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1° We shall usually write the binary operation of a groupoid multiplicatively.
When using the other symbol of the binary operation, we put this symbol into
brackets, e. g.: G(+), H(o) e.t.c.

Let G be a groupoid and x ¢ G. By the symbol L, (Rz;) we shall denote the
mapping of the set G into G such that for every y € G, Lz (y) = xy (Rz (y) = yx).

A groupoid G is called a groupoid with left (right) cancellation, if for every
x € G the mapping Lz (R;) is one — to — one.

A groupoid G is called a groupoid with left (right) division, if for every x ¢ G
the mapping L. (Rz) is onto G.

A groupoid G is called a left (right) quasigroup, if for every x ¢ G the mapping
L, (R;) is a permutation of the set G (permutation is a mapping of a set into itself,
which is one — to — one and onto the set).

A groupoid, which is simultaneously with left and right cancellation (division),
is called a groupoid with cancellation (division).

A groupoid, which is simultaneously a left and right quasigroup, is called
a quasigroup.

2° Definition 1: Let G be a groupoid. A mapping 4 (g) of the set G into G is
called left (right) regular, if there is a mapping A1* (0") such that for every x,y ¢ G,
Axy) = 2" (x) . y (e(xy) = x . 0*(W)).

A mapping g is called central regular, if there is a mapping ¢* such that for
every x,y € G, ¢(x) . y = x . ¢"(¥). By the symbol A¢ we shall denote the set of all
left regular mappings of the groupoid G and by A¢ the set of all possible mappings A*
corresponding to the left regular mappings. Similarly introduce the symbols Rg,
RG, g, D¢.

Lemma 1: Let G be a groupoid. Then the sets Ag, Ag, Rg, R, Pg, D¢ are
semigroups with unit under the binary operation of composition of mappings.
Proof: We shall prove the Lemma for A¢, 4 only. For the other cases the proof is
similar.

Let A&, A2 € Ag. Let 4], A5 € A; be arbitrary mappings corresponding to the
mappings A1, 2. For every x, y € G, hids(xy) = L(A3(x) . y) = AjAs(x) . y.
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Hence 4142 € Ag and A;A; € A Evidently lg e Ag, 1g e Ag.

Lemma 2: Let G be a groupoid and A € Ag, 0 € Rg,p € @¢. Then ALz = Lj«(z),
A R;; = Rzl., (4] R, = R@*(“)’ o Lx = ng', Rz(p = Rw*(x): Lw(:c) = Lz¢. for every
xeG.

Proof: By Definition 1.

Corollary:1. Let G be a groupoid with left (right) division. Then all left (right)
regular mappings of the groupoid G are onto G.

2. Let G be a groupoid with cancellation. Then all central regular mappings of G
are one — to — one.

3. Let G be a quasigroup. Let A e A¢, ¢ € Rg, ¢ € Pg. Then the mappings 4," o°, ¢°.
are uniquely determined and 4, 1°, g, 0°, @, ¢° are permutations.

Lemma 3: Let G beagroupoid and A€ Ag, ¢ € Rg, ¢ € P such that 1°,0°, ¢°
are mappings onto G. Let «, 8,y be arbitrary mappings such that ad = fo =@y = l¢.
Then also « € Ag, B € Rg,y € De.

Proof: 1) Since 1° is a mapping onto, there is a mapping 6 so that A°6 = 1¢. For
every x, y € G we have A(xy) = A°(x) . y. Hence aA(d(x) . y) = 6(x) . y = a(A"8(x) .
.y) = a(xy). Thus « € A¢. For § similarly.

2) There is a mapping ¢ such that ¢°c = lg. For every x, y e G, ¢(x) .y =
= x.¢"(y). Hence x . e(y) =y(x) .y. Thus y € D¢.

Theorem 1: Let G be a quasigroup. Then the semigroups A¢g, Rg, Pg are
groups.

Proof: By Corollary and Lemma 1, 3.

Lemma 4: Let G be a groupoid with right (left) unit e. Let 1 ¢ A¢ (0 € Reg)
Then the mapping A° (¢°) is uniquely determined and A = 4° (o = p°).

Proof.: Let x ¢ G. Then A(x) = A(xe) = A°(x) . e = A°(x). Hence A = 1°.
Similarly for p.

Lemma 5: Let G be a groupoid with unite. Let 4 € Ag, g0 € Rg, ¢ € D Then
A= Lie, 0= Rg(e), @ = Rpe), ¢° = Ly). Let x, ye G. Then Ae)(xy) =
= (Me)x)y, (xy)e(e) = x(y - e(e)), (xg(e))y = x(@(e) . y).
Proof: By Lemma 4, 1 = A1°. Let x € G. Then A(x) = A(ex) = A(e)x = L) (x).
Hence Lje) = A. For every x, ye G, A(e) (xy) = Ae . xy) = Axy) = A(x) .y =
= (A(e)x) . y.
For g similarly.
2) Let x, y € G. We have ¢(x) = @(x) . e = ¢°(e). Hence ¢°(e) = e . ¢"(e) = ¢p(e),
hence, ¢ = Rg(y. Further, x(g(e) . y) = x(e . °(¥)) = x . () = ¢(x) .y =
= (x.9(e) . y.

