Acta Universitatis Carolinae. Mathematica et Physica

A. Švec

On certain groups of holomorphic maps

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 13 (1972), No. 2, 3--27
Persistent URL: http://dml.cz/dmlcz/142276

Terms of use:

© Univerzita Karlova v Praze, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

On Certain Groups of Holomorphic Maps

A. ŠVEC

Mathematical Institute, Charles University, Prague
Received 15 December 1972
O. Consider the space \mathbf{C}^{2} with the complex coordinates (x, y). By Γ_{s} denote the pseudogroup of local holomorphic diffeomorphisms of $\mathbf{C}^{2} \tilde{x}=\tilde{x}(x, y), \tilde{y}=\tilde{y}(x, y)$ satisfying $\partial(\tilde{x}, \tilde{y})!\partial(x, y)=1$. We are going to prove the following

Theorem. Let $G \subset \Gamma_{s}$ be a Lie group such that $\operatorname{dim} G=3$ and the orbits of G are real hypersurfaces $M^{3} \subset \mathbf{R}^{4} \equiv \mathbf{C}^{2}$ with non-trivial Levi form. Then G is locally Γ_{δ}-equivalent to one of the following groups:
(I) $\quad \tilde{x}=x-\frac{a}{\alpha} y-\frac{1}{2} i B a^{2}+c, \quad \tilde{y}=y+\alpha b+i \alpha B a ; \quad a, b, c \in \mathbf{R}$;
(II) $\tilde{x}=a x-\frac{1}{\alpha} b y+c, \tilde{y}=-\alpha B b x+a y+\alpha d ; a, b, c, d \in \mathbf{R} ; a^{2}-B b^{2}=1$;
(III) $\tilde{x}=\frac{(a x+b)(1-b c-a c x) y^{2}-\alpha^{2} a^{2} c}{(1-b c-a c x)^{2} y^{2}+\alpha^{2} a^{2} c^{2}}$,

$$
\tilde{y}=\frac{(1-b c-a c x)^{2} y^{2}+\alpha^{2} a^{2} c^{2}}{a y} ; a, b, c \in \mathbf{R} ;
$$

(IV) consider (III) with $a \in i \mathbf{R}, b \in \mathbf{C}, c=\bar{b}$.

Here, $0 \neq \alpha \in \mathbf{C}$ and $\mathbf{0} \neq B \in \mathbf{R}$ are parameters. The corresponding orbits M^{3} are
(I') $\left(\frac{y}{\alpha}-\frac{\bar{y}}{\bar{\alpha}}\right)^{2}+4 i B(x-\bar{x})=r$,
(II') $\left(\frac{y}{\alpha}-\frac{\bar{y}}{\bar{\alpha}}\right)^{2}-B(x-\bar{x})^{2}=r$,
(III') $\quad(x-\bar{x})^{2} y^{2} \bar{y}^{2}+(\alpha \bar{y}+\bar{\alpha} y)^{2}+4 r y \bar{y}=0$
with $\quad r \in \mathbf{R}$.
The groups (III) and (IV) will be studied elsewhere.
In the second part of this paper, I solve the equivalence problem for hypersurfaces of \mathbf{C}^{2} with respect to the pseudogroup of all local biholomorphic mappings.

It is well known that two real hypersurfaces in \mathbf{C}^{2} are not generally holomorphically equivalent. The problem of the construction of invariants of $M^{3} \subset \mathbf{C}^{2}$ with respect to the pseudogroup of holomorphic mappings has been treated by E. Cartan (Annali di Mat., t. 11. 1932, 17-90); unfortunately, his treatment is very confused.

Let V^{3} be a differentiable manifold together with a structure consisting of a choice of two tangent directions at each of its points. In what follows, I shall construct (in the general case) an $\{e\}$-structure on V^{3} invariantly associated to the given structure; by means of this $\{e\}$-structure, the equivalence problem of the structures of the just described type will be solved. Further, I will show that the construction of an invariant $\{e\}$-structure on $M^{3} \subset \mathbf{C}^{2}$ is equivalent to the preceding construction. The special cases will be treated in a forthcoming paper.

Parts of this paper have been written during my stays at the universities at Berlin (GDR) and Riga (USSR).

