCddJE = dLCdJE
(13)
= ddJLCE − ddJE = 2ddJE − ddJE = ω.

From this it follows by induction that LCωn = nωn, whence our claim. �

4.3

If (M,F ) is a Finsler manifold, then there exists a unique spray S for M such that

iSddJE = −dE over
◦
TM, and S � o(M) = 0. (33)

We say that S is the canonical spray of (M,F ); the Ehresmann connection induced
by S according to (27) is said to be the canonical connection of (M,F ). It may
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be characterized as the unique torsion-free homogeneous Ehresmann connection H
for M which is compatible with the Finsler function in the sense that dF ◦ H = 0,
or, equivalently,

XhF = 0 for all X ∈ X(M).

With the help of the canonical connection, we define the Sasaki extension G of the
metric tensor g of (M,F ) by the rule

G(ξ, η) := g(jξ, jη) + g(Vξ,Vη); ξ, η ∈ X(
◦
TM), (34)

where V is the vertical mapping associated to H. Then G is a Riemannian metric

tensor on
◦
TM .

For subsequent applications, we collect here some further technical results.

Lemma 5. For any section X̃ in Sec(π), we have

∇v
X̃
δ = X̃. (35)

Proof. Let H be a homogeneous Ehresmann connection for M and let S := H ◦ δ
be the spray associated to H (3.2). Then, applying the so-called Grifone identity
([8], Prop. I.7) in the last step, we find that

∇v
X̃
δ := j[iX̃,Hδ] = j[iX̃, S] = X̃. �

Lemma 6. The energy function of a Finsler manifold can be obtained from the
metric tensor by

g(δ, δ) = 2E; (36)

from the fundamental 2-form by

ω(C, S) = 2E, (37)

where S is a spray for the base manifold.

Proof.

g(δ, δ) = ∇v(∇vE)(δ, δ) = ∇v
δ(∇vE)(δ) = ∇v

δ(∇vE(δ))−∇vE(∇v
δδ)

(35)
= ∇v

δ(CE)−∇vE(δ) = C(CE)− CE = 4E − 2E = 2E;

ω(C, S) = ddJE(C, S) = CdJE(S)− S(dJE(C))− dJE([C, S])

= C(CE)− dJE(S) = 4E − 2E = 2E. �

Lemma 7. The divergence of the canonical spray of a Finsler manifold vanishes.

Proof. LSω = LSddJE
(1)
= iSdddJE + diSddJE

(33)
= −ddE = 0, which implies our

claim. �
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4.4

Let (M,F ) be a Finsler manifold. We say that a vector field X on M is a projective,
resp. an affine vector field of (M,F ), if it is a projective vector field, resp. a Lie
symmetry for the canonical spray of (M,F ). A vector field X on M is said to be
a conformal vector field, if the Lie derivative of the metric tensor of (M,F ) with
respect to the complete lift of X satisfies the relation

L̃Xcg = ϕg (38)

for a continuous function ϕ : TM → R, of class C1 on
◦
TM , called the conformal

factor of X. Particular cases of conformal vector fields are homothetic vector fields
for which the conformal factor is a constant function and isometric vector fields,
also called Killing vector fields, for which the conformal factor is the zero function
on TM .

Lemma 8. If X is a conformal vector field on a Finsler manifold (M,F ) with
conformal factor ϕ, then XcE = ϕE.

Proof.

2XcE
(36)
= Xc(g(δ, δ)) = (L̃Xcg)(δ, δ) + 2g(L̃Xcδ, δ)

(21)
= (L̃Xcg)(δ, δ)

(38)
= ϕg(δ, δ)

(36)
= 2ϕE. �

Lemma 9. If X is a conformal vector field on a Finsler manifold (M,F ), then the
conformal factor of X is the vertical lift of a smooth function on M .

Proof. In view of the previous lemma, XcE = ϕE, where ϕ ∈ C0(TM)∩C1(
◦
TM).

