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introduction 

In the theory of sets, in which the existence of natural numbers is assumed, 
the investigation of trajectories and their classification are the easy problems. In this 
article we approach an investigation of trajectories not being acquainted with natural 
numbers. It is shown here, that the classification of trajectories is possible to establish 
without the notion of the natural number, using only the considerations based on 
sets, which may be a methodical contribution for the development of sets theory. 
In the second part we have shown, how the notion of the natural number can be 
introduced when the classification of trajectories is already established and how 
being familiar with trajectories, the basic properties of natural numbers can be 
derived easily. 

In the article the Morse's theory is used. All the considerations carried out in it, 
is possible to transform into the Godel - Bernays's system, since the only class 
defined by innormal formula, can be defined by the different manner too, namely 
using the normal formula, how it is described in the Appendix. At the beginning 
of the article the use of the Axiom of Infinity is omitted. At the place, where the 
introduction of this Axiom is desirable, one of its possible formulations is given. 

I. Trajectories 

I. Transformation of the class into itself 

Assume, in all this article, A is a class, F a correspondence of A into A, X 
a subclass of A. 

Definition. We shall say the class X is closed (with respect to the mapping F) if for 
every z e X follows F(z) e X. 

Definition. Suppose xeA. The class of all zeA, such that for every closed class X, 
containing JC, Z belongs to X, will be called the trajectory of x (denoted TrF(x) or 
briefly Tr(x)). Then 

Tr(x) = {z; (v X) [(X is closed) A (x e X)] => (z e X)} 



Lemma 1. It holds 
a) x e Tr(x) 
b) If X is closed, xeX, then Tr(x) c X. 
c) Fr(x) is closed. 

Proof: a) follows immediately from the definition of Tr(x). 
b) Let us suppose that AT is a closed class, such that x e X, and let a £ Tr(x), than a 

belongs to every closed subclass, containing x; thus ae X. 
c) Let b e Tr(x), then, according to the definition of Tr(x), b belongs to any closed 

subclass of the class A, containing x. Then F(b) belongs to every closed subclass, 
containing x. Hence F(b) e Tr(x) and Tr(x) is therefore a closed class. 

Lemma 2.y e Tr(x) if and only if Tr(y) c Tr(x). 
Proof: Let us suppose y e Tr(x) and assume z e Tr(y). Then, according to the 
definition of Tr(x), there is y e U, provided U is an arbitrary closed subclass of A, 
containing x. Then U is a closed subclass, containing y and since ze Tr(y\ it 
implies z e U. Hence z belongs to every closed subclass, containing x and therefare 
Tr(y) c Tr(x). Let us consider now that Tr(y) c Tr(x), then according to Lemma I, 
there is y e Tr(y) and so y e Tr(x). 

Consequence. Tr (F(x)) c Tr(x). 
Note . From Lemma 2 it follows a e Tr(b) if and only if Tr(a) f] Tr(b) = Tr(a). 

Lemma 3. Tr(x) = {x} \J Tr(F(x)). 
Proof: Tr(F(x)) is closed, according to Lemma 1; also {*} \J Tr(F(x)) is closed 
because, according to Lemma 1, there is F(x) eTr(F(x)) and thus F(x)e{x} \J 
\J Tr(F(x)). Since x e{x}[j Tr(F(x)) is trivial then, according to Lemma 1 and the 
above consideration, Tr(x) c {x} [J Tr(F(x)). 

Let y e {x} {J Tr(Fx)). If y e {x}, then y = x and Lemma 1 implies y e Tr(x). 
Ify e Tr(F(x)), then the consequence of Lemma 2 implies-y e Tr(x). Thus Tr(x) 3 
2 {x} (J Tf(F(x)) which, together with the above mentioned result, completes the 
proof. 

Consequence 1. y e Tr(x), y ^ x implies y e Tr(F(x)). 
Consequence 2. If Tr(u) c Tr(v) and u -^ v, then Tr(u) c Tr(F(v)). 

Proof: If Tr(u) c Tr(v) then, according to Lemma 2, there is u e Tr(v), where 
Tr(v) = {v} U Tr(F(v)). Since u^v, then ueTr (F(v)). 

Lemma 4. Ify e Tr(x), then just one holds: either Tr(x)— Tr(y) = 0, or Tr(x) — 
— Tr(y) is not closed. 

Proof: The assertion is obvious provided that B = Tr(x) — Tr(y) is empty. 
Let .8^-0. Suppose that B is closed. It holds, x e B (obviously x e Tr(x) and if in 
addition x e Tr(y) then, according to Lemma 2, there is Tr(x) c Tr(y) and hence 
B = 8, which contradicts the assumption B =£8). Therefore B is a closed class, 
containing x; according to Lemma 1, there is Tr(x) ^ B. From this and from the 
assumption y e Tr(x), y eB follows. It is in the contradiction with Lemma 1, 
according to which y e Tr(y). 



Lemma 5. Let us assume Y = 0, Y ^ Tr(x)y Y is a closed class. Then there 
exists y e Tr(x) such that Y =- Tr(y). 
Proof: Let Y -^ 0, y c Tr(x)y Y closed. Let us denote 

Z = {y;(yeTr(x)) A(Y^Tr(y))}. 

The class Z is not empty, since xeZ. We shall prove that Z is closed. Suppose 
yeZ. From the definition of Z there is Y c Tr(y) and so Lemma 3 implies Y £ {y} \) 
U Tr(F(y)). Ify e Yy then (according to Lemma 1) Tr(y) c y . From the definition 
of Z we know, that Y c Tr(y) and therefore y = Tr(y); thus Lemma 5 is proved 
in this case. Let us suppose now y $ Y. Then Y £ Tr(F(y)). Since -y e Tr(x)y it 
also holds F(y) e Tr(x) and with the use o f Y g Tr(F(y))y there is F(;y) e Z.Thus Z 
is closed and xeZ. According to Lemma 1, there is Tr(x) c Z. At the same time the 
definition of Z implies Z £ 7r(x) and therefore Z = Tr(x) holds. So we have 
shown that for any v e Tr(x)y Y ^ Tr(v) follows. Let us choose an arbitrary a eY. 
Then there is Tr(a) c y (according to Lemma 1). Hence Y = Tr(a). 

Lemma 6. If Tr(x) f] Tr(y) -^0 , then there exists zy such that Tr(x) f] Tr(y) = 
= Tr(z). 
Proof: Let us denote Tr(x) f] Tr(y) = Y. If z e Y then z e Tr{x) and z e Tr(y) 
at the same time, and there are F(z) e Tr(x) and F(z) e Tr(y) (according to Lemma 1), 
from which F(z) e Tr(x) f] Tr(y) follows. Thus Y is closed and non-empty 
according to the assumption. Obviously Y c Tr(x). Thus the assumptions of 
Lemma 5 hold. It means that a e Tr(x) exists, such that Y = Tr(a). 

Lemma 7. Let yy z e Tr(x)yy $ Tr(x). Then z e Tr(y). 
Proof: Let us suppose the assumptions of the Lemma under consideration are 
satisfied. Denote 

y = {u; (u e Tr(x)) A (u £ Tr(z)) A (Tr(u) f] Tr(z) = Tr(y) f] Tr(z))}. 

