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A geometric analysis of dynamical systems with

singular Lagrangians

Monika Havelková

Abstract. We study dynamics of singular Lagrangian systems described
by implicit differential equations from a geometric point of view using the
exterior differential systems approach. We analyze a concrete Lagrangian
previously studied by other authors by methods of Dirac’s constraint theory,
and find its complete dynamics.1

1 Introduction
Singular (or degenerate) Lagrangian systems were first systematically considered
by Dirac [2]. He was probably the first who noticed that the classical Hamilton
equations make sense only for Lagrangians L(t, qσ, q̇σ) satisfying the regularity
condition

det

(
∂2L

∂q̇σ∂q̇ν

)
6= 0,

and proposed a generalization to describe and understand dynamics of singular
Lagrangians. Unfortunately, his approach was more heuristic than rigorous from
the mathematical point of view, with an unpleasant consequence: study of the dy-
namics of concrete Lagrangian systems provided by different authors using Dirac’s
procedure can lead to different results.

A mathematically correct approach has been achieved later, with help of dif-
ferential geometry. The dynamics of degenerate Lagrangian systems can be inves-
tigated in two geometrically distinct ways:

Indirect (image) approach concerns the well-known Hamiltonian formalism in
symplectic geometry mapping a Lagrangian system from the tangent to the cotan-
gent bundle: Hamiltonian dynamics then appears as image dynamics via Legendre
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map which is degenerate. An explicit study of the image (hamiltonian) dynamics is
possible if the Legendre map has a constant rank (the image space is a submanifold
in the cotangent space). Applying a procedure called “constraint algorithm” one
can obtain, under some other assumptions on the Lagrangian, a final constraint
submanifold where the image motion proceeds (among many references see e.g. [1],
[5], [6], [7]).

Direct approach originally due to O. Krupková [8] concerns study of Hamiltonian
exterior differential systems in jet bundles. This approach develops the idea of
Goldschmidt and Sternberg [4] understanding Hamilton equations as equations for
integral sections of an exterior differential system in the first jet bundle over a
fibred manifold and is not restricted to some particular kind of Lagrangian systems
(regarding rank, or order). Whatever is the Legendre map, in this approach there is
a direct geometric relation to extremals (solutions of the Euler-Lagrange equations)
as those integral sections of the Hamiltonian exterior differential system which are
holonomic (i.e. take the form of prolongations). As proposed in [8], within the
“direct” setting one can study in a unified way both the Hamiltonian (extended)
and the Lagrangian (proper) dynamics of any Lagrangian system (including highly
singular), and to obtain a geometrically exact description of the dynamics. From
the point of view of mathematics, this is a method of analysing the structure of
solutions of implicit second (or higher) order differential equations. It should be
pointed out (also shown on examples in [8], [9]) that the resulting Hamiltonian (and
Lagrangian) dynamics need not be bounded to a “final constraint submanifold”,
and may proceed rather in the whole phase space in a way which can be understood
as a “controlled chaotic motion”. Moreover, in cases when a “final constraint
submanifold” exists, the motion typically is not described by a vector field along
this submanifold but rather by a more complicated family of vector fields (vector
distribution).

In this article we investigate a singular mechanical system given by the La-
grangian

L = q̇1q̇3 − q2q̇3 + q1q3.

This Lagrangian system has been studied by several authors (e.g. [3] and refer-
ences therein) by means of the Dirac constraint algorithm, however, its dynamical
properties were not clarified: the obtained results are incomplete and conclusions
on the dynamical properties of this Lagrangian system made by different authors
are not in agreement. It should be pointed out that the main result – to obtain
Hamiltonian dynamics for this Lagrangian system, has not been achieved.