Acting on both sides of this relation by the Liouville vector field, we get on the one
hand

C(XcE) = C(ϕE) = (Cϕ)E + 2ϕE,

on the other hand

C(XcE) = [C,Xc]E +Xc(CE) = 2XcE = 2ϕE,

so it follows that (Cϕ)E = 0, and hence Cϕ = 0. This means that ϕ is positive-
-homogeneous of degree 0, which implies (see, e.g., [16], 2.6, Lemma 2) that ϕ is of
the form ϕ = f ◦ τ , f ∈ C∞(M). �

Proposition 2. Let (M,F ) be a Finsler manifold. For a vector field X on M , the
following conditions are equivalent:

(i) X is a conformal vector field with conformal factor ϕ;

(ii) XcE = ϕE;

(iii) LXcθ = ϕθ;

(iv) L̃Xc θ̃ = ϕθ̃;
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(v) LXcω = ϕω + dϕ ∧ dJE; ϕ = f ◦ τ, f ∈ C∞(M).

In conditions (ii)–(iv), ϕ ∈ C0(TM) ∩ C1(
◦
TM).

Proof. The arrangement of our reasoning follows the scheme

(i) =⇒ (ii)

=
⇒ ⇐
=

(v) ⇐= (iii) ⇐⇒ (iv).

(i) =⇒ (ii) This is just a restatement of Lemma 8.
(ii) =⇒ (iii) Let Y be a vector field on M . We have on the one hand

(LXcθ)(Y v) = Xc(θ(Y v))− θ([Xc, Y v])
(6b)
= Xc(θ(Y v))− θ([X,Y ]v) = 0

= (ϕθ)(Y v),

since the vertical vector fields are annullated by the 1-form θ = dJE. On the other
hand,

(LXcθ)(Y c) = Xc(dJE(Y c))− dJE([Xc, Y c])
(6c)
= Xc(Y vE)− [X,Y ]vE

(6b)
= Xc(Y vE)− [Xc, Y v]E = Y v(XcE)

(ii)
= Y v(ϕE)

(∗)
= ϕ(Y vE)

= (ϕdJE)(Y c) = (ϕθ)(Y c).

At step (∗) we used the fact that our condition XcE = ϕE implies, as it turns
out from the proof of Lemma 9, that ϕ is a vertical lift. Thus LXcθ = ϕθ, as we
claimed.

(iii) =⇒ (v) By our condition,

LXcω = LXcdθ = dLXcθ
(iii)
= d(ϕθ) = dϕ ∧ θ + ϕdθ = ϕω + dϕ ∧ dJE.

To check that the function ϕ here is a vertical lift, we evaluate both sides of (iii)
at a spray S. Then θ(S) = dJE(S) = dE(C) = 2E, while

(LXcθ)(S) = Xc(dJE(S))− dJE([Xc, S]) = 2XcE − J[Xc, S]E = 2XcE,

since [Xc, S] is vertical (see, e.g., [16], p. 1350). Thus we obtain that XcE = ϕE,
which implies, as we have just remarked, that ϕ = f ◦ τ , f ∈ C∞(M).

(v) =⇒ (i) For any vector fields ξ, η on
◦
TM,

(L̃Xcg)(jξ, jη)
(32)
= (LXcω)(Jξ, η)

(v)
= (ϕω + dϕ ∧ dJE)(Jξ, η)

= ϕω(Jξ, η) + dJϕ(ξ)dJE(η)− dϕ(η)dJE(Jξ)

dJϕ=0
= ϕω(Jξ, η)

(30)
= (ϕg)(jξ, jη),

hence L̃Xcg = ϕg.