The class Y is non-empty, since y eY. Let us prove, that x e Y. Suppose 
on the contrary x $ Y. Then x e Tr(x) — Y. Let us show Tr(x) — Y is 
closed. Let u e Tr(x) — Y and suppose further F(u) $ Tr(x) — Yy i.e. F(u) e Y. 
Then the definition of Y implies that Tr(F(u)) f] Tr(z) = Tr(y) f] Tr(z). Moreover 
Tr(u) f] Tr(z) = (Tr(F(u)) [) {u}) f] Tr(z) => Tr(F(u)) f] Tr(z) = Tr(y) f] Tr(z). It 
is true even that Tr(u) f] Tr(z) 3 Tr(y) f] Tr(z) (in the opposite case there is u e Y 
which leads to the contradiction to the assumption, that u e Tr(x) — Y). Thus 
Tr(F(u)) f] Tr(z) c Tr(u) n Tr(z) = (Tr(F(u)) U {«}) n Tr(z)y which implies 
u e Tr(z) and therefore F(u) e Tr(z). But from the definition of YyF(u) $ Y follows, 
which contradicts the above considerations. Therefore Tr(x) — Y is closed, and 
x e Tr(x) — Y. According to Lemma 1, Tr(x) c Tr(x) — Y holds and consequently 
Y = 0. We have come to the contradiction to the fact that y e Yy shown above. 
Hence x e Y and consequently Tr(x) f] Tr(z) = Tr(y) f] Tr(z). Since z e Tr(x) 
holds, there is Tr(x) f] Tr(z) =r Tr(z). It follows finally, that Tr(y) f] Tr(z) = 
= Tr(z) and z e Tr(y). 



2. Classification of trajectories 

Definition. A set x is called an invariant set, if F(x) = x. 

Lemma 8. If x is an invariant set, then Tr(x) = {x}. 
Definition. A trajectory Tr(x) is called a. cycle if there exists y -?-- x, such that 

Tr(x) = Tr(y). 
Note . Tr(x) is not cycle implies Tr(x) = Tr(y) if and only if x = y. 

Lemma 9. Let Tr(x) is a cycle, z e Tr(x). Then Tr(z) = Tr(x). 
Proof: Denote 

Y = {u; (u e Tr(x)) A (Tr(u) = Tr(x))}. 

Since x e Y, Y is non-empty. Let us prove that Y is closed. Suppose u e Y-
According to Lemma 3, there is Tr(u) = Tr(F(u)) \J {u} = Tr(x). If u e Tr(F(u)), 
then {u} (J Tr(F(u)) = Tr (F(u)) = Tr(x), which means that F(u) e Y. Let now 
u $ Tr(F(u)). Since Tr(x) is a cycle, then there exists y e Tr(x) such that x # y. 
Since x e Tr(x), u must be distinct from at least one of the sets x, y. Without any 
restriction of generality we can suppose, that for example x ^ u. Because x e Tr(u) = 
= {u} (J Tr(F(u)), there is x e Tr(F(u)). Utilizing Lemma 2 upon the previous 
result we receive Tr(x) c Tr(F(u)). Since u e Tr(x) and therefore F(u) e Tr(x), then 
there is also Tr(F(u)) .= Tr(x); so we have Tr(x) = Tr (F(u)), which means that 
F(u) e Y again. Hence the class Y is closed. Following the fact, that x e Y and 
taking in the account Lemma 1 we obtain Tr(x) _= Y and from the definition of Y 
there is Y g Tr(x) and consequently Y = Tr(x). For every z e Tr(x) there is then 
Tr(z) = Tr(x). 

Lemma 10. Let us assume Tr(x) is a cycle, and X is an arbitrary non-empty, 
closed subclass Tr(x). Then X = Tr(x). 
Proof: The class X is non-empty; so there is some z in X. But z e Tr(x) and there
fore the preceeding Lemma implies Tr(z) = Tr(x). Thus X .= Tr(z). From the 
Lemma 1 follows that Tr(z) _= X and finally X = Tr(z) = Tr(x). 

Consequence. If Tr(x), Tr(y) are such cycles, that Tr(x) _= Tr(y). Then Tr(x) = 
= Tr{y). 

Lemma 11. Any trajectory contains at most one cycle or at most one invariant set 
and these two possibilities are mutually exclusive. 
Proof: Let us have Tr(z), Tr(y) two distinct cycles upon Tr(x). Since, according to 
Lemma 2, there is y e Tr(x), then Lemma 7 implies that just one from both cases 
holds: either y e Tr(z) or z e Tr(y). We can suppose without any restriction of 
generality that y e Tr(z) is valid. Then Lemma 2 leads to the conclusion that 
Tr(y) ^ Tr(z). Because Tr(y) is non-empty and closed set and Tr(z) is a cycle, 
Lemma 10 gives Tr(y) = Tr(z), which contradicts the assumption about the distinc
tion of both trajectories. 

Suppose now, that Tr(x) contains a cycle Tr(y) and an invariant set a. Then, 
according to Lemma 9, the set a cannot belong to Tr(y) (otherwise Tr(y) = Tr(a) = 



-= {a}) and therefore y belongs to Tr(a) = {a}, according to Lemma 7. Thus 
y = a which contradicts the assumption. 

Assume finally that Tr(x) contains two invariant sets a and b, where a -?-- b. 
If for instance a $ Tr(b) then, according to Lemma 7, there is b e Tr(a) = {a} and 
therefore a = b. 

Definition. Any set a e Tr(x) has an antecedent in Tr(x) if and only if there 
exists b e Tr(x) such that F(b) = a. 

Lemma 12. If Tr(x) is not a cycle and x is not an invariant set, then x has no 
antecedent in Tr(x). 
Proof: Let us suppose that the assumptions of Lemma 12 are satisfied and let 
there exists y e Tr(x) such that F(y) = x. Obviously F(y) e Tr(x), so that x e Tr(y). 
Therefore Lemma 2 implies Tr(x) c Tr(y) and Tr(y) c Tr(x) at the same time. 
Since y ^ x (otherwise x is an invariant set), then Tr(x) = Tr(y) is a cycle which 
contradicts the assumptions. 

Note . If x is an invariant set, then x has just one antecedent in Tr(x). 
Lemma 13. Lety e Tr(x). y =?-- x. Theny has at least one antecedent in Tr(x). 

Proof: Let y e Tr(x),y -?-- x and y has no antecedent in Tr(x). Then Tr(x) — {y} 
is non-empty (it contains x) and closed class, because for every u e Tr(x) — {y} 
there is F(u) e Tr(x) and also according to the assumption, F(u) 7-= y for every u, i.e. 
F(u)${y}- Hence, according to Lemma 1, Tr(x) c Tr(x) — {y}, from where 
y $ Tr(x), which implies the contradiction. 

Lemma 14. If Tr(x) is a cycle, then any a e Tr(x) has at least one antecedent in 
Tr(x). 
Proof: For any y -^ x the assertion follows immediately from Lemma 13. Since 
Tr(x) is a cycle, there exists u =£ x,u e Tr(x) such that Tr(u) = Tr(x). According to 
Lemma 13, any b e Tr(u), b -^ u has an antecedent in Tr(x). Thus x has also an 
antecedent in Tr(x). 

Lemma 15. Let Tr(x) contains an invariant set. Then there are no u,v, y e Tr(x) 
mutually distinct sets, to be F(u) = F(v) = y. 
Proof: Let us suppose on the contrary, that there are mutually distinct u, v, y e 
e Tr(x) for which F(u) = F(v) = y. It follows, that y e Tr(u), y e Tr(v). Since 
u, v e Tr(x), there can be for example u e Tr(v) (see Lemma 7). Then Tr(v) = {v} \J 
(J Tr(F(v)) = {v} (J Tr(y). Since u 9-- v, there is u e Tr(y) and since also y e Tr(u) 
holds, u and y belong to the cycle. It includes the contradiction, since Tr(x) has an 
invariant set and, according to Lemma 11, it cannot contain a cycle at the same time. 