We show that problems of this kind can be rigorously solved by application of
the above mentioned Hamiltonian exterior differential systems method. For the
given Lagrangian, we obtain the corresponding dynamical distribution in the first
jet bundle, and show that this distribution is not completely integrable and has a
nonconstant rank. This means, however, that to obtain the dynamics one has to
apply a general integration method developed in [8], called a “geometric constraint
algorithm”. With help of the geometric constraint algorithm we solve the prob-
lem completely: we compute the Euler-Lagrange equations and Hamilton equa-
tions in terms of the corresponding distributions and find the complete structure
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of solutions (so-called proper dynamics and extended dynamics, respectively). In
particular, the Hamilton and Euler-Lagrange equations are not equivalent, and the
dynamics are not representable by a vector field, they are even not representable
by a vector field along a certain “final constraint submanifold” of the evolution
space. It turns out that the dynamics are restricted to (the same) final constraint
submanifold, however, along this submanifold the extended (Hamiltonian) and the
proper (Lagrangian) motion are governed by distinct nonintegrable distributions
of rank greater than one, the Lagrangian dynamics being characterized by the
rank 2 semispray subdistribution of the distribution describing the Hamiltonian
dynamics. Among others this means that neither the Hamiltonian nor the La-
grangian “solution pattern” follows within a foliation in the evolution space (or its
submanifold). It can be shown, however, that the nonintegrable semispray sub-
distribution of rank 2 inherits an intrinsic structure such that, within the final
constraint submanifold, (prolonged) extremals are constrained to a family of sub-
manifolds parametrized by functions on the evolution space. Moreover, along each
of these submanifolds the motion is regular, i.e. extremals are integral sections of
a semispray vector field.

2 Singular Lagrangian systems
We shall consider a fibred manifold π : Y → X; Y = R×M where M is a smooth
manifold of dimension m, and its first jet prolongation J1Y . Local fibred coordi-
nates are denoted by (t, qσ), where 1 ≤ σ ≤ m, and the corresponding coordinates
on J1Y are denoted by (t, qσ, q̇σ). The manifold J1Y is called evolution space.

We shall use the following setting due to [8], [9]:

• A geometric description of the dynamics using a vector distribution on J1Y .

• Formulation of Hamilton theory as a problem of finding all solutions of this
distribution.

• Formulation of Lagrange theory as a problem of finding holonomic solutions
of this distribution.

Equations of motion of a Lagrangian system defined by a Lagrangian λ = Ldt,
L = L(t, qσ, q̇σ), are represented by the Euler-Lagrange form

Eλ = Eσω
σ ∧ dt, Eσ =

∂L

∂qσ
− d

dt

∂L

∂q̇σ
,

1 ≤ σ ≤ m, where ωσ = dqσ − q̇σdt. In what follows we assume that the Euler-
Lagrange equations are nontrivially of order two, and denote

Eσ = Aσ +Bσν q̈
ν .

It is known that there exists a unique 2-contact form F on J2Y such that the
2-form α = Eλ + F is closed and projectable onto J1Y [9].

The form α gives rise to the following two distributions on J1Y which are
in general distinct but their holonomic sections are the same and coincide with
prolongations of extremals:
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• The characteristic distribution of α

D = span{iξα}, where ξ runs over all vector fields on J1Y

• The Euler-Lagrange distribution of α

∆ = span{iξα}, where ξ runs over all vertical vector fields on J1Y

Note that D ⊂ ∆.
In terms of a Lagrangian

α = dθλ,

where

θλ = Ldt+
∂L

∂q̇σ
ωσ

is the Cartan form.

Definition 1. Equations for integral sections of ∆ are called Hamilton equations,
solutions of the Hamilton equations are called Hamilton extremals.

Definition 2. λ is called regular if rank ∆ = 1. λ is called semiregular if ∆ is
weakly horizontal (i.e. at each point p ∈ J1Y the vector space ∆(x) is not vertical)
and rank ∆ is constant.

Dynamical properties of a Lagrangian system are determined by properties of
its related distributions:

Theorem 1. ∆ is weakly horizontal at x ∈ J1Y if and only if D(x) = ∆(x).

Definition 3. The set P̃ = {x ∈ J1Y |D(x) = ∆(x)} is called the primary con-
straint set.

P̃ ⊂ J1Y need not be a submanifold. This set has the meaning of “possibly

admissible” initial conditions for the Hamilton equations – more precisely, J1Y − P̃
is a primary obstruction set for the hamiltonian initial conditions (outside P̃ there
passes no solution of the Hamilton equations, and consequently, no solution of the
Euler-Lagrange equations).

Theorem 2. The following conditions are equivalent:

1. λ is regular

2. ∆ = span
{
∂
∂t + q̇σ ∂

∂qσ −B
σνAν

∂
∂q̇σ

}
= annih{Aσdt+Bσνdq̇

ν , ωσ}

3. detBσν = det
(

∂2L
∂q̇σ∂q̇ν

)
6= 0.