Theorem 2: Let G be a groupoid (quasigroup) with unit e.
Put Ag= E(x e G|g A € Ag, x = Me)),
Be = E (x/g0 € Ra, x = ¢(€)), Ce = E(x/gp € P, x = ¢(e)).
Then the sets Ag, Bg, Cq are subsemigroups (subgroups) with unit of the groupoid
(quasigroup) G.
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Proof: We shall prove the theorem for A¢ only.

1) Let x, y ¢ Ag. Then there are 41, 42 € A¢ sothat x = A1(e), y = 42 (¢). Hence
Xy = ll(e) . lz(e) = ll(e . A2 (e)) = lllz(e). But A4idz e Ag by Lemma 1. Hence
xy € Aq. We have proved that A¢ is a subgroupoid of G. By Lemma 5, A¢ is a semi-
group. Evidently e e Ag. .

2) Let G be a quasigroup. By 1), A¢ is a semigroup with unit e.

Let x € Ag. Then there is 1 € A¢ such that x = A(e).

By Theorem 1, 4 is a permutation and 4-1 € Aq. Hence 4-1(e) € Ag.

But x.A-1(e) = A(e) . 1-1(e) = Ae. 1-1(e)) = AA-1(e) = e.

The element A-1(e) is a right inverse element to x. Therefore A¢ is a group.

Definition 2: A groupoid Giscalled A — transitive if for every x, y € G there is
4 € Ag such that A(x) = y. Similarly for 4°, R, R*, @, @ — transitivity. A groupoid
G is called transitive, if at least one of the cases defined is valid.

Lemma 6: Every group is transitive in all possible cases.

Proof: As a group G is a groupoid with unit, we have A¢ = A;, Re¢ = Rg.
Further for all x € G, Ly € Ag, Rz € Rg, Ry € @g, Ly ¢ ;. Hence Gis A4, A°, R,
R*, @, @' — transitive.

Lemma 7: Let G be a A or @* — transitive groupoid with left unit. Then G is
a groupoid with right division. Let Gbe a R or @ — transitive groupoid with right
unit. Then G is a groupoid with left division.

Proof: 1) Let G be A — transitive and e be a left unit of G.

Letx,y e G. Thereis 1 € Ag such that A(x) = y. But A(x) = A(ex) = A°(e) . x = y.
Hence R is a mapping onto G. Hence G is with right division.

2) Let G be @°* — transitive and e be a left unit of G.

Let x,y e G. There is ¢°* ¢ @ such that ¢*(x) =y. We have, y=c.9"(x) =
= @(e) . x. Hence G is with right division.

Similarly for the other cases.

Theorem 3: A groupoid with unit is transitive if and only if it is a group.
Proof: 1) Let G be a transitive groupoid with unit. Hence A¢ = Ag, R¢ = R¢
by Lemma 4. Now we can use Lemma 7. Hence G is with left or right division.
Since G is transitive, we have, by Definition 2, G = A¢ or G = B¢ or G = Cg.
Thus by Theorem 2 G is a semigroup with unit. But every semigroup with unit,
which is with left or right division, is a group.

2) Let G be a group. By Lemma 6 G is transitive in all possible cases.

3° Definition 3: Let G be a groupoid. A groupoid G(+) is called a homotope of
the groupoid G, if there are mappings a, 8 of the set G into G and a permutationy of
the set G so that for every x,y € G, y (x+y) = a(x) . f(y). We shall write G(+) =
= G(@.8,%), The groupoid G(-)is called a u — homotope of the groupoid G, if «,  are
onto G. The groupoid G(+) is called an isotope of G, if «, # are permutations. The
groupoid G(s) is called a principal homotope, if y = 1¢.

The following Lemma is evident.

27



Lemma 8: 1) Let G(+) = G(0)@8.») and G(o) = G©:&%), Then G(.)=
= (G(0a,e8,x7)
2) For every G is G = GUelela),
3) A mappingy : G(+) — G is an isomorphism if and only if G(+) = G¥»?.7),
4) Let G(-) = G@6:¥) and 6, ¢ be arbitrary mappings such that ad = fe = lg.
Then G is a homotope of G(+) and G = G(s )@=,
5) Let G(s) = G @A) be an isotope of G. Then G is an isotope of G(.) and
G = G(+)o877 ™,
6) Let G(+) = G@8:), Put G(o) = G(+)* "™, Theny : G(+) — G(0) is an iso-
morphism and G(o) = G¥ '@ '16),

Lemma 9: Every 4 — homotope of a groupoid with division is'a groupoid with
division.
Proof: Let G be a groupoid with division and G(0) bea 4 — homotope of G; G(o) =
= G5, Denote R;, L; translations of the groupoid G(0). Let x, y ¢ G. We
have y(x 0y) = a(x) . B(¥), hence y R} = Rp() «, and hence, R, =p-1 Rg(,) a.
Buty-1, Rg(y), « are mappings onto G, hence R; is a mapping onto G.
Similarly for L;.