Lemma 16. Let p is an invariants set of trajectory Tr(x). Then for any a e Tr(x)> 
a -^ p, a -?-- xjust one antecedent exists in Tr(x). 
Proof: According to Lemma 13, for every a ^=x, a e Tr(x) there is at least one 
antecedent in Tr(x). If a -^ p, a =£x, then, according to Lemma 15, a has just one 
antecedent in Tr(x). 

Lemma 17. If p ^ xy where p is an invariant set in Tr(x), then p has just two 
distinct antecedents in Tr(x). 



Proof: According to Lemma 13, p has at least one antecedent in Tr(x)y which 
is equal to p. Let us suppose p has no other antecedent in Tr(x). Then for any 
z e Tr(x)y z^p there is F(z) -7-= p. It implies, the class Y = Tr (x) — {/>} is closed 
and obviously Y contains x. Hence, according to Lemma 1, there is Tr(x) .= Y. 
But p e Tr(x) and p $ Y at the same time; it contradicts the condition Tr(x) .= Y. 
The factp has just two distinct antecedents in Tr(x) follows from Lemma 15. 

Lemma 18. If Tr(x) contains an invariant sety then Tr(x) is a set. 
Proof: Let us suppose p is an invariant set in Tr(x). If p = xy then Tr(x) = {x} = 
= {xy x}; but any unordered couple of sets is a set, thus Tr(x) is a set. Let now 
p ^ x. According to Lemma 11, Tr(x) has only one invariant set. Let us denote 

Y = {y; (3 u) ((x e u) A (y eu) A (u ^ Tr(x))) A (v*) [(z e u) A (z^y)] => 
=>(F(z)eu)}. 

The class Y is non-empty, since x e Y (it is enough to take u = {x}). Show that the 
class Y is also closed, i.e. if y e Yy then F(y) e Y. In this case it is enough to put 
u' = u\J {F(u)}; u' has the properties requested by the definition of the class Y 
(since u' is a union of two sets, u' is obviously a set). According to Lemma 1, there 
is Tr(x) £ y and the definition of Y implies Y c Tr(x). Thus Tr(x) = Y. It holds, 
that p e Tr(x) = Y. Hence up exists, having the properties required by the definition 
of y . We shall show now that up is closed. There are xy p e up. If z 7-- py z e upy 

then F(z) e up (from the definition of Y). If z = py there is z e up and also F(z) e upy 

because F(z) = F(p) = p. Thus up is a closed set, containing x. According to 
Lemma 1, then there is Tr(x) c up. Inclusion up c Tr(x) follows from the definition 
of y and from the choice of up; therefore up = Tr(x) which means, that Tr(x) is 
a set. 

Note . In the further concept let us use the following denotation. If H is the 
given correspondence, TrH(x) means the trajectory of xy x e Ay under the correspon
dence H. For the purpose of the abbreviation we shall use sometimes Tr(x) instead of 
TrF(x)y where F is the mapping mentioned at the beginning of this article. 

Lemma 19, Let TrF(x) is a cycley y e TrF(x) and suppose H is the mapping of the 
class A into Ay defined as follows: for any a eAy a =£ y there is H(a) = F(a) and 
H(y)=y. Then TrH(F(y)) = TrF(F(y)) = TrF(x) Jwldsy where TrH(F(y)) is 
a trajectory with an invariant set y. 
Proof: Since TrF(x) is, by the assumption, a cycle then, according to Lemma 9, 
there is TrF(y) = TrF(Fy)) = TrF(x)y which implies y e TrF(F(y)). Thus there 
exists z e TrF(F(y)) such that F(z) = y where z -7-̂  y (see Lemma 11). Since both the 
mappings F and H on A— {y} are equal to each other, there is TrF(F(y)) — {y} = 
= TrH(F(y)) — {y}. Since y e TrF(F(y)) and H(z) = F(z) = yy there is also 
y e TrH(F(y)) and then TrF(F(y)) = TrH(F(y)) holds. In addition, TrH(F(y)) is 
obviously a trajectory with an invariant set y. 

Lemma 20. Let Tr(x) is a cycle, then Tr(x) is a set. 
Proof: Let TrF(x) is cycle, H is the mapping from the previous Lemma. Then 
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TrF(x) = TrH(F(y)), but TrH(F(y)) is a set, according to Lemma 18, hence TrF(x) 
is a set. 

Lemma 21. If Tr(x) is a cycle, any a e Tr(x) possesses in Tr(x)just one antecedent. 
Proof: If the cycle Tr(x) is a couple, the assertion of the Lemma is obvious. 
Suppose now that Tr(x) is not a couple and let a is an arbitrary set, a e Tr(x). 
Denote F(a) = y (according to Lemma 21, there is a =?-- y). Since Tr(x) is not 
a couple, there exists v e Tr(x), such that v -7-= y and F(v) = a (and therefore by 
Lemma 11 there is v ?-- a). Let us construct the mapping from Lemma 19 for the 
set a. Then TrH(F(a)) = TrH(y) = Tr(x) and the set a itself and v are both the 
antecedents of a in the correspondence H, while there is no other antecedent of the 
set a (see Lemma 15). If we proceed to the mapping F, there is a unique antecedent 
of the set a and it is the set v. Since a was an arbitrary set from Tr(x), Lemma 21 is 
proved. 

Lemma 22. For an arbitrary trajectory Tr(x) there is not possible to find any u, v, 
w,ye Tr(x) mutually distinct such that F(u) = F(v) = F(w) = y. 
Proof: Suppose the contrary holds, i.e. u, v, w, y mentioned in Lemma 22 exist. 
Then y e Tr(u), y e Tr(v), y e Tr(w). Since u, v, w e Tr(x) then there is, according 
to Lemma 7, for instance u e Tr(v). Then u, y e Tr(v) and there is u e Tr(F(v)) = 
= Tr(y) (according to the Consequence of Lemma 3). Thus u e Tr(y) and y e Tr(u) 
at the same time. According to Lemma 2, then there is Tr(u) = Tr(y) and since 
u ^= y, this trajectory is a cycle. Similarly v, w e Tr(x). Let us suppose for instance 
w e Tr(v) (thus w,ye Tr(v)). By the same way we can obtain that w, y belong to 
a cycle. According to Lemma 11, there is no trajectory having two distinct cycles and 
therefore u, w, y belong to the same cycle and there is F(u) = F(w) = y. It con
tradicts 21. 

Lemma 23. Any trajectory possesses no more than one set, having two distinct 
antecedents. 
Proof: Let i = \,2 yt e Tr(x), y\ -?-- y2, m -?-- Vi such that F(ui) = F(vi) = yu 
If yi = m or yi = vt, then yt are invariant sets. But, according to Lemma 11, there 
is at most one invariant set in Tr(x); it implies the contradiction. If v\ -^ y\ =?-- u\ 
then y\ e Tr(u\),y\ e Tr(v\). Since u\, v\ e Tr(x) Lemma 7 implies either u\ e Tr(v\) 
or v\ e Tr(u\). Let for instance u\ e Tr(v\), then Tr(v\) = {v\} \J Tr(F(v\)) = 
= {v\} U Tr(y\) and since v\ -?-- u\ there is u\ e Tr(y\), which together with the 
preceding resu l t^ e Tr(u\) means that Tr(y\) = Tr(u\). Since u\ ^y\, u\, y\ belong 
to a cycle. We obtain the similar result for 1/2 ^ ^2 ¥=" V2. Thus Tr(x) contains two 
mutually distinct cycles (because y\ ^ yz), which contradicts Lemma 11. Suppose 
now the further possible case, in which for instance y\ = u\, u\ =7-- v\, and y2, U2, V2 
are mutually distinct. Then, which follows from above, Tr(x) contains an invariant 
set y\ and a cycle to which for example y2, «2 belong. We received the contradiction 
with Lemma 11 again. Similarly in the remaining cases. 