2.1 The geometric constraint algorithm

The dynamics of a smooth singular Lagrangian system cannot be characterized
by a vector field, or even by a system of continuous vector fields in the evolution
space. In this section we recall a general procedure which enables one to solve the
Euler-Lagrange distribution explicitly [8].
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Since in general the extended dynamics and proper dynamics do not coincide,
we have to distinguish two levels of the integration problem:

(1) to find the extended dynamics, i.e., all integral sections of the Euler-Lagrange
distribution (Hamilton extremals)

(2) to find the proper dynamics, i.e., holonomic integral sections.

2.1.1 Extended dynamics

We shall describe an algorithm for finding the structure of solutions of Hamilton
equations (the dynamics of a Hamiltonian system).

Let us denote

F =

(
1
2 (∂Aσ∂q̇ν −

∂Aν
∂q̇σ ) Bσν

−Bσν 0

)
and (F |A) the matrix F extended by the column Aσ, 1 ≤ σ ≤ m, where:

Aσ =
∂L

∂qσ
− ∂2L

∂t∂q̇σ
− ∂2L

∂qν∂q̇σ
q̇ν and Bσν = − ∂2L

∂q̇σ∂q̇ν
.

Step 1: Find the primary constraint set P̃ . As proved in [8],

P̃ = {x ∈ J1Y | rankF = rank(F |A)}.

If P̃ = ∅, there is no extended dynamics, hence no dynamics at all. If P̃ 6= ∅,
choose a point x ∈ P̃ , and proceed to the next step.

Step 2: Denote M(1) ⊂ P̃ a submanifold of maximal dimension around x and
calculate the Euler-Lagrange distribution ∆(1) along M(1).

Step 3: Exclude from M(1) the points where the restriction of ∆(1) to the

tangent bundle of M(1) is not weakly horizontal and denote the resulting set by P̃ ′.

Repeat Step 2 with P̃ ′ instead of P̃ .
Continue until the procedure is finalized. Then take another (distinct) subman-

ifold M(2) in P̃ around x, repeat the procedure.
After sufficiently many steps one obtains either a bunch of final constraint

submanifolds at x, or finds that there is no final constraint submanifold passing
through x.

Considering then the collection of final constraint submanifolds together with
to them constrained Euler-Lagrange distributions, we get the dynamical picture
corresponding to the solutions of the Hamilton equations.

2.1.2 Proper dynamics

We have to exclude solutions of Hamilton equations which are not holonomic. First
we find the set

P = {x ∈ J1Y | rankB = rank(B|A)},
called primary semispray constraint set. Again, it need not be a submanifold
in J1Y . Outside this set, there exist no prolonged extremals, hence there is no
motion. If P 6= ∅, we choose a point x ∈ P and proceed in a similar way as
described above in searching for the extended dynamics: however, in this case we
consider as admissible only those submanifolds and vector fields belonging to ∆
which along the submanifold can be identified with a semispray.
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3 A singular Lagrangian dynamics
Let us consider the following singular Lagrangian

L = q̇1q̇3 − q2q̇3 + q1q3. (1)

Its Euler-Lagrange equations are implicit second order differential equations

q3 − q̈3 = 0, q̇3 = 0, q1 + q̇2 − q̈1 = 0.

Momenta take the form

p1 = q̇3, p2 = 0, p3 = q̇1 − q2

and the Hamiltonian reads
H = q̇1q̇3 − q1q3. (2)

We can use momenta as a part of new coordinates on J1Y by considering a local
coordinate transformation as follows

(t, q1, q2, q3, q̇1, q̇2, q̇3)→ (t, q1, q2, q3, p3, q̇
2, p1), (3)

and get for the Hamiltonian the expression

H = (p3 + q2)p1 − q1q3. (4)

Computing the Hessian matrix of L we get0 0 1
0 0 0
1 0 0


hence the Legendre map R × TM → R × T ∗M has constant rank equal to 2 and
defines a submanifold of dimension 5.

Let us turn to the analysis of the dynamics on R × TM with help of the cor-
responding distributions. To this end we need the Cartan form θλ and its exterior
derivative dθλ:

θλ = (q1q3 − q̇1q̇3)dt+ q̇3dq1 + (q̇1 − q2)dq3,

dθλ = (q3dq1 + q1dq3 − q̇3dq̇1 − q̇1dq̇3) ∧ dt+ (dq̇1 − dq2) ∧ dq3 + dq̇3 ∧ dq1.

Computing the distributions D and ∆ we get:

D = annih{q3dq1+q1dq3− q̇3dq̇1− q̇1dq̇3, q3dt−dq̇3, dq3, q1dt+dq2−dq̇1, ω3, ω1}

and
∆ = annih{q3dt− dq̇3, dq3, q1dt+ dq2 − dq̇1, ω3, ω1}.