1. Consider the space $\mathbf{C}^{2}, \mathbf{C}$ being the complex numbers, with the complex coordinates $x=x^{1}+i y^{1}, y=x^{2}+i y^{2}$. Its real form is the space \mathbf{R}^{4} (\mathbf{R} being reals) with the coordinates ($x^{1}, y^{1}, x^{2}, y^{2}$) together with the endomorphism I : $\mathbf{R}^{4} \rightarrow \mathbf{R}^{4}, I^{2}=-i d$, defined by ($i=1,2$)

$$
\begin{equation*}
I \frac{\partial}{\partial x^{i}}=\frac{\partial}{\partial y^{i}}, \quad I \frac{\partial}{\partial y^{i}}=-\frac{\partial}{\partial x^{i}} . \tag{1.1}
\end{equation*}
$$

In general, on any complex vector space V, scalar multiplication by real numbers is, of course, defined. Relative to addition, and scalar multiplication by real numbers only, the elements of V clearly form a real vector space, which will be denoted by V_{0} and called the real vector space underlying the complex vector space V. If V_{0} is the underlying real vector space of a complex space V, then there is an automorphism I_{0} of V_{0} satisfying $I_{0}^{2}=-i d$, induced by the automorphism I of V given by $I A=i A, A \in V$. Further, $\operatorname{dim}_{R} V_{0}=2 \operatorname{dim}_{c} V$. Let V be a finite dimensional complex vector space and $A_{1}, \ldots ., A_{n}$ its basis, then $A_{1}, I_{0} A_{1}, \ldots ., A_{n}, I_{0} A_{n}$ give a basis for V_{0}. Let W_{0} be a real vector space (of finite dimension). We say that a complex structure is given on W_{0} if there is given an endomorphism I_{0} of W_{0} satisfying $I_{0}^{2}=-i d$; this endomorphism is an automorphism, since $I_{0}{ }^{-1}$ exists and is given by $-I_{0}$. Let W_{0} be a real vector space with a complex structure defined by I_{0}. Then: (i) There exists a basis for W_{0} of the form $A_{1}, I_{0} A_{1}, \ldots, A_{n}, I_{0} A_{n}$; in particular, $\operatorname{dim}_{R} W_{0}$ is even; (ii) there exists a complex space W such that W_{0} is the underlying real vector space of W and I_{0} is induced by the complex structure of W. Let us prove this last proposition. Since $\operatorname{dim}_{R} W_{0}>0$, there exists a vector $A_{1} \neq 0$ in W_{0}. Then A_{1} and $I_{0} A_{1}$ are independent. In fact, if there exist real numbers a, b such that $a A_{1}+b I_{0} A_{1}=0$, then $a I A_{1}-b A_{1}=0$ and $\left(a^{2}+b^{2}\right) A_{1}=0$. This implies $a=b=0$. We proceed by induction, and assume that an independent set A_{1}, $I_{0} A_{1}, \ldots, A_{k}, I_{0} A_{k}$ of vectors in W_{0} has been found $(k \geq 1)$. If $\operatorname{dim}_{R} W_{0}=2 k$, there is nothing further to prove. If $\operatorname{dim}_{R} W_{0}>2 k$, then there is a non-zero vector $A_{k+1} \in W_{0}$ which is independent of the vectors $A_{1}, \ldots, I_{0} A_{k}$. The vectors A_{1},
$I_{0} A_{1}, \ldots, A_{k+1}, I_{0} A_{k+1}$ form an independent set. In fact, if $a_{1}, \ldots, a_{k+1}, b_{1}, \ldots, b_{k+1}$ are real numbers such that

$$
\begin{equation*}
\sum_{=1}^{k+1} a_{j} A_{j}+\sum_{j=1}^{k+1} b_{j} I_{0} A_{j}=0 \tag{1.2}
\end{equation*}
$$

then

$$
\sum_{j=1}^{k+1} a_{j} I_{0} A_{j}-\sum_{j=1}^{k+1} b_{j} A_{j}=0
$$

From these, we obtain
$\sum_{j=1}^{k}\left(a_{j} a_{k+1}+b_{j} b_{k+1}\right) A_{j}+\sum_{j=1}^{k+1}\left(b_{j} a_{k+1}-a_{j} b_{k+1}\right) I_{0} A_{j}+\left(a_{k+1}^{2}+b_{k+1}^{2}\right) A_{k+1}=0$.
All coefficients being zero, we have $a_{k+1}=b_{k+1}=0$, and (1.2) implies $a_{1}=$ $=\ldots .=a_{k}=b_{1}=\ldots=b_{k}=0$. The complex vector space W is constructed from the elements of W_{0} by defining the operation of scalar multiplication by a complex number $c=a+i b$ as $c A=a A+b I_{0} A$.