Lemma 24. Let Tr(x), which itself is not a cycle, contains a cycle Tr(a). Then there 
exists y e Tr(x) such that y has two distinct antecedents in Tr(x). 



Proof: From the assumptions follows, that Tr(x) — Tr(a) ^ 0 and, according to 
Lemma 4, Tr(x) — Tr(a) is not closed. There exists y e Tr(x) — Tr(a) such that 
F(y) $ Tr(x)— Tr(a); it means F(y) e Tr(a) (because F(y) e Tr(x)). According to 
Lemma 9, there is Tr(a) = Tr(F(y)) and by Lemma 21 F(y) has just one antecedent 
in Tr(a) - let us denote it y'. Thus F(y') = F(y) and y -7-= y' at the same time, 
because y $ 7r(a) and y' e Tr(a). Hence F(y) has two distinct antecedents in Tr(x). 

Lemma 25. Any trajectory, containing a cycle and not being a cycle itself, has just 
one set with two distinct antecedents. 
Proof: It follows immediately from Lemmas 23, 24. 

Lemma 26. If Tr(x) contains a set y with two antecedents u, v such that u, v, y are 
mutually distinct, then Tr(x) contains a cycle and it is not a cycle itself. 
Proof: According to Lemma 23, at most one such a y exists. Let y e Tr(x) is 
a set, for which F(u) = F(v) = y holds, where w, v, y are mutually distinct. Then 
F(u) = y>y e 7r(w) and F(v) = y,y e Tr(v) at the same time, from where Tr(y) c 
£ Tr(v) and Tr(y) c 7r(w) follows. Then there is also 7r(w) = {w} U Tr(F(u)) = 
= {u} U Tr(y). Since w, v e Tr(x) then, according to Lemma 7, either w e Tr(v) or 
v e Tr(u) holds. Suppose, both the conditions w e Tr(v) and v e Tr(u) hold at the 
same time. Then 7r(w) = Tr(v) is a cycle, but F(u) = F(v) = y, F(u) e Tr(u) so 
that y belongs to the cycle 7r(w) and there are two distinct antecedents of y in Tr(x). 
We are coming to the contradiction with Lemma 21. Let us have now v e Tr(u) 
then v e{u}(j Tr(F(u)) = {u} [) Tr(y). Because v ^ w, there is v e Tr(y) and so 
Tr(v) £ Tr(y). But there is also Tr(y) £ Tr(v). Thus Tr(y) = Tr(v) for v ^ y. 
Trajectory Tr(y) is therefore a cycle. From Lemma 21 it follows, that 7Y(JC) cannot 
be a cycle, since otherwise for any y e Tr(x) there is just one antecedent in Tr(x). 

Lemma 27. If Tr(x) contains a set with two distinct antecedents, then Tr(x) is a set. 
Proof: Let Tr(x) satisfies the assumptions of the above Lemma, then by 
Lemma 26 there is a cycle in Tr(x); let us denote it Tr(a). Tr(a) is a set, according to 
Lemma 18. Examine 7>(JC) — Tr(a). Let us show that it is a set, too. Let y e Tr(x) 
and suppose that y has two distinct antecedents in Tr(x). Let us define the mapping 
G : G(x) = F(x) for every x e Tr(x) — Tr(a), G(y) = y. G((Tr(x) — Tr(a)) [j {y}) 
is a trajectory with the invariant set y and then (according to Lemma 18) this tra
jectory is also a set. Thus Tr(x) = G([(Tr(x)— Tr(a)] \J {y}) [j Tr(a) is the union 
of the two sets and therefore Tr(x) is a set. 

Definition. Tr(x) is called of 
the type 1) if and only if Tr(x) contains an invariant set and does not contain any set 
with two distinct antecedents; 
the type 2) if and only if Tr(x) contains an invariant set and just one set with two 
distinct antecedents; 
the type 3) if and only if Tr(x) contains a cycle and Tr(x) does not contain any set with 
two distinct antecedents; 
the type 4) if and only if Tr(x) contains a cycle and just one set with two distinct antecedents; 
the type 5) if and only if Tr(x) contains neither a cycle nor an invariant set. 
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Theorem. Any trajectory is a trajectory of just one type 1) - 5). 
Proof: Let Tr(x) contains an invariant set; denote it s. If s = x, then Tr(x) = {x} 
by Lemma 8 and thus Tr(x) contains no set with two distinct antecedents; Tr(x) is of 
the type 1). If s ^ x, then the set s has just two distinct antecedents in Tr(x) (accord
ing to Lemma 17). By Lemma 23 there is no other set in Tr(x) with two distinct 
antecedents, which implies that Tr(x) is of the4 type 2). Both above mentioned cases 
are mutually exclusive, and therefore Tr(x) cannot be of the type 1) and 2) at the 
same time. Let Tr(x) contains a cycle. If Tr(x) is a cycle itself, then any y e Tr(x) 
has just one antecedent in Tr(x) (see Lemma 21). Hence there is no set with two 
distinct antecedents in Tr(x). Tr(x) is therefore a trajectory of the type 3). If Tr(x) 
is not a cycle itself and it contains a cycle, then there exists, according to Lemma 25, 
just one set with two distinct antecedents in it; Tr(x) is therefore of the type 4). Both 
described cases are mutually exclusive again, i.e. no trajectory can be a trajectory 
of the type 3) and 4) at the same time. According to Lemma 11, any trajectory 
contains at most one cycle or at most one invariant set, where both the cases are 
incompatible; hence any trajectory cannot be the trajectory of more than one of these 
described types 1) - 4), at the same time. Let Tr(x) contains neither a cycle nor an 
invariant set, than Tr(x) is of the type 5) and obviously it cannot be a trajectory of 
any of the types 1) - 4). Hence any trajectory is a trajectory of just one of the types 
1) - 5). 

Lemma 28. Let Tr(x) is of the type 5). Then any y e Tr(x), y -^ x has just one 
antecedent in Tr(x). The set x has no antecedent in Tr(x). 
Proof: According to Lemma 13, any y e Tr(x), y ^ x has at least one antecedent 
in Tr(x). Suppose there exists a set z in Tr(x) with two distinct antecedents u, v. 
If u = z or v -= z, Tr(x) contains an invariant set, which violates the properties of 
the trajectory of the type 5). If w, v, y are mutually distinct, then by Lemma 26 Tr(x) 
contains a cycle, which violates the same properties as above. Thus there exists no 
set with two distinct antecedents in Tr(x) and any y e Tr(x), y ^ x has at least one 
antecedent in Tr(x). From that it follows, that every y e Tr(x), y -7-- x has just one 
antecedent in Tr(x). By Lemma 12 (Tr(x) is itself neither a cycle nor an invariant set) 
x has no antecedent in Tr(x). 

