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1971 ACTA UNIVERSITATIS CAROLINAE MATHEMATICA ET PHYSICA VOL. 12, NO. 1 

Lattice Socles and Radicals Descr ibed by 
a Galois Connection 

L. BERAN 
Department of Mathematics, Charles University, Prague 

Received 19 April 1971 

This paper deals with an extension of Stenstrom's concept of lattice socles and 
radicals. It is shown that in any modular lattice of finite length, the lower .rv-socle 
relative to an ideal J is equal to the upper one and that in modular algebraic lattices 
the socles are additive. The paper contains also some instructive counter-examples, 
as well as some results relating to the .K-radicals which are immediate consequences 
of the theorems concerning the .K-socles. 

Throughout this paper L denotes a complete lattice. 
If J is an ideal of a lattice T and K c T \ J, the elements of the set Ess/ (K) = 

= {te T \ J \ V k€ K t n & £ J } are said to be K-essential relative to J. 
We omit the proofs of the statements in the following lemmas since they are 

straightforward. 

Lemma 1. If K ^ M a T\J, then 
(i) Ess2/ (K) => K *) 
(ii) Ess/ (K) 3 Ess/ (M) 

(iii) Ess3/ (K) = Ess/ (K). 
Corollary. The correspondence f : K |--> Ess/ (K) defines a Galois connection 

in T; the correspondence g2 : K |-> Ess2/ (K) is a closure operation on T \ J and the 
closed subsets of T \ J form a complete lattice. 

If 5 is a subset of the lattice T, [S) will denote the set {t c T \ 3 s e S s ^ t}; 
similarly (S]= {t * T \3 s * S t ^ s}. 

Lemma 2. In any lattice T, 
(i) [EsstK)) = Ess£(K) 

(ii) [Ess2/ (K)) = Ess2/ (K). 
Lemma 3. If Ki c T \ J, X € A, then 
(i) E s s / ( M ^ A ) = J Ess/(AT*) 

XeA XeA 

-) Here Ess*/ (K) means Ess/ (Ess/ (K)). 
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(ii) Ess-£ (MX*) => J BssH (KO. -) 

Corollary. In any distributive lattice, the correspondence g2 of Lemma 1 defines 
a topology. 
Proof of Corollary. By (ii), it remains to prove that t € Ess2/ (K\ M K2) and t i Ess2 / 
(Ki) At Ess2/ (K2) implies a contradiction. Indeed, in this case there are elements 
m € Ess/ (Ki), i = 1,2, such that t n ut e J and hence t n (u\ U 1*2)« J. But by 
Lemma 2 (i) u\ U 1/2 * Ess/ (.Ki) for 1 = 1,2 and so we have, by (i), uiUt .2€ Ess/ 
(K\ M K2), t fl («i U K2) £ .7 which is a contradiction. 

An element t of a lattice T covers an ideal J of T iff there is an i c J which is 
covered by t and t $ J. Thus, r covers Jiffjft >— * € J. An element * € T covering J 
is called a J-atom iff it satisfies the condition (&' £ J , k' = &) => &' = k. 

The ideal J will be usually fixed in our considerations. This motivates the 
following definitions: The elements of J are called elementary particles. If an element 
q c T is such that q = £ for every ft c Ess/ (K), it is said to be an Ess2/ (K)-element. 
Clearly, a J-atom is an Ess2/ (K)-element iff it belongs to Ess2/ (K). 

For a subset KofL\J, the w/j/>*r K-socle of the lattice L relative to the ideal J 
is the g.l.b. of the set Ess/ (K) and is denoted by Soc/ (K); the /o«;er K-socle of 
L relative to J , denoted by Soc{(K), is the l.u.b. of the set the elements of 
which are the J-atoms and the elementary particles which are Ess2/ (K)-elements. 
Thus, if J = {0}, SOCL }(K) = U AA where ax range over all atoms belonging to 
ESS2L} (K). In this case we omit the phrase "relative to {0}" and, when no confusion 
can arise, we write SOCL (K) instead of SOCL } (K) calling this element simply lower 
.K-socle. Similar abbreviations are used for SOCL } (K), ESSL} (K) etc. We say that 
a lattice L has a K-socle relative to J iff Soc/ (K) = Soc/ (K). 