We can see that D ⊂ ∆ and D 6= ∆.

3.1 Extended dynamics

The Lagrangian system possesses primary dynamical constraints (primary obstruc-
tions to initial conditions for the Hamilton equations). The primary constraint set

P̃ is the set of points in the evolution space where rankF = rank(F |A), hence

P̃ = {x ∈ J1Y | q̇3 = 0},

and it is a closed submanifold in J1Y of codimension 1.
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Note that, indeed, outside the submanifold P̃ the Euler-Lagrange distribution
is spanned by two vector fields

∂

∂q2
+

∂

∂q̇1
,

∂

∂q̇2

which are vertical over the base R, hence among the integral curves there are no
sections (the integral curves describe no evolution).

To get the Hamiltonian dynamics we have first to restrict our considerations
to the admissible submanifold P̃ . Along this submanifold the Euler-Lagrange dis-
tribution ∆ and the dynamical distribution D coincide and are spanned by the
following three vector fields:

D = ∆ = span

{
∂

∂t
+ q̇1 ∂

∂q1
− q1 ∂

∂q2
+ q3 ∂

∂q̇3
;

∂

∂q2
+

∂

∂q̇1
;

∂

∂q̇2

}
.

This distribution is weakly horizontal, but we have to exclude points where it is not
tangent to P̃ , that is, the points where q3 6= 0. Indeed, at these points restriction

of D = ∆ to the tangent bundle of P̃ is a vertical distribution. We obtain a
submanifold

M = {x ∈ J1Y | q3 = 0, q̇3 = 0} (5)

of P̃ , and along M the distribution

DM = ∆M = span

{
∂

∂t
+ q̇1 ∂

∂q1
− q1 ∂

∂q2
;

∂

∂q2
+

∂

∂q̇1
;

∂

∂q̇2

}
= span

{
f1

( ∂
∂t

+ q̇1 ∂

∂q1

)
+ (f2 − f1q

1)
∂

∂q2
+ f2

∂

∂q̇1
+ f3

∂

∂q̇2

}
,

(6)

where f1, f2, f3 are arbitrary functions on M . This distribution is tangent to M ,
and weakly horizontal at each point of M , as required. Note that its annihilator is
spanned by the following two 1-forms: q1dt+ dq2 − dq̇1 and ω1 = dq1 − q̇1dt. We
can see that rank ∆M is constant and equal to 3, however, ∆M is not completely
integrable. Summarizing, we have obtained the following structure of solutions of
the Hamilton equations for our Lagrangian:

Theorem 3. Hamilton equations of L are equations for integral sections of the not
completely integrable rank 3 distribution ∆M on the closed 5-dimensional manifold
M ⊂ J1Y above.

In fibred coordinates, the Hamilton equations are equations for sections δ(t) =
(t, xσ(t), yσ(t)) of J1Y , where we have denoted xσ(t) = qσ ◦ δ and y(t) = q̇σ ◦ δ,
and take the following form:

dx1

dt
= y1,

dx2

dt
= g(t)− x1,

dx3

dt
= 0,

dy1

dt
= g(t),

dy2

dt
= h(t),

dy3

dt
= 0,
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where g, h are arbitrary functions on M , g(t) = g ◦ δ and h(t) = h ◦ δ.
In a more conventional way, in “partial Legendre coordinates” defined by (3),

and in terms of Hamiltonian (4) we can write

dq1

dt
=
∂H

∂p1
,

dq2

dt
= g +

∂H

∂q3
,

dq3

dt
= 0,

dp1

dt
= 0,

dq̇2

dt
= h,

dp3

dt
= −∂H

∂q3
.

For this Hamiltonian system M is the final constraint submanifold (having the
meaning of a genuine evolution space, or phase space). Extended motion is con-
straint to this submanifold, is chaotic, not uniquely determined by initial condi-
tions.

3.2 Proper dynamics

We are looking for holonomic Hamilton extremals = prolongations of extremals.
Computing the primary semispray-constraint set we get the following closed

submanifold in the evolution space

P = {x ∈ J1Y | q̇3 = 0}.

Outside this submanifold there are no (prolonged) extremals.