Lemma 10: Let G be a groupoid with cancellation and G(0) = G@.8:¥), Let
o, § be one — to — one mappings. Then G(0) is also a groupoid with cancellation.
Proof: Similarly as for Lemma 9.

Theorem 4: Every groupoid which is anisotope of a quasigroup, is a quasigroup.
Proof: By Lemma 9, 10.

Lemma 11: Let G(o) = G@5.7), Let 1 € Ag(o), 0€ Re(o), € Pe(o) and b, € be
arbitrary mappings such that «é = fe = 1¢. Thenydy-1 € Ag, aA’d € Ag,y0y 1 € Rg,
Bo'e € R, apd € Dg, Pp’c e D.

Proof: 1) For every x, ye G,yiy Y a(x) . B(y) =y A(x0y) = p(A°*(x)oy) = ad’(x) .
. B(»). Hence for every u, v € G,yAy ~1(uv) = yAy-1(ad(u) . fe(v)) = ad’é(u) . fe(v)=
= ad*d(u) . v. Thusydy-le Ag, ad*d € Ag.

Similarly for p.

2) For every x, yeG, ap(x).p(y) =y(p(x)oy) =y(x 09" (¥)) = «(x)o fo°(y).
Hence for every u, v € G, apd(u) . v = apd(u) . fe(v) = ad(u) . fp e(v) = u . fp°e(v).
Thus apd € Dg, Py c e Dg.

Theorem 5: Let G(o) be an isotope of a groupoid G. Then the following iso-
morphisms are valid: Ag() == Ag, A¢(o) = A& Rew) = Re, Ré(o) = R, Do) =
= Dg, Do) = Dg.

Proof: Let G(o) = G'‘@:6:¥). Then, by Lemma 8, G = G(o)* ™). By Lemma
11, Ae AG(o) '¢y}.y‘1 € Ac, A e Aé(o) < ald’ale AE The mappings A: AG(o) -
— Ag, B : Ago) — Ag such that A(2) = yAy-1, B(A") = ad’a-1 for all 1€ Ag(o),
A+ € Ag o), are evidently isomorphisms.

Similarly for the other cases.

Theorem 6: Let G(0) be a u — homotope of G. Let G(o) be A4 — transitive
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(A°, R, R*, @, ®* — transitive). Then G is A — transitive (4A°, R, R*, D, ®* —
transitive).

Proof: Let G(o) = G(@.6:7), Since the mappings «, # are onto G, there are mappings
8, £ such that ad = fe = l¢. Let G(0) be A — transitive and x, y ¢ G. There is
A € Ag(o) such that iy -1(x) = y-1(y). HenceyAdy-1(x) = y. By Lemma 11,y4y-1 € A¢.
Hence G is /A — transitive.

Similarly for the other cases.

Theorem 7: Let a transitive groupoid G(o) be a 4 — homotope of a groupoid G,
which has a unit. Then G is a group.

Proof: By Theorem 6 and Theorem 3. _

Theorem 8: Let a commutative groupoid G(o) be a © — homotope of a group G.

Then G is an Abelian group.
Proof: Let G(o) = G(8:¥). Since the mappings «, §§ are onto G, there are mappings
d, & such that ad = f¢ = l¢. Let e be a unit of the group G and x, y e G. We have
a(x) . B(y) = y(xoy) = y(yox) = a(y) . B(x). Let u ¢ G be such that f(u) = e. Then
a(x) = «(u) . f(x). Hence a(u) . f(x) . B(y) = a(x) . B(y) = a(¥). f(x) = () . B(¥) -
. B(x), hence B(x).pB(y) = B(y).B(x). Thus for every », ze¢ G we have vz =
= Pe(v) . fe(2) = Pe(2) . Pe(v) = 2v.

Lemma 12: Let G(0) = G@-6:7) and let G(0) be a groupoid with unit e. Then the
translations Lq(e), Rg(e) Of the groupoid G are mappings onto G.

Proof: For every x ¢ G we have y(x) = y(x 0 ¢) = a(x) . B (¢). Hence y = Rg(q.
Similarlyy = Lg(e) . 8. Thus Lg(e), Rg(e) are mappings onto G.

Lemma 13: Let G be a groupoid and x, y € G. Let «, f§ be arbitrary mappings
such that L, = Rya = l¢ and a(xy) = x, f(xy) = y (the mappings «, § exist if and
only if the mappings L., Ry are onto G). Put G(0) = G@1¢). Then G(0) is a grou-
poid with unit e, where e = xy.

Proof: Let ue G. Thenuoe= uo(xy) = a(u) . f(xy) = a(w) .y = Rya(u) = u,
eou=(xy)ou=a(xy).pu) = Lzf(u) = u.
Definition 4: Let G be a groupoid and x, y ¢ G. We say that two elements x, y
satisfy the 4 — condition if:
1) The mappings Lz, Ry are onto G.
2) For every u, v, z € G,
Ry(u) = Ry(v) implies R,(4) = R.(v)
3) Forevery u, v, z € G,
L,(u) = Lx(v) implies L,(u) = L;(v).