Let Γ be the pseudogroup of all local holomorphic diffeomorphisms of \mathbf{C}^{2}. Each $\gamma \in \Gamma$ induces a diffeomorphism of \mathbf{R}^{4} denoted by γ, too. The local diffeomorphism γ of \mathbf{R}^{4} given by

$$
\begin{equation*}
\tilde{x}^{i}=f^{i}\left(x^{j}, y^{j}\right), \quad \tilde{y}^{i}=g^{i}\left(x^{j}, y^{j}\right) ; \quad i=1,2 ; \tag{1.3}
\end{equation*}
$$

is an element of Γ if and only if the functions f^{i}, g^{i} satisfy the Cauchy-Riemann equations

$$
\begin{equation*}
\frac{\partial f^{i}}{\partial x^{j}}=\frac{\partial g^{i}}{\partial y^{j}}, \quad \frac{\partial f^{i}}{\partial y^{j}}=-\frac{\partial g^{i}}{\partial x^{j}} ; \quad i, j=1,2 . \tag{1.4}
\end{equation*}
$$

Let $\Gamma_{s} \subset \Gamma$ be the pseudogroup of diffeomorphisms $\tilde{x}=\tilde{x}(x, y), \tilde{y}=\tilde{y}(x, y)$ of the space \mathbf{C}^{2} or \mathbf{R}^{4} resp. satisfying

$$
\frac{\partial(\tilde{x}, \tilde{y})}{\partial(x, y)} \equiv\left|\begin{array}{ll}
\frac{\partial \tilde{x}}{\partial x} & \frac{\partial \tilde{x}}{\partial y} \tag{1.5}\\
\frac{\partial \tilde{y}}{\partial x} & \frac{\partial \tilde{y}}{\partial y}
\end{array}\right|=1 .
$$

It is easy to see that $\gamma \in \Gamma$ is an element of Γ_{s} if and only if γ preserves the 2-form

$$
\begin{equation*}
\Phi=d x \wedge d y \tag{1.6}
\end{equation*}
$$

indeed,

$$
\widetilde{\Phi}=d \tilde{x} \wedge d \tilde{y}=\frac{\partial(\tilde{x}, \tilde{y})}{\partial(x, y)} \Phi
$$

Define

$$
\begin{equation*}
\varphi=d x^{1} \wedge d x^{2}-d y^{1} \wedge d y^{2}, \quad \psi=d x^{1} \wedge d y^{2}+d y^{1} \wedge d x^{2} \tag{1.7}
\end{equation*}
$$

obviously, $\Phi=\varphi+i \psi$. Of course, we may write

$$
\begin{equation*}
\varphi=\frac{1}{2}(d x \wedge d y+d \bar{x} \wedge d \bar{y}), \quad \psi=-\frac{1}{2} i(d x \wedge d y-d \bar{x} \wedge d \bar{y}) \tag{1.8}
\end{equation*}
$$

We have

$$
\begin{equation*}
\varphi(v, w)=-\varphi(I v, I w), \quad \psi(v, w)=-\varphi(v, I w) \text { for } v, w \in \mathbf{R}^{4} . \tag{1.9}
\end{equation*}
$$

Indeed, let

$$
\begin{align*}
& v=a^{1} \frac{\partial}{\partial x^{1}}+b^{1} \frac{\partial}{\partial y^{1}}+a^{2} \frac{\partial}{\partial x^{2}}+b^{2} \frac{\partial}{\partial y^{2}}, \\
& w=c^{1} \frac{\partial}{\partial x^{1}}+d^{1} \frac{\partial}{\partial y^{1}}+c^{2} \frac{\partial}{\partial x^{2}}+d^{2} \frac{\partial}{\partial y^{2}} . \tag{1.10}
\end{align*}
$$

Then

$$
\begin{aligned}
& I v=-b^{1} \frac{\partial}{\partial x^{1}}+a^{1} \frac{\partial}{\partial y^{1}}-b^{2} \frac{\partial}{\partial x^{2}}+a^{2} \frac{\partial}{\partial y^{2}}, \\
& I w=-d^{1} \frac{\partial}{\partial x^{1}}+c^{1} \frac{\partial}{\partial y^{1}}-d^{2} \frac{\partial}{\partial x^{2}}+c^{2} \frac{\partial}{\partial y^{2}}
\end{aligned}
$$

and

$$
\begin{align*}
& \varphi(v, w)=a^{1} c^{2}-a^{2} c^{1}-b^{1} d^{2}+b^{2} d^{1}=-\varphi(I v, I w), \\
& \psi(v, w)=a^{1} d^{2}-b^{2} c^{1}+b^{1} c^{2}-a^{2} d^{1}=-\varphi(v, I w) . \tag{1.11}
\end{align*}
$$