Definition. Tr(x) is of 
the type 1) if and only if x is an invariant set; 
the type 2) if and only if it contains an invariant set p ^ x; 
the type 3) if and only if it is a cycle itself; 
the type 4) if and only if it contains a cycle and it is not a cycle itself, which happens 
provided there exists y e Tr(x) with two antecedents w, v, where w, y, v are mutually 
distinct; 
the type 5) if and only if any y e Tr(x), y ^ x has just one antecedent in Tr(x) and x 
has no antecedent there. 

Lemma 29. Both the mentioned definitions of particular types of the trajectories 
are equivalent to each other. 
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Proof: 1) Let Tr(x) is a trajectory, which contains an invariant set p and it does 
not contain any set with two distinct antecedents. Then F(p) = p. If p = x, 
then x is an invariant set and the proof is complete. If p -?-- x, then there exists 
y e Tr(x), y ^ p such that F(y) = p. It means, p has two distinct antecedents p, y 
in Tr(x), which contradicts the assumptions. If x is an invariant set, then F(x) = x 
and, according to Lemma 8, there is Tr(x) = {x}. Thus there is no y e Tr(x) with 
two distinct antecedents. 

2) If Tr(x) contains an invariant set p and just one set with two distinct antece
dents, then either p = x, which implies Tr(x) = {x} and thus there is no set in Tr(x) 
with two distinct antecedents, which violates the assumptions, or p ^ x, which is 
just the desired result. On the contrary, according to Lemma 17, p has in Tr(x) two 
distinct antecedents and by Lemma 23 just one such a set exists in Tr(x). 

3) Let Tr(x) contains a cycle Tr(y) and it does not contain any set with two 
distinct antecedents in Tr(x) and let Tr(x) -^ Tr(y). Thus Tr(y) c Tr(x) and 
Tr(x) $ Tr(y) at the same time. Therefore there exists z e Tr(x) such that z $ Tr(y), 
i.e. z e Tr(x) — Tr(y). From Lemma 4 it follows, that Tr(x) — Tr(y) is not closed. 
Thus there exists a e Tr(x) — Tr(y) such that F(a) e Tr(y). But Tr(y) is a cycle, 
F(a) has therefore an antecedent in Tr(y). Eventually F(a) has an antecedent in 
Tr(x) — Tr(y); thus there exists the set F(a) e Tr(x) with two distinct antecedents. 
It leads to the contradiction. If Tr(x) is a cycle itself, any y e Tr(x) has just one 
antecedent in Tr(x) (see Lemma 21), i.e. there is no y e Tr(x) with two distinct 
antecedents in Tr(x). 

4) If Tr(x) contains a cycle and just one set with two distinct antecedents, 
then Tr(x) is not a cycle itself, since otherwise, according to Lemma 21, any y e Tr(x) 
has just one antecedent in Tr(x). Hence there exists y e Tr(x) with two distinct 
antecedents u, v. If u = y or v = y, Tr(x) contains an invariant set y, which is not 
possible (see Lemma 11), because Tr(x) contains a cycle. Thus u, v,y are mutually 
distinct. Suppose Tr(x) contains a cycle and it is not a cycle itself, then by Lemmas 
24, 25 Tr(x) contains just one set y with two distinct antecedentts u, v. Similarly to 
the previous u, v, y must be mutually distinct. 

5) If Tr(x) contains neither a cycle nor an invariant set then, according to 
Lemma 28, every y e Tr(x), y ^ x has just one antecedent in Tr(x) and x has no 
antecedent there. On the other hand, if every y e Tr(x),y -^ x has just one antecedent 
in Tr(x) and x has no antecedent, then x is not invariant itself and there is no other 
set p -^ x, p being an invariant set in Tr(x). Therefore Tr(x) does not contain any 
invariant set. If Tr(x) contains a cycle, then by Theorem either it is itself a cycle and 
thus x has an antecedent, which contradicts the above assumptions, or Tr(x) con
tains a cycle while it is not a cycle itself. But in this case there exists (see Lemma 24) 
a set with two distinct antecedents in Tr(x), which violates the assumptions again. 

Note . About the trajectories of the type 5) such assertion can be proved, 
provided so called Axiom of Infinity is given. One of all its possible mutually equi
valent formulations follows. 
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Axiom of Infinity. Every trajectory of the type 5) is a set. 
Lemma 30. Be Tr(x) of the type 5). Then the relation R defined in Tr(x) by 

(V y, z) [(y e Tr(x)) A (* e Tr(x))] ^[yRzo(ze Tr(y))] 

is a relation of the linear ordering in Tr(x). 
Proof: The relation R is reflexive, since for any a e Tr(x)y aRa holds if and 
only if a 6 Tr(a) which is obvious. If y R z and z R y at the same time, it means that 
z e Tr(y) and y e Tr(z)y which implies Tr(z) s Tr(y) and Tr(y) £ Tr(z). Thus 
Tr(y) = Tr(z) holds. Since Tr(x) is of the type 5), it does not contain a cycle and 
the equality Tr(y) = Tr(z) holds just in the case, in which y = z. Hence the relation 
R is antisymmetric. We shall prove now that R is transitive. Suppose y R z and z R u 
hold. Then z e Tr(y)y u e Tr(z) and therefore Tr(z) £ Tr(y)y Tr(u) £ Tr(z)y which 
implies Tr(u) £ Tr(y). It means u e Tr(y) and hence y Ru. For .R to be a linear 
ordering in Tr(x), it must satisfy in addition the following condition: (v a, b) 
(a, b e Tr(x) => (a R b \/ b R a), i.e. (v a, 6) (a, 6 e Tr(x) - > ( i e 7r(a) V 
\/ae Tr(b)). 
Suppose the above condition is not satisfied. Let there exist ayb e Tr(x) such that, 
b $ Tr(a) and a $ Tr(b) at the same time. If for example b $ Tr(a) there is a e Tr(b) 
(see Lemma 7) and we are getting the contradiction. Similarly in the case a $ Tr(b). 
Hence R is a linear ordering in Tr(x). 

Lemma 31. Every trajectory of the type 5) is by the relation from Lemma 30 well -
ordered. 
Proof: Let us suppose R is a relation described in Lemma 30 defined in Tr(x) of the 
type 5). Let M is an arbitrary non-empty subclass of Tr(x). We shall show, that there 
is the least set in M. Denote 

Z = {z;(iy)(yeM AyRz)}. 

The class Z is non-empty, because M £ Z. For this purpose it is enough to show 
that for any a, a eM implies a eZ. To be a eZ, there must existsy EM such that 
y Ra; clearly it is enough to put y = a. Let us prove that the class Z is closed. 
If z e Z, then there existsy e M such thaty R z. Since F(z) e Tr(z), there is z R F(z). 
From the transitive property of relation R, there is y R F(z)> which means that 
y = y exists such that y' eM and y' R F(z). Hence F(z) eZ and the class Z is 
therefore closed. Thus Z 9-= 0, Z is closed and Z £ Tr(z). According to Lemma 5, 
there exists u e Tr(x) such that Z = Tr(u). Let us prove, u is the least set in M. For 
this purpose we have to show first that u eM. Since Tr(u) = Z, there is u eZ and 
therefore y\ exists in M, such that -yi .R w, which means that u e Tr(y\) and thus 
Tr(u) £ Tr(y\). Simultaneously with that there is also u,y\ eZ = Tr(u). If u = y\ 
the above condition is proved while the assumption u 7-= y\ leads to the contradiction. 
If u 7-- -yi, there is -yi e 7V(w) which implies Tr(y\) £ 7>(w). From the above con
sideration it follows, that Tr(y\) = Tr(u) and because Tr(x) does not contain 
a cycle, there is necessarily u = y\, which violates the assumption u -?-- y\. Let us 

13 



consider t eM,t Ru. We shall show that t = u. If t e M, there is t e Z = Tr(u) and 
therefore Tr(t) c Tr(u). Since t R u, we are getting M e Tr(t) and thus 7V(w) £ 
c Fr(r). From both the above results there is Tr(u) = Tr(t) and because Tr(x) 
is of the type 5), there is u = t(Tr(x) contains no cycle). Thus we have proved, that u 
is the least set in M. 