Lemma 14: Let G be a groupoid and x, y € G. Then the following conditions
are equivalent:

1) The elements x, y satisfy the 4 — condition.

2) There are mappings «, § such that Rya = L8 = 1¢ and uv = aRy(u) . fLA(v)
for every u, v € G.

3) There are mappings «, § such that Rya = L8 = l¢. For all possible mappings
0, & such that Ry0 = L,e = l¢ and for all 4, v € G, uv = 0Ry(u) . & L(v).
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Proof: 1) Implies 3). Since Ry, L, are onto G, there are mappings «, § such that
Ryax = L = lg. Let d,e be arbitrary mappings such that Ry0 = Lze = lg. Let
u,ve G. Set z= 0Ry(u), t=eLx(v). We have Ry(2) = Ry0Ry(u) = Ry(u).
Hence zt = ur (by p — condition). Further, L;(¢) = LyeL(v) = Lz(v). Hence
ut = uv. Thus 2t = wv.
Evidently 3) implies 2).
2) implies 1). Since Rya = Lz = l¢, the mappings Ry, L, are onto G. Letu, v ¢ G
and Ry(u) = Ry(v). Let z € G be arbitrary element. Then R,(u) = uz = o Ry(u).
. BLz(2) = a Ry(v) . BLz(2) = vz = Ry(v). Hence we have proved that:
Ry(u) = Ry(v) implies R,(u) = R.(v).
Similarly we can prove the last part of the 4 — condition.
Lemma 15: Let G be a groupoid and x, y € G. Then the following conditions
are equivalent:
1) The elements x, y satisfy the 4 — condition.
2) There are mappings «, 8 such that Rya = L8 = l¢ and a(xy) = x, B(xy) = .
Let a1, $1 be arbitrary such mappings. Put G(o) = G@»#1). Then G(0) is a groupoid
with unit xy and G = G(o)Re:La D), (Ry, L are taken in G).
Proof: 1) implies 2). The mappings Ry, L. are onto. Hence there are mappings «,
such that Rya = L = l¢g, a(xy) = x, B(xy) = y. Let a1, B1 be arbitrary such
mappings. For every u, ve G by Lemma 14, we have wv = a1Ry(w) . f1Lx(v).
Hence Ry(u) 0 Lz(v) = anRy(u) . f1L(v) = uv. Thus G = G(0)ResLz1),
2) implies 1). The mappings Ry, L, are evidently onto G. Let be u, v € G such that
Ry(u) = Ry(v). Let z€ G be an arbitrary element. We have R,(¥) = uz =
= Ry (1) 0 L4(2) = Ry(v) 0 Lz(2) = vz = Ry (v).
Similarly we can prove the last part of the 4 — condition
Definition 5: A groupoid G is called 4 — groupoid if there is a groupoid with
unit, G(o), such that the groupoid G is a 4 — homotope of the groupoid G(o0).
Lemma 16: Let G be a 4 — groupoid. Then there is a groupoid with unit,
G(0), such that G is a principal 4 — homotope of G(0).
Proof: By Lemma 8.

Theorem 9: Every groupoid G is a 4 — groupoid if and only if there are two
elements x, y € G such that x, y satisfy the 4 — condition.
Proof: 1) Let G be a u — groupoid. By Lemma 16 there is a groupoid G(o), which
has a unit e, such that G = G(0)©#1. Moreover, the mappings 6, ¢ are onto G.
Hence there are mappings «, f such that da = ¢ # = l¢. Set x = a(e), y = fle).
For every u € G, Ry(u) = uy = d(u) 0 e(y) = 0(u) o ef(e) = 6(v) 0 e = 6(u), Li(u) =
da(e) o e(u) = e(u). Thus 6 = Ry, ¢ = L;. Further, a(xy) = a(a(e) . f(e)) =
= a(dx(e) 0 efi(e)) = a(e) = x. Similarly B(xy) = y. Finally, a(u) . f(v) =
= do(u) 0 eff(v) = u 0 v. Now we can use Lemma 15. Therefore x, y satisfy the
p — condition.
2) Let x, y ¢ G be two elements satisfying the u — condition. By Lemma 15 there is
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a groupoid with unit, G(0), such that G = G(0)®Rv:L=1_ Since Ry, L, are mappings
onto G, G is a u — groupoid.

Theorem 10: Let G be a transitive u — groupoid. Then G is a principal x — ho-
motope of a group. Hence G is with division.

Proof: There is a groupoid with unit, G(0), and there are mappings «, £, which are
onto G, such that G = G(0)(@6-1). By Theorem 6, G(0) is transitive and hence, by
Theorem 3, G(o0) is a group. By Lemma 9, G is a groupoid with division.