In \mathbf{C}^{2}, this may be rewritten as follows. Introduce the well known vector fields

$$
\frac{\partial}{\partial x}=\frac{1}{2}\left(\frac{\partial}{\partial x^{1}}-i \frac{\partial}{\partial y^{1}}\right), \quad \frac{\partial}{\partial \bar{x}}=\frac{1}{2}\left(\frac{\partial}{\partial x^{1}}+i \frac{\partial}{\partial y^{1}}\right), \ldots .
$$

Then

$$
\frac{\partial}{\partial x^{1}}=\frac{\partial}{\partial x}+\frac{\partial}{\partial \bar{x}}, \quad \frac{\partial}{\partial y^{1}}=i\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial \bar{x}}\right), \ldots .
$$

and the vectors v, w may be written as

$$
\begin{aligned}
& v=A^{1} \frac{\partial}{\partial x}+A^{2} \frac{\partial}{\partial y}+\bar{A}^{1} \frac{\partial}{\partial \bar{x}}+\bar{A}^{2} \frac{\partial}{\partial \bar{y}}, \\
& w=C^{1} \frac{\partial}{\partial x}+C^{2} \frac{\partial}{\partial y}+\bar{C}^{1} \frac{\partial}{\partial \bar{x}}+\bar{C}^{2} \frac{\partial}{\partial \bar{y}}
\end{aligned}
$$

with

$$
A^{i}=a^{i}+i b^{i}, \quad C^{i}=c^{i}+i d^{i} ; \quad i=1,2
$$

It is easy to check that

$$
\begin{aligned}
& I v=i A^{1} \frac{\partial}{\partial x}+i A^{2} \frac{\partial}{\partial y}-i \overline{A^{1}} \frac{\partial}{\partial \bar{x}}-i \overline{A^{2}} \frac{\partial}{\partial \bar{y}}, \\
& I w=i C^{1} \frac{\partial}{\partial x}+i C^{2} \frac{\partial}{\partial y}-i \overline{C^{1}} \frac{\partial}{\partial \bar{x}}-i \overline{C^{2}} \frac{\partial}{\partial \bar{y}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \varphi(v, w)=\frac{1}{2}\left(A^{1} C^{2}-A^{2} C^{1}+\bar{A}^{1} \bar{C}^{2}-\bar{A}^{2} \bar{C}^{1}\right)=-\varphi(I v, I w) \\
& \psi(v, w)=-\frac{1}{2} i\left(A^{1} C^{2}-A^{2} C^{1}-\bar{A}^{1} \bar{C}^{2}+\bar{A}^{2} \bar{C}^{1}\right)=-\varphi(v, I w) .
\end{aligned}
$$

Let $X=X(x, y), Y=Y(x, y)$ be a local holomorphic diffeomorphism of \mathbf{C}^{2}.
Then

$$
d X \wedge d Y+d \bar{X} \wedge d \bar{Y}=\frac{\partial(X, Y)}{\partial(x, y)} d x \wedge d y+\frac{\overline{\partial(X, Y)}}{\partial(x, y)} d \bar{x} \wedge d \bar{y}
$$

Thus: Let γ be a local diffeomorphism of \mathbf{R}^{4} defined on $U \subset \mathbf{R}^{4}$. Then $\gamma \in \Gamma_{s}$ if and only if
for each

$$
\begin{gather*}
\left(d \gamma_{a} \cdot I\right)\left(v_{a}\right)=\left(I . d \gamma_{a}\right)\left(v_{a}\right), \tag{1.12}\\
\varphi\left(v_{a}, w_{a}\right)=\varphi\left(d \gamma_{a}\left(v_{a}\right), d \gamma_{a}\left(w_{a}\right)\right) \\
a \in U ; \quad v_{a}, w_{a} \in T_{a}\left(\mathbf{R}^{4}\right) \equiv \mathbf{R}^{4} .
\end{gather*}
$$

From now on, consider the following situation: In \mathbf{R}^{4} with the coordinates ($x^{1}, y^{1}, x^{2}, y^{2}$) be given a complex structure $I(1.1)$ and the form (1.71); let Γ_{s} be the pseudogroup of local diffeomorphisms of \mathbf{R}^{4} satisfying (1.12).