II. Natural Numbers 

Definition. Let F is a mapping defined as follows: F(x) = x \J {x}for any x e V*). 
Let us form a class TrF(0) (sometimes we shall write briefly Tr(0)). If ne TrF(0)y n will 
be called natural number. The class TrF(0) will be called the class of natural numbers 
and let us denote it sometimes the symbol N. 

Note . In the further text Tr(x) will denote TrF(x), where F(x) = x \J {x}. 
Lemma 1. Let m, n e_V, then n em implies m e Tr(n). 

Proof: Denote 

X = {x; (xeN) A (v n) (neN)=> [(nex) ^ (x e Tr(n))]}. 

Let us show, that X = N. There is 0 e N and since n $ 0 for any n e 1V, there holds 
0 e X. Prove that X is closed. Let x e X. Since N is closed, x e AT, there is F(x) eN. 
If n eNy n eF(x) and n ex at the same time, then (by the definition of X) there is 
x e Tr(n) and from the closure of Tr(n) also F(x) e Tr(n) holds and therefore 
F(x) eX.lfne F(x) = x \J {x} and n $ x, n e {x} holds, from which n = x follows. 
Consequently x e Tr(n) and F(x) e Tr(n) at the same time, which means F(x) e X. 
In the case n $ F(x), there is F(x) e X clearly. Thus 0 e X, X =] N and X is closed. 
According to Lemma 1, Part I, there is X 3 N and thus X = N. 

Lemma 2. The class TrF(0) is a trajectory of the type 5). 
Proof: We need to show, that TrF(0) contains neither a cycle nor an invariant 
set. Let us prove first, that TrF(0) itself is neither a cycle nor an invariant set. 
Otherwise x e Tr(0) exists such that F(x) = 0, i.e. x\J{x} = 0, which is impossible 
(x \J {x} contains at least one set). Let Tr(0) contains a cycle. Then Tr(0) is of the 
type 4) (since Tr(0) is not a cycle itself). According Lemma 29, Part I, there exist 
x, y, z, e Tr(0) mutually distinct such that F(x) = F(y) = z. Let us suppose, for 
instance, that Tr(y) = Tr(z) is a cycle. Then x $ Tr(y). If x e Tr(y), then Tr(x) = 
= Tr(y) = Tr(z) is a cycle. But F(x) = F(y) = z, i.e. there exists a set in a cycle, 
having two distinct antecedents, which violates Lemma 2, Part I. Since F(x) = F(y)y 
x U {*} = y U {y} holds. It implies y e x \J {*}, but y -^ x (otherwise x e Tr(y)\ 
so then y e x. Lemma 1 implies x e Tr(y), which contradicts x $ Tr(y). It remains to 
show, that Tr(0) contains no invariant set. Let z e Tr(0) is an invariant set. According 
to Theorem, Part I, Tr(0) is of the type 2) (since Tr(0) is not an invariant set itself). 
Thus x e Tr(0)y x ^ z, exists such that F(x) = F(y) = z, which means x \J {x} = 

*) V is defined by: V = {x; x = x). 
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= z U {%} anc* x $ Tr(z). Thus z ex (J {x} holds and since z =/= x then z ex, which 
implies (by Lemma 1) x e Tr(z)y which is leading to the contradiction again. 

Consequence 1. The class N is a set. 
(Since any trajectory of the type 5) is a set) 

Consequence 2. (v n) (neN) => (n=£ F(n)). 
(If n = F(n)y N contains an invariant set). 

Lemma 3. For any myn eN(m e Tr(F(n)) o n em) holds. 
Proof: Let us prove first m e Tr(F(n)) => n em. 

Denote 

X = {x; (x eN) A (v n) (n eN) => [(x e Tr(F(n)) => (n ex)]}. 

Obviously 0 eX, because 0 eN and 0 $ Tr (F(n)) for any n; otherwise there exists 
z eN such that z \J {z} = 0, which is impossible. Let us show furthermore, that X 
is closed. Let x eX, then x eN and thus F(x) eN. Suppose further n eN and 
F(x) $ Tr(F(n))y then F(x) e X and the proof is complete. If F(x) e Tr(F(n))y 

Tr(F(x)) c Tr(F(n)) holds. Let in addition x e Tr(F(n)) holds. By the definition 
of X it follows, that n ex and thus n ex\J {x} = F(x), therefore F(x) e X. It remains 
to inquire the case of F(x) e Tr(F(n)) and x $ Tr(F(n)) at the same time. Let us 
show that Tr(F(x)) = Tr(F(n)). Since F(x) e Tr(F(n))y then Tr(F(x)) c Tr(F(n))y 

and it remains to prove that Tr(F(n)) c Tr(F(x)). Both the sets xy F(n) belong to 
Tr(0). Since x £ Tr(F(n)) then, according to Lemma 7, Part I, F(n) e Tr(x) = {x} \j 
U Tr(F(x)). If F(n) e Tr(F(x))y then Tr(F(n)) c Tr(F(x)) and the above mentioned 
inclusion is proved. If F(n) e {JC}, then F(n) -= x and x e Tr(F(n))y which contradicts 
the assertion x $ Tr(F(n)). Thus Tr(F(x)) = Tr(F(n)). If F(n) =± F(x)y it means that 
Tr(0) contains a cycle, which violates Lemma 2. Therefore F(n) = F(x) holds, 
which implies n\J {n} = F(x) and thus n e F(x); therefore F(x) e X. Thus it is 
proved that the class X contains 0 and X is closed. Thus K2 K and X £ N at the 
same time. Hence X = N. 

It remains to prove the opposite implication of Lemma 3, i.e. the assertion 
nem => me Tr(F(n)). Denote 

Y = {y;(yeN) A(vn)(neN)=> [(n ey)=>(ye Tr(F(n)))]}. 

Since0 eN and n $0 for any n eN, then0 e Yholds. Le ty eY; let us prove that 
F(y) e Yy i.e. Y is a closed class. Certainly y e N and F(y) e N. If n e N and n $ F(y)> 
there is F(y) eY; if n eF(y)y n eN and n ey, then (from the definition of Y) 
ye Tr(F(n)) and F(y) e Tr(F(n)) hold. It means that F(y) e Y. It remains to examine 
the case n e F(y) and n^yzx. the same time. Then n ey (J {y}y which implies n = y 
and thus F(n) = F(y). Since F(n) e Tr(F(n))y F(y) e Tr(F(n)) holds and we are 
getting F(y) e Y again. Similarly as in the previous case there holds Y = Ny which 
completes the proof of Lemma 3. 