(iii) ⇐⇒ (iv) If LXcθ = ϕθ, then for any vector field ξ on
◦
TM ,

(L̃Xc θ̃)(jξ)
(31)
= (LXcθ)(ξ)

(iii)
= (ϕθ)(ξ)

(29)
= ϕθ̃(jξ),

whence L̃Xc θ̃ = ϕθ̃. The converse may be checked in the same way. �
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We note that relation (v), as a characterization of conformal vector fields on a
Finsler manifold, was announced first by J. Grifone [10].

Corollary 1. Let (M,F ) be a Finsler manifold. For a vector field X on M , the
following conditions are equivalent:

(i) X is a homothetic vector field, i.e., L̃Xcg = αg, where α is a real number;

(ii) the energy function is an eigenfunction ofXc with eigenvalue α, i.e., XcE = αE;

(iii) LXcθ = αθ;

(iv) L̃Xc θ̃ = αθ̃;

(v) LXcω = αω.

In conditions (iii)–(v) α is a real number. With the choice α := 0 we obtain
criteria that a vector field X on M be a Killing vector field of (M,F ).

Proposition 3. Let (M,F ) be a Finsler manifold. If a vector field X on M is
both affine and conformal, then Xc is a conformal vector field on the Riemannian

manifold (
◦
TM,G), i.e., LXcG = ϕG, where ϕ ∈ C0(TM) ∩ C1(

◦
TM) and G is the

Sasaki extension of the metric tensor of (M,F ).

Conversely, if Xc is a conformal vector field of (
◦
TM,G), then X is a conformal

vector field on the Finsler manifold (M,F ).

Proof. Suppose first thatX is both an affine and a conformal vector field on (M,F ).

Applying (34), (23) and Proposition 1/(vii), for any vector fields ξ, η on
◦
TM we

have

(LXcG)(ξ, η) = LXc(G(ξ, η))−G(LXcξ, η)−G(ξ,LXcη)

= LXc(g(jξ, jη)) + LXc(g(Vξ,Vη))− g(jLXcξ, jη)

− g(VLXcξ,Vη)− g(jξ, jLXcη)− g(Vξ,VLXcη)

= L̃Xc(g(jξ, jη)) + L̃Xc(g(Vξ,Vη))− g(L̃Xc(jξ), jη)

− g(L̃Xc(Vξ),Vη)− g(jξ, L̃Xc(jη))− g(Vξ, L̃Xc(Vη))

= (L̃Xcg)(jξ, jη) + (L̃Xcg)(Vξ,Vη)

= ϕg(jξ, jη) + ϕg(Vξ,Vη) = ϕG(ξ, η).

This proves that Xc is a conformal vector field on (
◦
TM,G). Conversely, under this

condition we find that

2ϕE = ϕg(δ, δ) = ϕg(VC,VC) = ϕG(C,C) = (LXcG)(C,C)

= Xc(G(C,C))−G([Xc, C], C)−G(C, [Xc, C]) = Xc(G(C,C))

= Xcg(δ, δ) = 2XcE,

so, by Proposition 2, X is a conformal vector field on (M,F ). �
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Proposition 4. Any homothetic vector field on a Finsler manifold is an affine vector
field.

Proof. Let (M,F ) be a Finsler manifold, and let S be the canonical spray for
(M,F ). Suppose that X is a homothetic vector field of (M,F ). Then, by Corol-
lary 1, there is a real number α such that XcE = αE, or, equivalently, LXcω = αω.
So we have

LXcdE = d(XcE) = αdE
(33)
= −αiSω = −iS(αω) = −iS(LXcω)

= −LXciSω + i[Xc,S]ω = LXcdE + i[Xc,S]ω.

Thus i[Xc,S]ω = 0, and hence – by the non-degeneracy of ω – [Xc, S] = 0. This
means that X is a Lie symmetry of the canonical spray of (M,F ). �

Lemma 10. If X is a conformal vector field on an n-dimensional Finsler manifold,
then (with respect to the Dazord volume form) divXc = nϕ, where ϕ is the
conformal factor of X.