Now, let $M^{3} \subset \mathbf{R}^{4}$ be a hypersurface. At each point $m \in M^{3}$, consider the space

$$
\begin{equation*}
\tau_{m}=T_{m}\left(M^{3}\right) \bigcap I T_{m}\left(M^{3}\right) \tag{1.13}
\end{equation*}
$$

Obviously, $\operatorname{dim} \tau_{m}=2$ and $I\left(\tau_{m}\right)=\tau_{m}$. The pseudogroup Γ_{s} induces on M^{3} the following structure: at each point $m \in M^{3}$, we have a tangent plane τ_{m} and its endomorphism $I_{m}: \tau_{m} \rightarrow \tau_{m}$ satisfying $I_{m}^{2}=-i d$; further, there is given a 2 -form φ^{\star} (the restriction of φ) on M^{3} such that

$$
\varphi^{\star}\left(v_{m}, w_{m}\right)=-\varphi^{\star}\left(I_{m} v_{m}, I_{m} w_{m}\right) \quad \text { for } v_{m}, w_{m} \in \tau_{m} .
$$

Of course, φ^{\star} 三 $\mathbf{0}$.
2. Let us suppose that the field of planes τ_{m} is non-integrable. Let us investigate this supposition more carefully. Define a partial complex structure on a manifold X, $\operatorname{dim} X=p$, as an assignment of a tangent space $\tau_{x} \subset T_{x}(X)$ and an endomorphism $I_{x}: \tau_{x} \rightarrow \tau_{x}, I_{x}^{2}=-i d$, to each point $x \in X$; let $\operatorname{dim} \tau_{x}=2 q$. Consider a fixed point $x_{0} \in X$ and its neighbourhood U such that there are tangent vector fields $v_{1}, \ldots, v_{q}, w_{1}, \ldots, w_{q}, u_{1}, \ldots, u_{p-2 q}$ in U satisfying $v_{i}(x), w_{i}(x) \in \tau_{x}$ and $I_{x} v_{i}(x)=$ $=w_{i}(x)$ in U; write $i, j, \ldots=1, \ldots ., q ; \alpha, \beta, \ldots=1, \ldots, p-2 q$. Then

$$
\begin{align*}
& {\left[v_{i}, v_{j}\right]=a_{i j}^{k} v_{k}+b_{i j}^{k} w_{k}+c_{i}^{a} u_{a},} \tag{2.1}\\
& {\left[v_{i}, w_{j}\right]=d_{i j}^{k} v_{k}+e_{i j}^{k} w_{k}+f_{i j}^{a} u_{a},} \\
& {\left[w_{i}, w_{j}\right]=g_{i j}^{k} v_{k}+h_{i j}^{k} w_{k}+k_{i j}^{a} u_{a} .}
\end{align*}
$$

Let $V_{0} \in \tau_{x}$, be a fixed vector. On U, consider an arbitrary vector field V such that $V\left(x_{0}\right)=V_{0}$ and $V(x) \in \tau_{x}$ for each $x \in U$. Then there are functions p^{i}, q^{4} (on U) such that

$$
\begin{equation*}
V=p^{i} v_{i}-q^{i} w_{i} . \tag{2.2}
\end{equation*}
$$

At each point $x \in U$, consider the vector $I V$; of course,

$$
\begin{equation*}
I V=q^{i} v_{i}+p^{i} w_{i} . \tag{2.3}
\end{equation*}
$$

We have

$$
\begin{align*}
{[V, I V]=} & {\left[p^{i} v_{i}-q^{i} w_{i}, q^{j} v_{j}+p^{j} w_{j}\right]=} \tag{2.4}\\
= & \left(p^{i} \cdot v_{i} q^{k}-q^{i} \cdot w_{i} q^{k}-q^{i} \cdot v_{i} p^{k}-p^{i} \cdot w_{i} p^{k}+a_{i j}^{k} p^{i} q^{j}+\right. \\
+ & \left.d_{i j}^{k} p^{j} p^{j}+d_{i j}^{k} q^{i} q^{j}-g_{i j}^{k} p^{j} q^{i}\right) v_{k}+\left(p^{i} \cdot v_{i} p^{k}-q^{i} \cdot w_{i} p^{k}+\right. \\
& +q^{i} \cdot v_{i} q^{k}+p^{i} \cdot w_{i} q^{k}+b_{i j}^{k} p^{i} q^{j}+e_{i j}^{k} p^{i} p^{j}+e_{i j}^{k} q^{i} q^{j}- \\
& \left.-h_{i j}^{k} q^{i} p^{j}\right) w_{k}+\left(c_{i j}^{a} p^{i} q^{j}+f_{i j}^{a} p^{i} p^{j}+f_{i j}^{a} q^{i} q^{j}-k_{i j}^{a} p^{j} q^{i}\right) u_{a} .
\end{align*}
$$