Since P = P̃ , the procedure of restricting the Euler-Lagrange distribution to P
ends with the same submanifold M and the restricted distribution DM = ∆M as
in the Hamiltonian case above. Now, however, this is not yet the end of the story,
since we are interested in holonomic solutions, and the distribution ∆M still has
solutions which are not holonomic, hence do not correspond to extremals. We have
to continue to another step in the geometric constraint algorithm in order to obtain
a maximal submanifold of M with a distribution whose nonvertical vector fields
are semisprays. It is easily seen that this is achieved by taking the manifold M
itself and the rank 2 subdistribution of ∆M which is obtained by choosing f1 = 1
and f2 = q̇2 + q1, i.e. takes the form

D = span

{
∂

∂t
+ q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
+ (q̇2 + q1)

∂

∂q̇1
+ f

∂

∂q̇2

}
, (7)

where f is an arbitrary function on M . Hence we have obtained the following
result:

Theorem 4. The Euler-Lagrange equations of L are equations for integral sections
of the not completely integrable rank 2 distribution D on the closed 5-dimensional
manifold M ⊂ J1Y above.

Theorem 4 gives a geometric solution to the extremal problem and a complete
geometric “dynamical picture” for the proper dynamics of the given singular La-
grangian system (1). We can see that the motion is restricted to a final constraint
submanifold of dimension 5, and is chaotic and indeterministic there (cannot be



A geometric analysis of dynamical systems with singular Lagrangians 177

uniquely determined by initial conditions). Compared with the Hamiltonian dy-
namics obtained in the previous section, the final constraint submanifold is the
same, and the Lagrangian dynamics is given by a rank 2 semispray subdistribution
of the distribution describing the Hamiltonian dynamics.

The distribution D is not completely integrable which means that the (pro-
longed) extremals do not proceed within leaves of a foliation of M . Nevertheless,
as shown below, the geometric picture can be further refined to give us a more
precise and fine description of the Lagrangian dynamics within the final constraint
submanifold M .

Let us turn back to the distribution ∆M (6) and note that it has the following
rank 2 weakly horizontal subdistribution

span

{
∂

∂t
+ q̇1 ∂

∂q1
+ (g − q1)

∂

∂q2
+ g

∂

∂q̇1
+ h

∂

∂q̇2

}
, (8)

where g, h are arbitrary functions on M . Now, for every fixed g(t, q1, q2, q̇1, q̇2)
consider a manifold

Mg = {x ∈ J1Y | q3 = q̇3 = 0, q̇2 = g − q1} ⊂M. (9)

If

φ ≡ ∂g

∂q̇2
− 1 6= 0, (10)

then along Mg distribution (8) takes the form of a rank 2 semispray distribution
spanned by the following vector fields:

∂

∂t
+ q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
+ (q̇2 + q1)

∂

∂q̇1
+ h

∂

∂q̇2
, (11)

i.e., it is the distribution D restricted to the submanifold Mg. We have to find its
subdistribution tangent to Mg. To this end let us consider local coordinates t̄ = t,
q̄1 = q1, q̄2 = q2, ˙̄q1 = q̇1, z = q̇2 − g + q1, adapted to the submanifold Mg. Note
that regularity of the transformation means that at each point condition (10) holds
true. Transforming (11) to the new coordinates we can see that there is a unique
(up to a multiplier) vector field tangent to Mg, with

h =
1

φ
(q̇1 −X(g)), (12)

where we have denoted

X =
∂

∂t
+ q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
+ (q̇2 + q1)

∂

∂q̇1
.

Theorem 5. Euler-Lagrange equations of L are equations for integral sections of
the following family of rank one (hence completely integrable) constraint semispray
distributions:

Sg = span

{
∂

∂t
+ q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
+ (q̇2 + q1)

∂

∂q̇1
+

1

φ
(q̇1 −X(g))

∂

∂q̇2

}
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each defined on the closed 4-dimensional manifold

Mg = {x ∈ J1Y | q3 = q̇3 = 0, q̇2 − g + q1 = 0} ⊂M ⊂ J1Y,

where g(t, q1, q2, q̇1, q̇2) is an arbitrary function satisfying condition (10).

Hence, the structure of extremals of the considered singular Lagrangian is com-
pletely described by a family of 4-dimensional submanifolds Mg of the 5-dimen-
sional “final constraint submanifold” M , endowed with semispray distributions of
rank 1. This means that every manifold Mg is foliated by one-dimensional folia-
tion, and the family of these “constraint foliations” in M represents the structure
of integral sections of the non-integrable rank 2 distribution D (7) on the final
constraint submanifold in the evolution space.
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