Lemma 4. In any lattice L, 

(i)^/(K) = So^i(K) 

(ii) K => M implies Soc/ (K) = Soc/ (M) 

(iii) K 3 M implies Soc/ (K) = Soc/ (Af) 

(iv)^i0 }({*})-=Soci0 }({A}). 

Proof. The first three assertions are obvious so we shall deal only with (iv). First 

consider the case SOCL ({k}) 7-- 0. Then 0 —< SOCL ({k}) c ESS2L ({k}) and it therefore 

follows, by (i), that SOCL ({k}) = SOCL ({k}). Next consider the case SOCL ({k}) = 0. 

This time there are no atoms in ESS2L ({k}), consequently SOCL ({k}) = 0. 

Now we shall formulate the key theorem which is a natural generalization of 
a very well known property of modular geometric lattices (cf. [2] and [3]). 

Theorem 5. Let L be a modular lattice of finite length and let b e L be a join 

2) M is the symbol for the set union and J for the set intersection. 
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of some J-atoms. Let r $ J be such that r <b. Then there exists an element t $J 
such that 

(i) r U t = by (ii) J 3 5 = r n t, 

Corollary 1. With the assumptions and notation of Theorem, for every i such that 
J * i < r there exists a t0 $ J such that 

(i) r \J t0 = b, (ii) J * r n t0 = t. 

Corollary 2. If ir is the greatest element of J with the property ir ^ r, then there 
exists an element t\$J such that 

(i) r U h = by (ii) r n h = fr. ' 

Proof. Let b = f i U S 2 U . . . U S * U r, where f; are J-atoms such that k is the 
A 

smallest possible. In particular, Sm ^g U Sh for every /w = 1,2 . . ., A. Now we 
A = l 

A A ^ - m 

put r = U f *> s = r n r-
A = l 

Then 

i ^ M t)1 W n U f * = *U f * u (f* n (r u (J1 ft)) 
A = l A = l A = l A = l 

by the modular law. Since S * >— t* € J is a J-atom, it follows either 

S * = £* 0 (r U tj f A) or 1* ^ f * n ( r U U 60-
A = l A = l 

A — 1 

The first alternative implies b = r n U £•% which contradicts the definition of k. 
A—1 A = l 

Thus we must have s ^ U Sh U 1*. In the case A = 1 this implies 5 ^ 1*, so we are 
A = l A 

through. From now on we assume k > 1. Then letting h)(j) denote the join ij U U Shy 
we have by symmetry s g hf(J\j = 1, 2 , . . ., ky and J j j 

1 ^ji^h^k ^> xr\ (ji) -34. hj (j2). 

Indeed, if the implication were not true, there would exist two subscripts, say 1 and 2, 
such that ^(1) = x^(2). This would imply 

11 U (J Sh = Si U U Sh = hi (1) 
A=2 A=2 

and 

11 n U Sh < Si n U Sh. 
A=2 A=2 

A 
Since Si is a J-atom we should have as above f 1 n U Sh ^ *i> and consequently, 

A A A=2 

S1 n U f A =S ii n U Sh> a contradiction. 
A=2 A=2 A 

New let crj (j\j2 . . Jc) be the join ijX U ij2 U . . . U ijc U U f A> A C subscripts 
iiu Ji2> • • • , »Vc being distinct. Assume fe^ 9 ̂  $ s ^ 