Let $\pi_{x}: T_{x}(X) \rightarrow T_{x}(X) / \tau_{x}$ be the natural projection. We see from (2.4) that

$$
\begin{equation*}
L_{x_{0}}\left(V_{0}\right)=\pi_{x_{0}}\left([V, I V]\left(x_{0}\right)\right) \in T_{x_{0}}(X) / \tau_{x_{0}} \tag{2.5}
\end{equation*}
$$

does not depend on the choice of the field V extending the vector V_{0}. Thus we get a well defined map

$$
\begin{equation*}
L_{x}: \tau_{x} \rightarrow T_{x}(X) / \tau_{x} \tag{2.6}
\end{equation*}
$$

which is called the Levi map of the given partial complex structure (at the point $x \in X$). If $v_{i}, w_{i}, u_{a} \in T_{x}(X)$ as above and $\tilde{u}_{a}=\pi\left(u_{a}\right) \in T_{x}(X) / \tau_{x}$, then

$$
\begin{gather*}
L_{x}(V) \equiv L_{x}\left(p^{i} v_{i}-q^{i} w_{i}\right)= \tag{2.7}\\
=\left(c_{i j}^{a} p^{i} q^{j}+f_{i j}^{a} p^{i} p^{j}+f_{i i}^{a} q^{i} q^{j}-k_{i j}^{a} p^{j} q^{i}\right) \tilde{u}_{a} .
\end{gather*}
$$

From this and (2.1), we see that the field $\left\{\tau_{x}\right\}$ is integrable if and only if $L_{x}(V)=0$ for each $x \in X$ and each $V \in \tau_{x}$.

To compare our notion of the Levi map with the well established notion of the Levi map used in the literature, let us calculate the Levi map of a real hypersurface $X^{2 n-1} \subset \mathbf{C}^{n}$. Suppose that $X^{2 n-1}$ is given by the equation

$$
\begin{equation*}
F\left(z^{1}, \ldots, z^{n}, \bar{z}^{1}, \ldots, \bar{z}^{n}\right)=0 \tag{2.8}
\end{equation*}
$$

in the neighbourhood of the point $z^{1}=0, \ldots, z^{n}=0$. Of course,

$$
\begin{equation*}
F\left(z^{1}, \ldots ., z^{n}, \bar{z}^{1}, \ldots, \bar{z}^{n}\right)=\overline{F\left(z^{1}, \ldots ., z^{n}, \bar{z}^{1}, \ldots, \bar{z}^{n}\right)} \tag{2.9}
\end{equation*}
$$

$F\left(z^{i}, \bar{z}^{i}\right)$ being a real function. In a suitable small neighbourhood of the origin of \mathbf{C}^{n}, consider the one-paramateric set of hypersurfaces

$$
\begin{equation*}
F\left(z^{1}, \ldots ., z^{n}, \bar{z}^{1}, \ldots, \bar{z}^{n}\right)=\alpha, \quad \alpha \in(-\varepsilon, \varepsilon) \tag{2.10}
\end{equation*}
$$

Let v be a real vector field around the origin of \mathbf{C}^{n}. Then

$$
\begin{equation*}
v=A^{i} \frac{\partial}{\partial z^{i}}+\bar{A}^{i} \frac{\partial}{\partial \bar{z}^{i}}, \tag{2.11}
\end{equation*}
$$

and the vector field $I v$ is given by

$$
\begin{equation*}
I v=i A^{i} \frac{\partial}{\partial z^{i}}-i \overline{A^{i}} \frac{\partial}{\partial \bar{z}^{i}} . \tag{2.12}
\end{equation*}
$$

Indeed, write $z^{i}=x^{i}+i y^{i}$, and (as usual)

$$
\frac{\partial}{\partial z^{i}}=\frac{1}{2}\left(\frac{\partial}{\partial x^{i}}-i \frac{\partial}{\partial y^{i}}\right), \frac{\partial}{\partial \bar{z}^{i}}=\frac{1}{2}\left(\frac{\partial}{\partial x^{i}}+i \frac{\partial}{\partial y^{i}}\right) .
$$

Then

$$
\frac{\partial}{\partial x^{i}}=\frac{\partial}{\partial z^{i}}+\frac{\partial}{\partial \bar{z}^{i}}, \frac{\partial}{\partial y^{i}}=i\left(\frac{\partial}{\partial z^{i}}-\frac{\partial}{\partial \bar{z}^{i}}\right)
$$

and

$$
I \frac{\partial}{\partial x^{i}}=-\frac{\partial}{\partial y^{i}}, I \frac{\partial}{\partial y^{i}}=-\frac{\partial}{\partial x^{i}} .
$$