Lemma 4. For any natural number nyn$n holds. 
Proof: Let there exists a natural number n such that n e n. By Lemma 3 there is 
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n e Tr(F(n)) and therefore Tr(n) c Tr(F(n)). From the definition of trajectory it 
holds that Tr(F(n)) c Tr(n), from which Tr(n) = Tr(F(n)) follows. If n = F(n) 
then N contains an invariant set and if n -^ F(n), N contains a cycle. In both the cases 
we are getting the contradiction with Lemma 2. 

Consequence, (v m, n) (m, n eN) => [(n em) => (n ^ m)]. 
(If n e m and n = m, there is n e n which violates Lemma 4). 

Lemma 5. For any m, n e N it holds that (m e Tr(n) o [(n em) y (n = m)], 
where both the cases are mutually exclusive. 
Proof: Let m e Tr(n) = {n} [j Tr(F(n)). If m e{n}, then m = n and if me Tr(F(n)), 
then by Lemma 3 there is n em. Both the cases are clearly mutually exclusive. 
If n e m and n = m at the same time, then n en which contradicts Lemma 4. Let us 
assume that n em, then, according to Lemma 1, there is w e Tr(n). If m = n, 
then m e Tr(n) is obvious. 

Note . We have shown already, that N is the trajectory of the type 5). According 
to Lemmas 30 and 31, Part I, there is possible to define the relation R of well-
ordering of N by the following manner: 

(v m,n eN) m Rnon e Tr(m). 

Let us look for the interpretation of R. From Lemma 5 it follows: 

n e Tr(m) o m en \J m = n. 

Instead of writing (m e n \J m = n), we shall write sometimes men. Furthermore 
let us show that the set N is possible to order not only by the relation " G " , but by 
another way else. 

Lemma 6. For any m,n eN it holds \ if men, then n $ m. 
Proof: Let there exist m, m eN such that men and n e m a t the same time. 
Then (by Lemma 1) m e Tr(n), n e Tr(m) hold, which means Tr(m) c Tr(n) and 
Tr(n) S Tr(m). From this we obtain Trim) = Tr(n). Since n em there is m -?-- n 
(see the Consequence of Lemma 4), thus Tr(m) = Tr(n) is a cycle in Tr(0), which 
contradicts Lemma 2. 

Lemma 7. For any I, m, n e N [(I em) A (me n)] => (I en) holds. 
Proof. Let I em and m en hold, then m e Tr(l), n e Tr(m) and thus Tr(m) c 

c Tr(l), Tr(n) .= Tr(m), from which we are getting Tr(n) c Tr(l); therefore 
n e Tr(l). According to Lemma 5, n = I or I en holds, where both the cases are 
mutually exclusive. If n = I, then men and nem 2X the same time and we are 
coming to the contradiction with Lemma 6. Hence I en. 

Note . The relation " e " is thus antireflexive, antisymmetric and transitive 
relation and therefore it is the partial - ordering of N. From the previous Lemmas it 
follows, that 

meno[(ne Tr(m)) A (n -?-= m)] o (n e Tr(F(m)). 

Let us show now, that it is possible to order the natural numbers also by the relation 
" £ " or "<z". 
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Lemma 8. For any m,n eN me Tr(n) o n ^ m holds. 
Proof: Let us prove first the implication m e Tr(n) => n ^ m. Let us form the class 

X = {x; (x eN) A (V n) (neN)=> [(x e Tr(n)) => (n c *)]}. 

We shall show that 0 e X. Clearly 0 e 1V and if 0 e Tr(n), then (according to 
Lemma 5) n = 0 and thus w £ 0; if 0 £ Tr(n), there is obviously 0 e X. Let x e X; 
let us show that F(x) e X, too. If x e X, there is x e N and also F(x) e N. If F(x) $ 
$ Tr(n), then F(x) e X. Assume now that F(x) e Tr(n). We shall distinguish two 
cases: x e Tr(n) and x $ Tr(n). If x e Tr(n), then (from the definition of X) there 
is n c x and therefore n ^ x [) {x} = F(x). Thus F(x) e X. It remains the case 
of x $ Tr(n) and F(x) e Tr(n) at the same time. Let us show that Tr(n) = Tr(F(x)). 
If PC*) e Tr(n), there is Tr(F(x)) c Tr(n). It remains to show that Tr(n) c Tr(F(x)). 
Clearly x, n e 7r(0). Since x $ Tr(n), Lemma 7 implies n e Tr(x) = {x} (J Tr(F(x)). 
If n e {x}, there is n = x, which violates the condition x $ Tr(n). If n e Tr(F(x)), 
there is Tr(n) _= Tr(F(x)). Thus Tr(n) = Tr(F(x)). Then there are two possibilities: 
either n = F(x), which leads immediately to the desired conclusion, since then 
n c F(x) and thus F(x) eX, or n =£ F(x), which means that 1V contains a cycle; 
it contradicts Lemma 2. Thus the case of x $ Tr(n) and F(x) e Tr(n) is excluded. 
In the remaining cases there is F(x) eX and therefore X is a closed class, containing 0 
and hence X = N. 

It is to show now that the opposite implication holds, i.e. n ^ m => m e 
e Tr(n). Let us construct the class Y as follows: 

Y = {y;(yeN) A (Vn)(neN) A [(n s y) => (y e Tr(n))]}. 

We are going to show that Y = N. The empty set belongs to Y, since 0 e 1V and for 
every n e N, n ^ 0 if and only if n = 0 holds, from where 0 e Tr(n). Let y eY. 
We shall prove that F(y) e Y. If y e Y, there is y eN and thus F(y) eN. If w e 1V 
and w $ P(y)5 then F(y) e Y is obvious. Let us suppose that for n e N, n c F(y) 
holds. If in addition n ^ y, there is jy e Tr(n) (from the definition of Y) and thus 
P(y) e Tr(n). Therefore F(y) e Y. Assume that n £ F(y) and n $ -y at the same 
time. If « £ P(y) = {.y} U y and w $ y, then -yen. According to Lemma 3, n e 
e Tr(F(y)), which implies F(y) c n (from the first part of the proof of Lemma 8). 
Altogether F(y) = n e Tr(n), thus F(y) e Y. Hence Y is a closed subclass of 1V, 
containing 0, and therefore Y = N. 

Note . From the above Lemma and by Lemma 30, Part I, it follows that the 
relation R defined in 1V by: 

V w, n eN mRno m £ n, 

is the relation of the linear ordering in 1V. 
Lemma 9- For two arbitrary natural numbers m, njust one possibility holds: 

a) men b) n e m c) n = m. 
Proof: Relation " e " is a linear ordering of 1V (see the Note following Lemma 5); 
i.e. for arbitrary m,neN [(m en) V (n em)] holds, which means [(m en) \J (ne 
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em) \J (m = n)]. It is necessary to show,that all those possibilities are mutually 
exclusive. Assume, for instance, that men, then m^n (according to the Con
sequence of Lemma 4) and also n $m by Lemma 6. Similarly for n em. Let thus 
m = n and, for instance, m e n at the same time. Then n en, which contradicts 
Lemma 4; by the same way in the case n = m and n emzt the same time. 

Note . Lemma 8 gives us the possibility to express Lemma 9 by the following 
way: for every m,n eN just one possibility holds: 
a) m c n, b) n a m, c) n = m. 

Lemma 10. The class N has the following properties: 
a) N is the set, in which the transformation F is defined by: F(x) = x\J {x}, for any 

xeN, 
b) 0 e N, 
c) x e N => x U {x} e N, 
d) [(x,yeN) A(x^y)]=>x(J{x}^y(J {y}, 
e) x e N => x J {x} ^ 0, 
f) [(Af c ] V ) A ( 0 e M ) A [(xeM) =>(x(J {x} eM)]] => M => N, 

(thus N satisfies the Peanos' Axioms). 