^ C/1/2 . . .jc) = c*7 O i / i . . .>;), c > 1, (1) 
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where/i,/2, . . ., j c and j[,j'2, . . .,j'c represent two different groups of subscripts. 
Hence there exists a/ which does not appear in the right member of (1), and similarly, 
there exists a j ' which is not on the left side of (1). Without loss of generality, we 
assume / = j c , j ' = j ' c . We shall distinguish two cases: 
Case I. There exist two subscripts, say/i and/i , such that/i = j \ . Then, by (1), 

c-1rj(h...jc) = c-1rj(J2...j'c) (2) 

and the groups of subscripts in (2) are different. 
Case II. jq ^ j v for all p, q = 1, 2, . . ., c. Then 

c-xV (hh • • . Jc-i) = c-xr\ (h h . . . j'c-i) (3) 

and the groups of subscripts in (3) are different. 
Hence by induction on c, lrj (j) = xrj (/') for some/ 7-= /',which is a contradiction. 

Therefore 

(juh, . . .Jc) ^ Ul>J2> • • >>fc) => CV (hh . . .Jc) ^ crj Oi/2 . . .j'c). 

Let w\ = crj (/1/2 . . .jc), w2 =
 e'h] (72/3 . . .jc), «>3 = c_1-7 (/1/3 . . .jc) where 

k = c = 2. We have W2 7-= W3, W2 = w\ and ws = w\. Now let us suppose W2 = w\. 
Then Sji U A = ijx U A, X denoting the element ij2 U ijS U . . . U ijc U (J fa. 

l£h*jlijSi...Jc^h 

But fi = 1V1 U (f/x P! X) isa^-atom; hence f̂  n A = f̂  which is impossible. Thus 
we see that W2 >— w\, W3 >— wi, W2 ^ W3 and therefore W2 H W3 = wi. Specializing 
to the case W2 = xrj (j'2), ws = xrj (/1), we obtain by the preceding results s = 2rj (/1/2). 
Again, by induction on c, we find that s = crj (j\J2 • . . jc); consequently 

^ = krj (1 2 . . . k) = ii U 12 U . . . U 1* € /J. 

This completes the proof. 
Proof of Corollaries. Put t0 = t U i and t\ = t U ir. Then L ^ r f) t\ = ir implies 
if = r (1 ri. 

Our main result can be stated as: 
Theorem 6. Any modular lattice L of finite length has a K-socle relative to J for 

every K <= L \ J . 

Proof, We claim that for each K c L \ J Soc{ (K) = Soc{ (K). For suppose this 

is not true, so that Soc{ (K) < Soc{ (K) for some K <-= L \ J and let 1 and 1 be the 

greatest elementary particles satisfying 1 = Soc{ (K) and 1 = Soc{ (/C) respectively. 

Then 1 is an Ess2{ (^)-element and 1 ̂  Soc{ (.K). Moreover, i = i. Next we prove 

that Soc{ (K) e J implies Soc{ (K) c J. Suppose not and let / be an element such 

that J ^i—if = Soc{ (K). Let f0 denote a J-atom which satisfies f0 = f. It is clear 

that/o is an Ess2{ (.K)-element; hence J$f0 = Soc{ (K), which is in contradiction 

to Soc{ (K) e J. But Soc{ (K) c J implies 7 = Soc{ (K) ^ Soc{ (K) = i, so we 

are in this case done. 
Finally, let Soc{ (K) $J and choose a b e Ess{ (K). Let b* denote a J-atom 
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such that bic = b fl k, k c K. b0 = U && is easily seen to be an element of Ess{ (K), 
keK 

i.e. b0 = Soc{ (K). By Corollary 2 of Theorem 5 there exists a ri such that 

h U Soc{ (K) = b0, J*tiCi Soc{ (iC) = T. 

By ri U Soc{ (K) = ti U Soc{ (_K) = 60, we have i = t\ n Soc{ (.K) < ri n Soc{ (.K) 
by modularity. Since t < t± n Soc{ (AT) ̂  Soc{ (AT), it follows that t\ n Soc{ (AT) £ J. 
Hence there exists a f0 such that i — < fQ =S t\ 0 Soc{(/Q; then of course f0 *|J 
Soc{ (AT). On the other hand, 
it is easily to be check that 
each Ess2{ (.fC)-element cover
ing the ideal J is equal to the 
join of a J-atom and an elemen
tary particle both being Ess2{ 
(K) — elements and it is 
evident that f0 has this pro
perty. This leads to the con
tradiction f0 ^ Soc{ (K) and 
our proof of Theorem 6 is 
complete. 