Then

$$
\begin{aligned}
& v=a^{i} \frac{\partial}{\partial x^{i}}+b^{i} \frac{\partial}{\partial y^{i}}=\left(a^{i}+i b^{i}\right) \frac{\partial}{\partial z^{i}}+\left(a^{i}-i b^{i}\right) \frac{\partial}{\partial \bar{z}^{i}}, \\
& I v=-b^{i} \frac{\partial}{\partial x^{i}}+a^{i} \frac{\partial}{\partial y^{i}}=\left(-b^{i}+i a^{i}\right) \frac{\partial}{\partial z^{i}}+\left(-b^{i}-i a^{i}\right) \frac{\partial}{\partial \bar{z}^{i}}= \\
&= i\left(a^{i}+i b^{i}\right) \frac{\partial}{\partial z^{i}}-i\left(a^{i}-i b^{i}\right) \frac{\partial}{\partial \bar{z}^{i}} .
\end{aligned}
$$

We are looking now for the vector fields v (2.11) which are tangent to the hypersurfaces (2.10), the vector fields Iv (2.12) having the same property. This yields

$$
A^{i} \frac{\partial F}{\partial z^{i}}+\bar{A}^{i} \frac{\partial F}{\partial \bar{z}^{i}}=0, \quad i A^{i} \frac{\partial F}{\partial z^{i}}-i \overline{A^{i}} \frac{\partial F}{\partial \bar{z}^{i}}=0
$$

i.e.,

$$
\begin{equation*}
A^{i} \frac{\partial F}{\partial z^{i}}=0, \quad \overline{A^{i}} \frac{\partial F}{\partial \bar{z}^{i}}=0 \tag{2.13}
\end{equation*}
$$

Because of $F=\bar{F}$, we have

$$
\frac{\partial F}{\partial \bar{z}^{i}}=\frac{\overline{\partial F}}{\partial z^{i}} ;
$$

indeed, write $F\left(z^{i}, \bar{z}^{i}\right)=f\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right)$, then

$$
\frac{\partial F}{\partial z^{i}}=\frac{1}{2}\left(\frac{\partial f}{\partial x^{i}}-i \frac{\partial f}{\partial y^{i}}\right), \frac{\partial F}{\partial \bar{z}^{i}}=\frac{1}{2}\left(\frac{\partial f}{\partial x^{i}}+i \frac{\partial f}{\partial y^{i}}\right) .
$$

Thus the system (2.13) is equivalent to

$$
\begin{equation*}
A^{i} \frac{\partial F}{\partial z^{i}}=0 \tag{2.14}
\end{equation*}
$$

It is easy to see that the coordinates $\boldsymbol{z}^{\boldsymbol{i}}$ in $\mathbf{C}^{\boldsymbol{n}}$ may be chosen in such a way (by a linear change) that

$$
\begin{align*}
& F\left(z^{1}, \ldots, z^{n}, \bar{z}^{1}, \ldots, \bar{z}^{n}\right)=z^{n}+\bar{z}^{n}+G\left(z^{1}, \ldots, z^{n-1}, \bar{z}^{1}, \ldots, \bar{z}^{n-1}, \bar{z}^{n}-z^{n}\right) ; \\
& G(0, \ldots, 0)=0 ; \tag{2.15}\\
& \quad \frac{\partial G(0, \ldots, 0)}{\partial z^{a}}=0, \quad \frac{\partial G(0, \ldots, 0)}{\partial \bar{z}^{a}}=0, \quad \frac{\partial G(0, \ldots, 0)}{\partial\left(\bar{z}^{n}-z^{n}\right)}=0 \\
& \text { for } \alpha=1, \ldots, n-1 .
\end{align*}
$$

The geometrical meaning is very simple: The tangent hyperplane $T_{0}\left(X^{2 n-1}\right)$ at the origin is given by $z^{n}+\bar{z}^{n}=0$, i.e., $x^{n}=0$.

Of course, $\partial F\left(z^{i}, \bar{z}^{i}\right) / \partial z^{n} \neq 0$ in a neighbourhood of the origin, and (2.14) may be written as

$$
\begin{equation*}
A^{a} \frac{\partial F}{\partial z^{a}}+A^{n} \frac{\partial F}{\partial z^{n}}=0 \quad(\alpha, \beta, \ldots=1, \ldots, n-1) \tag{2.16}
\end{equation*}
$$

Its general solution is given by

$$
A^{a}=B^{a} \frac{\partial F}{\partial z^{n}}, \quad A^{n}=-B^{a} \frac{\partial F}{\partial z^{a}},
$$