Theorem 11: Let G be a transitive groupoid. Let there be two elements of G

which satisfy the 4 — condition. Then arbitrary two elements of G satisfy the x4 — con-
dition.
Proof: The groupoid G is a 4 — groupoid. Then, by Theorems 9, 10, there is a group
G(0) and there are mappings «, § (which are onto G) such that G = G(o)(@8:),
Let x, y be arbitrary elements of G. By Theorem 10, G is a groupoid with division,
hence L;, Ry, are mappings onto G. Let u, v € G be such that R,(u) = Ry(v) and
z € G be arbitrary element. We have Ry(u) = uy = a(u) o f(y) = vy = a(v) 0 f(¥).
Hence «(#) = a(v), and hence, R,(u) = uz = a(u) o f(z) = a(v) 0 f(2) = vz =
= R;(v). Similarly we can prove the last part of the x4 — condition. Thus x, y satisfy
the u - condition.

Lemma 17: Let G be a group and «, f, ¥ be three mappings of G into G such
that for every x,y € G is y(xy) = a(x) . (). Then there are elements a, b, ¢ of the
group G such that the mappings Lqa, & Rq, Lpf, fLy, Lcy, ¥R, are endomorphisms
of the group G.

Proof: Let 1 be the unit of G. For every x € G, (x) = a(1) . f(x),y(x) = a(x) . f(1).
Therefore a(x) . f(1) = a(1) . B(x). Hence a(x) = a(1) . B(x) . (81)-1. Further, for
every x, ye G, y(xy) = a(x) . f(y) = «(1) . Blxy) = «(1) . B(x) . (B . B(y).
Hence f(xy) = B(x)bf(y), where b = (f(1))-1. Thus the mappings Lyf, Rpf are
endomorphisms of G.

Similarly, there exist a € G such that Lo, Rea are endomorphisms of G.

Now for y. We have f(x) = (ax1)-1.p(x), a(x) =y(x) . (f1)-! for every x, y e G.
Sincey(xy) = a(x) . f(y), we havey(xy) = p(x) . (B1)71. («])~1.9(y) = y(x) . ¢ .y(3);
where ¢ = (f1)-1. (x1)-1. Thus L¢y,yR. are endomorphisms of the group G.

4° Definition 6: A groupoid G is called B; (Bg) — groupoid if x(yz) = y(xz)
(xy.z2==xz.y)forall x, y, z2¢ G.

Lemma 18: Let G be a B; — groupoid. Let x ¢ G be such that R; is onto G.
Then G has a left unit e. Moreover, the elements e, x satisfy the x4 — condition.
Proof: Let ye G. Therearee, 2 e Gsuchthat zx = yand ex = x. Wehavey = z2x =
= 2(ex) = e(2x) = ey. Therefore, e is a left unit of G. The mappings L., R, are
onto G. Further, let #, v be elements of G such that R;(#) = Rz(v). Let z € G. There
is ¢ € G such that tx = 2. Then uz = u (tx) = t(ux) = t(vx) = v(tx) = vz. The last
part of the u — condition (for e) is evident (as L, = 1¢).

Lemma 19: Every B; — groupoid with right division is R - transitive.

Proof: Forall x,y, z2¢ G, x . y2 = y . xz. Hence L(yz) = y . Lx(z). Thus L; € Rg.
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Let u, v € G be arbitrary elements. There is z € G such that zu = L,(u) = v. Hence
G is R - transitive.

Theorem 12: Let G be a B; — groupoid. Then the following conditions are

equivalent:

1) There exists x € G such that R; is onto G.

2) There is a commutative semigroup with unit, G(o), and a mapping « which is
onto G such that uv = a(u) o v for every u, v € G.

Proof: 1) implies 2). By Lemma 18, G has a left unit e. Since R; is onto G, there is
a mapping f such that Rz = l¢ and f(x) = f(ex) = e. Put G(o) = G.1.1). Since
e, x satisfy the x4 — condition, hence, by Lemma 15, G(o) is a groupoid with unit x
and G = G(o)R=LD. Let u, v, 2 G. We have u(vz) = Ry(u) 0 (Rz(v) 0 2) =
v(uz) = Rx(v) 0 (Rz(u) 0 2). From this we deduce that G(o) is B; - groupoid. But
every B; — groupoid with unit is a commutative semigroup.

2) implies 1). This part of the proof is evident

Theorem 13: Let G be a groupoid. Then the following conditions are equi-

valent:

1) G is a By — groupoid with right division.

2) G is a By — groupoid with division and simultaneously a left quasigroup.

3) There is an Abelian group G(+4) and a mapping « which is onto G such that
xy = a(x) + y for every x, y € G.

Proof: 3) implies 2) and 2) implies 1) evidently.

1) implies 3). By Theorem 12, there is a commutative semigroup with unit, G(+),
and a mapping « which is onto G such that G = G(+)(@.LD, Therefore, G is
a u — homotope of G(4). Since, by Lemma 19, G is transitive, the semigroup G(+)
is, by Theorem 7, a (Abelian) group.

Theorem 14: Let G be a B; —groupoid with left cencellation. Let there be x € G
such that R; is onto G (a permutation). Then the groupoid G can be imbedded in
a B; — groupoid G which is with division (which is a quasigroup).