The elementary particles 
mentioned in the definition 
of Soc{ (K) cannot be left 
out. This shows Figure 1 where 
we choose K = {ki, k2},J= (i]. 
Clearly, Soc{ (K) = m but the join of all J-atoms of Ess2{ (K) is equal to &2-

We shall now investigate the additivity of the upper .K-socles relative to J. 
Theorem 7. Let Lbe a distributive lattice of finite length. Then 

S^{(MKx) = U S^i(Kx) 
XeA XeA 

where Kx <= L \ J . 
Proof. Assume that the assertion does not hold. By Lemma 4 (ii) this implies that 
Soc{ (M Kx) > (J Soc{ (Kx). Then there exists an element c which is maximal 
among the elements having the property c ^ (J Soc{ (Kx), c = Soc{ (M Kx). 
Suppose c € J Ess{ (Kx). Then by Lemma 3 c € Ess{ (M Kx), i.e. c >̂ Soc{ (M Kx). 

XeA 

By this contradiction there exists a A0 such that c $ Ess{ (KxQ). Hence x <\1 c for all 
x € Ess{ (Kx0) and therefore x U c = Soc{ (M Kx). By distributivity Soc{ (M Kx) ^ 
^ (] (xx \J c) = c [} f] xx, the meet being taken over all elements xx of Ess{ (KxQ). 
But c \) (]xx= c [) Soc{ (Kx0) = c which gives a contradiction to the choice of c. 

By inspecting Figure 2 we see that the conclusion of Theorem 7 is not true for 
modular lattices: It is obvious that Soc£ ({ki}) = 0, Soc£] ({k2}) = fo but Soc£] 

({ki, fe}) = ki ^ i0 U 0. (Since the lattice L which is sketched in Figure 2 is an 
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amalgam of a special type of two direct produts of modular lattices, it is clearly 
modular (cf. [1]).) 

However, in the special case J = {0}, the K-socles are additive in all algebraic 
(cf. [2], p. 187) modular lattices, as the following result shows. 

Fig. 2 

Theorem 8. Let L be an algebraic modular lattice. Then 

Soc£0) ( M Kx) 
UA 

U Soci°}(^) 
XeA 

where Kx <= L \ {0}. 
Corollary. In any algebraic modular lattice L, 

So^i°} (K) = Soci°} (K) (4) 
for all K c= L \ {0}. 
Proof. Suppose by way of contradiction that SOCL (M KX) > U SOCL (-KA).3) 

Since L is algebraic there exists a compact element k such that k ^ SOCL (M KX) and 
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* t\l (J SOCL (KX). Let m denote an element which is maximal with respect to 
m^> (J SOCL (KA) and m 2|= *• Then w £ ESSL (M /CA) and there exists a Ao such that 
m 0 Ao = 0 for some ho e ^ 0 - Let a = f) ^ be the meet of all compact elements 

peM 

which are such that 0 < h» = /f0,̂  V « M. If a 7-- 0, then 0 -< a = 6 ' 0 /*o for all ft' e 
ESSL (*CA0). Thus~a~k SOCL (-^AC) and 

0 = m n /io = SOCL (î Ao) 0/io = a n / i o = a , 

a contradiction. Now let a = 0. Since [m, m U Ao] and [0,/io] a r e transposes, it 
follows that 

k = D (m V h„) = m \) a = m, 
fieM 

a contradiction. This completes the proof of this result. 
Proof of Corollary. SOCL (K) = SOCL ( M {k}) = 

= U SocL({*» 
keK 

= U Soci ({*}) 
keK  

^ Soct ( M {k}) = SOCL (K) 

^ Šoči (K) 

by Theorem 8 

by Lemma 4 (iv) 

by Lemma 4 (iii) 

by Lemma 4 (i). 