Proof. Choose a local frame (Xi)
n
i=1 for TM over an open subset U of M . Then

the family (Xv
i , X

c
i )
n
i=1 is a local frame for TTM over τ−1(U). It may be shown

by a little lengthy inductive argument that

(LXcω)(Xv
1, X

c
1, . . . , X

v
n, X

c
n) = nϕω(Xv

1, X
c
1, . . . , X

v
n, X

c
n),

which implies our claim. �

Proposition 5. If a vector field is both a projective and a conformal vector field on
a Finsler manifold, then it is a homothetic vector field.

Proof. Let (M,F ) be an n-dimensional Finsler manifold. Suppose that a vector
field X on M is both projective and conformal. Then, on the one hand,

[Xc, S] = ψC, ψ ∈ C0(TM) ∩ C1(TM),

where S is the canonical spray of (M,F ). On the other hand, by Proposition 2,

XcE = f vE, f ∈ C∞(M).

Thus we get

2ψE = ψ(CE) = [Xc, S]E = Xc(SE)− S(XcE) = −S(f vE)

= −(Sf v)E − f v(SE) = −f cE,

taking into account that S is horizontal with respect to the canonical connection
of (M,F ) and hence SE = 1

2SF
2 = F (SF ) = 0 (see 4.3), applying furthermore

the relation Sf v = f c(f ∈ C∞(M)), whose verification is routine. It follows that

ψ = −1

2
f c.
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Now we determine the divergence (with respect to the Dazord volume form)
of both sides of the relation [Xc, S] = − 1

2f
cC. Applying the well-known rules for

calculation (see, e.g., [1], §6.5 or [11], XV, §1) we find that

div[Xc, S] = Xc divS − S divXc Lemmas 7, 10
= −S(nf v) = −nf c

and

div
(
−1

2
f cC

)
= −1

2
(Cf c + f c divC)

Lemma 4
= −1

2
(n+ 1)f c.

So (n − 1)f c = 0, where n ≥ 2 (1.1 (a)), whence f c = 0. This implies by the
connectedness of M that f is a constant function, and therefore the conformal
factor of X is constant. �

We note that this result is an infinitesimal version of Theorem 2 in [17].

Proposition 6. Let (M,F ) be a Finsler manifold. Suppose that a vector field X
on M preserves the Dazord volume form of (M,F ), i.e., LXcσ = 0. If, in addition,

(i) X is a projective vector field, then X is affine;

(ii) X is a conformal vector field, then X is isometric.

Proof. First we note that our condition LXcσ = 0 implies that divXc = 0.
(i) Suppose that X is also a projective vector field, i.e.,

[Xc, S] = ψC, ψ ∈ C0(TM) ∩ C1(
◦
TM).

Observe that over
◦
TM the function ψ satisfies the relation Cψ = ψ. Indeed, by

the Jacobi identity

0 = [C, [Xc, S]] + [Xc, [S,C]] + [S, [C,Xc]] = [C, [Xc, S]]− [Xc, S],

hence
[Xc, S] = [C, [Xc, S]] = [C,ψC] = (Cψ)C,

therefore (Cψ)C = ψC, and so Cψ = ψ.
Now, as in the previous proof, we calculate the divergence of both sides of the

relation [Xc, S] = ψC. Since divXc = divS = 0, we have

div[Xc, S] = Xc divS − S divXc = 0.

On the other hand, by our above remark,

div(ψC) = ψ divC + Cψ = (n+ 1)ψ.

So it follows that ψ = 0, hence [Xc, S] = 0. Thus X is an affine vector field on
(M,F ).
(ii) Now suppose that (divXc = 0 and) X is also a conformal vector field. Then,
by Proposition 2, XcE = f vE, f ∈ C∞(M). Since

nf v
Lemma 10

= divXc cond.
= 0,

it follows that XcE = 0. Thus, by Corollary 1, X is an isometric vector field on
(M,F ). �
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