Proof: By Theorem 12, there is a commutative semigroup G(o) and a mapping o«
which is onto G such that G = G(o)@-1.1). Let § be a mapping such that « § = 1¢.
Then, by Lemma 18, G(8:1.1) = G(o). Therefore, for every u, v ¢ G we have,

(1) uov= Bu) .v.

Since G is with left cancellation, we get, applying (1), that G(o) is with left cancella-
tion, too. As G(o) is commutative, G(o0) is with cancellation. It is well known that
every commutative semigroup with cancellation can be imbedded in an Abelian
group. Let Gi(+) be any such Abelian group and ¢ : G(0) - Gi(+) be a mono-
morphism. Define the mapping » of G1 into G, as follows: »(y) = @Rz ¢ -1(y) for
¥y € (G), x(y) = y for y € G1, y ¢ (G). The mapping x is, evidently, onto G;. When
R is moreover one — to — one, then x is a permutation. Put Gi(s) = G;*.L.D),
Gi(+) is a By — groupoid with division. If » is one — to — one, Gi(+) is a By - quasi-
group. The mapping ¢ is also monomorphism of G into Gi(+). This completes the
proof.
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For B; - groupoids we can prove Theorems dual to Theorems 12— 14

Definition 7: A groupoid G is called an A; - groupoid (42 - groupoid) if
xy.uv=xu.yv(xy.uv=vy.ux), foral x, y, u,veG.

Lemma 19: Let G be a groupoid with left (right) division. Let there be x ¢ G
such that the mapping R; (L;) is onto G and for y, 4, v € G, yx . uv= yu . xv. Then
the groupoid G is @ (P*) - transitive.

Proof: For every y, u, v e Gwe have Ry(y) . L2(v) = Rx(y) . Lu(9). Let a, 8 be any
mappings such that Rzax = L 8 = l¢. Then Rya(y).v =y .LyS(v). Hence
Ryx € D¢ for every u € G. From this we see that G is a @ - transitive groupoid.
Similarly for the remaining case.

Corollary: Every A4; — groupoid with division is @ and @* - transitive.

Theorem 15: Let G be a groupoid. Then the following conditions are equi-
valent:

1) G is a u — groupoid with division and there is x ¢ G such that for every u, y,
ve G, yx.uv = yu . xv.

2) There is a group G(0), its endomorphisms ¢,y which are onto G(o) and g, # ¢ G(0)
such that for every u, v € G, uv = @(u) 0 g 0 (), py(u) 0 h = h o yep(u).

Proof: 1) implies 2). Since G, by Lemma 19, is @ - transitive, there is a group G(0)
and mappings «, # such that G = G(0)(@:6:1). The mappings «, § are onto G. For
all y, u, v e G we have ux . yv = o (a(u) 0 f(x)) 0 f(a(y) 0 f(v)) = uy . xv =

= a(a(x) 0 B(¥)) 0 (B(a(x) 0 f(v)). Hence a(u 0 y) = a1(x) 0 f1(y), By 0 v) =

= ag(y) o P2(v), where oy, f¢ are convenient mappings. Thus, by Lemma 17, there
exist endomorphisms @, y of the group G(o) and elements a, 4 in G such that «(u) =
= @(u) 0 a, f(u) = b o y(u) for every u € G. Therefore, uv = @(u) o g o y(v), where
g = a o b. Now we can write,

ux . yvo = ¢%(u) o p(g) 0 py(x) 0 g 0 Yp(y) 0 Y(g) 0 y*(v) =

= uy . xv = ¢*(u) 0 p(g) 0 pY(¥) 0 g 0 yp(x) 0 Y(g) 0 ¥?*(v).

From this we get py(y) 0 g 0 yp(x) = pyp(x) 0 g 0 yp(¥).

Put y = I, where ] is the unit of the group G(o). Then g o pp(x) = @py(x) og = .
Hence gy(y) o h = ho yp (y) for every y € G.

2) implies 1). The groupoid G is, evidently, a x — homotope of the group G(o).
Hence G is a u — groupoid with division. Put x = y-1¢! (h o g-1). Then
h=gyx)og=o9@y(x)ohohlog=hoyp(x)ohlog.

Hence g1 = yg(x) o A1, and hence, & = g o ye(x).

For every u, y, v € G we have,

yx . uv = ¢%(y) 0 p(g) 0 py(x) 0 g 0 yp(u) 0 Y(g) 0 y*(v) =

= ¢%(y) 0 p(g) 0 hoyp(u) o y(g) 0 Y*(v) =

= @*(y) 0 p(8) 0 py(u) 0 h o y(g) 0 Y*(v) =

= ¢%(y) 0 p(g) o py(u) 0 g 0 Ye(x) 0 Y(g) 0 Y*(v) = yu . xv.

This completes the proof.

Theorem 16: Let G be a groupoid. Then the following conditions are equi-
valent:
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1) Gis a u - groupoid with division and there exist elements x, a, b of G such that
ux .ot = uv.xt,au.vb= av.ubforallu, v,z¢ G.

2) Gis a u - groupoid with division and G is an 4; — groupoid.