3) The technique of separation of these elements illustrated in the proof is essentially that 
of[4]. 
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The Corollary does not hold in all lattices: The lattice L shown in Figure 3 is 
such that SOCL {ki, £2} = v but SOCL ({h, £2}) = w. 

Theorem 9. Let L be a lattice satisfying the descending chain condition. Assume 
that either 

(a) (SOCL} (K)] is a complemented lattice 
or 

(b) SO^L°} (K) € ESSL°} (K). 

Then L has a K-soclefor every K c L \ {0}. 
Corollary. Let Lbea relatively complemented lattice which satisfies the descending 

chain condition. Then (4) holds. 

Proof, (a): We show that SOCL (K) = SOCL (K). If not, then we can find a comple

ment c of SOCL (K) in [0, SOCL (K)] and an atom cQ such that 0 — < c0 fg c. Then 

c0 e EssL (K) and this contradicts the fact that c0 : |̂  SOCL (K). 

(b): By assumption 0 7-= * 0 SOCL (K) for k c K. If k0 is such that 0 — < k0 ^ k 0 

n SOCL (K), than k0 € EssL (K) and this yields k n SOCL (K) =?-- 0 for every k € K. 

Therefore SOCL (K) e ESSL (K), SOCL (K) = SOCL (K) and hence by Lemma 4 (i) 

SOCL (K) =~&^L (K). 

We remark in passing that the condition (b) which means that ESSL (K) is 
closed under meet need not hold even if we assume that L is distributive. This may 
be shown by the direct product 2 ® 2 ® 3 consisting of all triplets (m, n, p) where 
m = 0,1, n = 0,1, p = 0,1,2: If one chooses K= {(1,1,0), (0,0,2)}, then SocL(K) = 
= (0, 0, 1) t ESSL (K). 

A subset H cz L \ {0} is said to be a seave of L iff h € H, 0 — < ho ^ h implies 
ho * H. 

Theorem 10. In any dually algebraic lattice L, 

So^i°} (M Hx)= U So^i°} (.%) 
XeA XeA 

for any system {Hx}xeA of seaves such that Hx ^ L \ {0}. 
Corollary. If L is dually algebraic lattice, then 

So^i°} ( H) = Soci°} (H) 
for any seave H of L. 

Proof. Suppose we do not have SOCL (M HX) = (J SOCL (HX). Then SOCL (M HX) > 
> (J SOCL (HX) and there exists a dually compact element k such that k >̂ IJ SOCL 

(Hx) and SOCL (M HX) \\t k $ ESSL (M HX). Thus there exists an element h € Hx0 

which is minimal such that h 0 k = 0, 0 ^ h. Clearly 0 — < h e HxQ
 c EssL (Hx0) 

so h 5̂  (J. SOCL (HA) ^ h, a contradiction. 

If D(L) denotes the dual of L and D is an ideal of D(L), K <-= D(L)\ D, the 
upper K-radical of L relative to the dual ideal D of L, denoted by Rad£ (K) is 
defined to be the lower X-socle Socg(L) (K;). Similarly, Socg(L) (K) is called a lower 
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K-radical of L relative to D and is denoted by Radf (K). If Rad£ (K) = Rad£ (K), 
we say that L has a K-radical relative to D. 

Using the previous results concerning the .K-socles we may obtain by duality 
corresponding theorems for .K-radicals. Here we mention the following typical 
result: 
Theorem 11. If L is a modular lattice of finite lengthy then L has a K-radical relative 
to Dfor any K <= L\D. 

If L is an algebraic lattice, then 

Radi1} (M Hx) = R^di1} ( M Hx) = f| R^l!} (f t) = 0 Radi1} (HA) 
XeA XeA XeA XcA 

for any system {Hx}xeA of dual seaves of L. 
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