Proof: The assertion a) follows immediately from the definition of N and from 
the Axiom of Infinity. There is 0 e TrF(0) = N and thus b) holds. The assertion 
c) follows from the closure of the class N. Let x, y eN, x -^ y and suppose that 
x U {x} = y U {y} a t the same time. Then x ey and y ex, which leads to the 
contradiction, since x ey implies jy £ x. For an arbitrary x, xe N, there is x (J {x} =^= 
^ 0, because x (J {x} contains at least one set. The class M from f) is, in the principle, 
a closed subclass of TrF(>J) = N, containing 0. According to Lemma 1, Part I, there 
is M 3 N. 

Note . At the end let us show several simple Lemmas, describing some additional 
properties of the natural numbers. 

Lemma 11, (v m) (m eN) => m c F(m). 
Proof: There is F(m) = m (J {m},butm^m\J{m}, i.e. m != F(m). lfm = F(m), we 
obtain the contradiction with the Consequence of Lemma 2. Therefore m =£ F(m) 
and thus m <= F(m). 

Lemma 12. Let n eN. Then there is nom eN, such that n em and m en (J {n} at 
the same time. 

Proof: Assume there exist m eN and n eN, such that n em and m en\J {n} at 
the same time. Ifmen, we are getting the contradiction, since n em cannot hold 
at the same time (see Lemma 9). Similarly we obtain the contradiction in the case, 
that m e {«}, i.e. m = n. 

Lemma 13. If m, n eN, then m f]n eN. 
Proof: Let us suppose m, n e N and, for instance, m <-= n. Let us prove, that 
m f]n = m (i.e. m f]n eN). Clearly m f]n ^ m holds. We shall prove the 
contrary i.e. m c m f] n. Let us assume z em. Since man, there is z en and thus 
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z em ()n. Therefore m f) n = m holds. Analogically in the case n c m; for n = m 
the assertion is obvious. 

Lemma 14. For any natural number «, there is n £ N. 
Proof: Let us denote X = {x; (x e N) => (x £ 1V)}. There is 0 e N and 0 £ IV; 
thus 0 eX. Let x e l If x eN> there is F(x) eN (from the closure of N); for 
x $ Ny the implication is obvious. Since F(x) = x (J {*} e N and x £ N (because 
x e N), thus is also x \J {x} £ 1V because for x e IV, there is {x} £ 1v and thus 
F(x) = x (J {*} S AT. Hence X = 1V. 

Lemma 15. (v m, a) [(/w e N) A (a e m)] => (a e N). 
Proof: Let us denote 

X = {x; (xeN) A (v a) (a eX) => (aeN)}. 

There is 0 e X, since 0 6 .IV and a £ 0 for any a holds. Let x e X. Since JC e IV, there 
is -F(x) e 2V. If a $ F(x), there is clearly F(x) eX.lfae F(x), let us distinguish two 
cases. If a e x, there is a e 2V, according to the assumption x e X. If a $ x, then the 
expression a ex (J {x} implies a = x. Thus aeN. Therefore X = N and the proof 
is complete. 

Note . We do not consider the further development of the theory of natural 
numbers to be the subject of this article. Their further properties and the introduc
tion of the operations on them, can be derived from the considerations mentioned 
here, by the usual way. 

Appendix 

Definition. Let us consider xeA and F a mapping of A into A. 
The class {y; (p (y> x) A y> (y, *)}, where 

<P (y, x) = (V u) [[(v z) (zeu)=> (F(z) e u)] => [(x eu) =>(ye u)]] 

V>(y>x) = (*v)[[(xev) A (y ev)] A (v z) [(z ev A z =£y) => (F(z) ev)]] 

is called a trajectory of x and it is denoted TrF(x) or briefly Tr(x). 
Theorem. Let F is a mapping of A into A, then 

Tr(x) = {z;(vX)[[(X s A) A [(vy)(yeX) => (F(y)eX)] A (x eX)] =>(zeX]} 

Proof: Let us show at first, that for an arbitrary subclass B of the class A, which 
is closed with respect to F and it contains x, there is Tr(x) c B (where Tr(x) is a class 
defined by the previous defiinition). Let us assume that B is a class of the 
properties, mentioned above and let Tr (x) $ B. Then there exists y, such that 
y e Tr(x) and y $ B at the same time. Since y e Tr(x), y>(y,x) holds and thus the set 
v exists, such that x,y e v and for every z, z e v and z =£ y, there is F(z) e v. Let us 
construct the class B f) v. Clearly B f)v ^ v and since v is a set, B f) v is a set, too. 
Since x ev and x eB, x eB ()v holds and, according to our assumption (y $ £ ) , 
B f)v does not contain y. Let us show, that B f) v is closed. Suppose z e B f) v. 
The class B is closed and therefore F(z) e B. Since z =£ y (z e B and y $ B), F(z) e v 
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follows from the validity xp (y, x). Thus B f] v is a closed set, containing x. By 
9 (y>x),y must belong to B f] v. It contradicts the assumption y $ B. Thus for any 
class B c A, which is a closed class, containing x, Tr(x) c B holds. 

To complete the proof of the Theorem we need to prove: if y belongs to every X, 
which is a closed class, containing x, then y e Tr(x) (where Tr(x) is defined by the 
previous definition). For this purpose, we shall show that Tr(x) is closed and that 
x e Tr(x). Let us show that x e Tr(x),i.e.cp (x,x) and \p (x,x) hold. Clearly <p (x,x) is 
satisfied. It remains to prove that rp (x, x) holds. For this purpose let us find a set v for 
which: 

[(xev) A [(v z) (z ev A z 9-= x) => (F(z) ev)]]. 

Let us put v = {x}. Then xev and there does not exist such a z, for which z ev and 
s 7--- * at the same time. As the next step we shall show that Tr(x) is closed. Assume 
y e Tr(x), which means (p (y, x) holds and let (p (F(y),x) does not hold. Then there 
exists a closed set w, such that x e w and F(y) $ w. Since w is closed, y $ w holds 
(otherwise F(y) e w, which leads to the contradiction). Thus the condition <p (F(y),x) 
is satisfied. From the assumption, that y e Tr(x), \p (y,x) follows; i.e. a set v exists, 
such that x,y ev and for every z, for which z ev, z ^ y, there is F(z) e v. Let us 
create another set v' = v \J {F(y)} (v is the set due to the condition tp (y,x), in 
addition y is a set, since y e Tr(x) and {F(y)} is a set by the Axiom of Couple; thus 
v (J {F(y)} is a set, too). Then x e v', F(y) e v' and for any z, where z evf and 
z 7̂  F(y) there is z e v (by the definition of v'). If z 9-= y, then, from the validity of 
W(y>x)> F(z) e*> follows and thus F(z) ev',liz= y, then F(z) = F(y) ev' is 
obvious. Thus \p (F(y),x) and <p (F(y),x) hold simultaneously and therefore F(y) e 
e Tr(x), which implies the closure of Tr(x). Hence, we have shown that Tr(x) is 
a closed class, containing x. Since, according our assumption, y belongs to every 
closed subclass of A, containing x, y must belong to Tr(x), too. Thus the proof of 
the Theorem is complete. 

20 


		webmaster@dml.cz
	2012-10-05T20:04:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