3) There is an Abelian group G(+), its endomorphisms ¢, y which are onto G and
g € G such that uv = ¢(u) + y(v) + g for all u, v ¢ G and gy = ye.

Proof: 1) implies 3). By Theorem 15, there is a group G(+), its endomorphisms
@, v which are onto G and g, / € G such that uv = @(u) + g + p(@), h + pe(u) =
oyp(u) + hforallu,veG.

Put G(+) = GLeRo:l), For every u, ve G we have uev = au.vb= av.ub =
= vsu. Thus G(+) is a commutative x — homotope of G. Hence G(+) is a commuta-
tive u — homotope of the group G(+). Therefore, by Theorem 8, G(+) is an Abelian
group. Hence h 4+ yo(u) = ype(u) + & = py(u) + h, and kence, py = ypo.
3) implies 2) and 2) implies 1) evidently.

5° Definition 8: Let G be a non-empty set, » >> 2 be a positive integer and f
be an n — ary operation completely defined on G. The algebra (G, f) is called n — grou-
poid. Instead of (G,f) and f(xu, . . . ., xn) we shall usually write G and (x; . . . ., x5)
only.

Definition 9: Let G be a n — groupoid. A mapping 4 of the set Ginto G is
called 7 - regular, where / < 7 < n if there exists a mapping 4° such that for every
Xty oo s Xn € Gy A(X1y .« o 2 oy Xn) = (X1, - « o5 X115 A°(X0)s Xig1s - « o5 Xn).

Denote by symbol A% the set of all 7 — regular mappings of the n — groupoid G.

Lemma 20: Let G be a n — groupoid. Then for every i, 1 < i < #, the set A%
is a semigroup with unit under the operation of composition of mappings.

Proof: Proof is the same as for Lemma 1.
Definition 10: Let G be a » ~ groupoid. Let 7 be a positive integer, / <1< n.

An element ¢ of G is called an 7 — unit if for every x € G,
(L’, L , ’e,l’aé: heL,l’.' , :) = x. An element e is called a unit if e is a j — unit for
every,j, I <j<n.
Lemma 21: Let G be a #n — groupoid with i — unit ¢, ] < 7 < n. Let 4 € AL,
Then 4 = 2°.
o i—L G i41, L, n

1 .
Proof: For every xe Gwehave A(x) = 1 (e,..., & x, &, ..., 8) =

L oovmiml, iy itl. ..., n
=(ey...., & A°(X), e, ....,e) = A"(x). Thus 1 = 1°.

Definition 11: Let G be a n —groupoid and a be an element of G. We say that a

satisfies the » — condition if for every j, 1 <j < n, and for every xi, ... ., xn € G,
L ocevw j=1, Gy 4+l oy n L oenws =1, Sj+Li42, ...
(xl, e Xjo1y @y Xjy o o o oy x,,_l) = (x1, ooy Xj-1y Xfs Ay Xf4ly o o « oy x,,_l)

Lemma 22: Let G be a #n — groupoid with z — unit e, 1 <7 < n. Let e satisfy the
v — condition. Then e is a unit of G.

Proof: This Lemma follows directly from Definition 11.
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Definition 12: Let G be a n — groupoid and 7 be a positive integer, 1 <1 < n.
The n - groupoid G is called At - transitive if for every x, y € G thereis 4 € A% such
that A(x) =

Deﬁnitlon 13: Let G be a n — groupoid with 7, j—unit e, where 1 <i1,7 <mn,1#7].
Define the binary operation fi,; on G as follows:

i Jj -
For every x, ye G, fi,j(x, ¥) = (&, .. & %, 6, .. s &, ¥, 86, ..., e)if i < j
j i
andfij(x,y) =(es... s6,¥,6....,6xe,...,e)ifj < 1.
Just defined groupoid (G, fi,;) we shall denote by symbol G(o)*7.

Theorem 17: Let G be a At — transitive n — groupoid with 1, j — unit ¢, where
1 < 14,7 < n,i 5 j. Then G(0)*/ is a group.

Proof: Suppose i < j. The element ¢ is a unit of the groupoid G(o0)%/. Indeed, for

i j i i
every xe G we have xoe=(e,....,6,x,6,...,6...6)=(6...,6....6 X,
e .... e) = eo x. Further, let Ae At For everyx,y e G we have,

i J

Axoy) = Mey,....e,%,€65...6,9,8,...,€) = (e,. ,e,).(x),e,..,e,y,e,.., e) =
= Mx)oy. »
Hence A is a left regular mapping of G(o)!-. Since G is A* - transitive, G(o)*/ is A -
transitive. Therefore, by Theorem 3, G(o)!/ is a group.
If j < 7 the proof is similar.

Definition 13: Let G be a n — groupoid and ¢ be a permutation of elements
1,2, .. .,n. Then- groupoid G is called a 0 —n—groupoid if there exists a group G(0)
such that for every x1, . . ., x5 € G,

(x15 X2, . . .5 Xn) = Xg(1) 0 X5(2) O . .+ © Xg(n)-

Lemma 23: Let G be a 0 — n— groupoid. Then G is A9) — transitive and 49 (») —
transitive.

Proof: There exists a group G(o) such that for every x1, . . ., xn € G,
(x1, ‘e ey Xn) = X¢(1)0...0Xg(n)-

Let u ¢ G. The translation R, of the group G(o) is a o(n) — regular mappmg of the
n — groupoid G. Indeed,
Ry (x1, . . .5 Xn) = X6(1) 0X6(2) 0. . .0 Xg(n) O U =
= Xg(1) 0 . . . 0 Xg(n-1) 0 (Xa(n) 0 U) = (X1, . . ., Xa(m)-1> Ru (Xs(m)s Xom)+15 « - - Xn).
Since the group G(o) is a groupoid with division, G is /¢ (®) — transitive. Similarly,
G is A5 — transitive.

Lemma 24: Let G be a Af - transitive n — groupoid with 7 — unite, 1 <7< n.
Let e satisfy the » — condition. Then G is a ¢ — n — groupoid for

.......... n

o—(z’,z—}’—'I Nyl — 1,1'—2,..,.,1).
Proof: There is 7, I < j < n, such that 7 # j. Suppose 7 < j.



By Lemma 22, the element ¢ is an unit of G. Therefore, by Theorem 17, the groupoid
G(o)* is a group.

Let x1, . . ., x4 € G be arbitrary elements. Since G is A* - transitive, there are mapp-
ings A1,..., Ape AL such that x; = Ai(e), x2 = Aa(e), . . ., xn = An(e). Since e
satisfies the » — condition and A; are 7 — regular, we have (xi, ..., xa) =

= (M(e), . . ., An(e)) = A4 (A1(e), - . ., Ai-1(€), € Aij1(e), . . ., An(e)) =

= A (Ma(e), . . . .5 Aic1(e), Aga(e) e, Ais2(e)s . . s An(e)) = ... .. =

=g .. Ak Az . e, .. e) = A An Aim1 ... Au(e).

Conversely,xi0...0xp0xi-10...0x1=M(e)0o...0A ()0 Ai_1(e)o...0 M) =
L oo oiely gy il . i—1, J+l. .
=(e..o6MeEse .. 6. .. 6 ule)e....)e...e)=

= Mle, ... e, Mpa(e)s e, .. e (e ... 6 Auze),e...),e...,e)=
= 14114_1 oo 1.7. 1.;_1 }4_2 .. }.1(8).

Thus G is a o — n groupoid for ¢ = (1, .., mi — 1, .. , I)
If j < 1 the proof is similar.

Theorem 18: Let G be a n — groupoid. Then the following conditions are
equivalent:
1) There exists 7, ] < 7 < n, that G is Af - transitive and G has an 7 — unit e which
satisfies the ¥ — condition.
2) G is A! and A» - transitive and G has a unit g which satisfies the » ~ condition.
3) There is a group G(o) such that for every x1, ..., xn € G, (x1, . . ., Xp) =
=Xx10X20...0Xn.

L, . . . . . .. n
Proof: 1) implies 3). By Lemma 24, Gis 6 —n—groupoid fore= (1, . . .,n,i — I,...,1).

Hence, by Lemma 23, G is A4¢(®) — transitive. But o(n) = /. Hence G is A! - transi-
tive. The element ¢ is, by Lemma 22, a unit of G. Hence, by Lemma 24, G is

..

L 2.
& —n - groupoid for ¢ = (I, 3, R )}
Since ¢ is the identity permutation, there is a group G(o) such that for every
X1y . .. Xn € G,
(X1, . . s Xn) =%X10x20...0%n

3) implies 2) and 2) implies 1) evidently.

Theorem 19: Let G be a n — groupoid. Then the following conditions are
equivalent:
1) There exists 7, I < ¢ < n, such that G is A* - transitive and G has an 7 — unit e,
which satisfies the » — condition.

2) G is A7 - transitive for all 7, 1 < j < n. G has a unit g and an arbitrary element
of G satisfies the » — condition.

3) There is an Abelian group G(+) such that for every x1, . . ., x5 € G,

(X1, - X)) =x1+ x2+ ...+ xn.
Proof: 1) implies 3). By Theorem 18, there is a group G(+) such that for every
X1s . . .y Xn € G,

(%15 . - > Xn) =x1+ x2+ ...+ xa.
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P T R
=x+e+ ...+ Ae)+ e+ ..+ e= x+ Ale). Hence for every x1,...,xp€ G
we have A(x1, .., xn) =x1+ x2+ ...+ xn + Ale) =

= (xl, c oo Xi-1, ;'(xi): Xt4ls - - o xﬂ) =x1+ ...+ x1+ x+ j'(e) + x40 +

+ ...+xn.

Since ] < i< ni+1<n Hence xqj1+ ...+ xn+ Ae) = Ae) + x4+ ...
~+ xa, and hence, A (¢) + x = x + A(e) for all x ¢ G. Using the Af - transitivity,
we get that G(+) is commutative.

3) implies 2) and 2) implies 1) evidently.
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