B^{1}, \ldots, B^{n-1} being arbitrary complex-valued functions, and we get

$$
\begin{gather*}
v=B^{a} \frac{\partial F}{\partial z^{n}} \frac{\partial}{\partial z^{\alpha}}-B^{a} \frac{\partial F}{\partial z^{\alpha}} \frac{\partial}{\partial z^{n}}+\overline{B^{\alpha}} \frac{\partial F}{\partial \bar{z}^{n}} \frac{\partial}{\partial \bar{z}^{\alpha}}-\overline{B^{\alpha}} \frac{\partial F}{\partial \bar{z}^{\alpha}} \frac{\partial}{\partial \bar{z}^{n}}, \tag{2.17}\\
I v=i B^{\alpha} \frac{\partial F}{\partial z^{n}} \frac{\partial}{\partial z^{\beta}}-i B^{\beta} \frac{\partial F}{\partial z^{\beta}} \frac{\partial}{\partial z^{n}}-i \bar{B}^{\beta} \frac{\partial F}{\partial \bar{z}^{n}} \frac{\partial}{\partial \bar{z}^{\beta}}+i \bar{B}^{\beta} \frac{\partial F}{\partial \bar{z}^{\beta}} \frac{\partial}{\partial \bar{z}^{n}} .
\end{gather*}
$$

At the origin of \mathbf{C}^{n}, we have

$$
\frac{\partial F(0, \ldots, 0)}{\partial z^{n}}=1, \quad \frac{\partial F(0, \ldots, 0)}{\partial \bar{z}^{n}}=1, \quad \frac{\partial F(0, \ldots, 0)}{\partial z^{a}}=0, \quad \frac{\partial F(0, \ldots, 0)}{\partial \bar{z}^{a}}=0,
$$

and the vectors (2.171) are given by

$$
\begin{equation*}
v=B^{a} \frac{\partial}{\partial z^{a}}+\overline{B^{a}} \frac{\partial}{\partial \bar{z}^{a}} . \tag{2.18}
\end{equation*}
$$

Thus the space $\tau_{0} \subset T_{0}\left(X^{2 n-1}\right)$ is spanned by the vectors

$$
\frac{\partial}{\partial z^{a}}+\frac{\partial}{\partial \bar{z}^{a}}, \quad i \frac{\partial}{\partial z^{a}}-i \frac{\partial}{\partial \bar{z}^{a}} ; \quad \alpha=1, \ldots, n-1 .
$$

From (2.17), we get

$$
\begin{aligned}
& {[v, I v]_{0}=B^{a} . i B^{\beta} \frac{\partial^{2} F(0)}{\partial z^{a} \partial z^{n}} \frac{\partial}{\partial z^{\beta}}-B^{a} . i B^{\beta} \frac{\partial^{2} F(0)}{\partial z^{a} \partial z^{\beta}} \frac{\partial}{\partial z^{n}}-} \\
& -B^{a} \cdot \overline{i B^{\beta}} \frac{\partial^{2} F(0)}{\partial z^{a} \partial \bar{z}^{n}} \frac{\partial}{\partial \bar{z}^{\beta}}+B^{a} \cdot i \bar{B}^{\beta} \frac{\partial^{2} F(0)}{\partial z^{a} \partial \bar{z}^{\beta}} \frac{\partial}{\partial \bar{z}^{n}}+\bar{B}^{a} \cdot i B^{\beta} \frac{\partial^{2} F(0)}{\partial \bar{z}^{a} \partial z^{n}} \frac{\partial}{\partial z^{\beta}}- \\
& -\bar{B}^{a} \cdot i B^{\beta} \frac{\partial^{2} F(0)}{\partial \bar{z}^{a} \partial z^{\beta}} \frac{\partial}{\partial z^{n}}-\bar{B}^{a} \cdot i \bar{B}^{\beta} \frac{\partial^{2} F(0)}{\partial \bar{z}^{\alpha} \partial \bar{z}^{n}} \frac{\partial}{\partial \bar{z}^{\beta}}+\bar{B}^{a} \cdot i \overline{B^{\beta}} \frac{\partial^{2} F(0)}{\partial \bar{z}^{\alpha} \partial \bar{z}^{\beta}} \frac{\partial}{\partial \bar{z}^{n}}- \\
& -i B^{\beta} B^{a} \frac{\partial^{2} F(0)}{\partial z^{\beta} \partial z^{n}} \frac{\partial}{\partial z^{\alpha}}+i B^{\beta} B^{\alpha} \frac{\partial^{2} F(0)}{\partial z^{\alpha} \partial z^{\beta}}-\frac{\partial}{\partial z^{n}}-i B^{\beta} \bar{B}^{\alpha} \frac{\partial^{2} F(0)}{\partial z^{\beta} \partial \bar{z}^{n}} \frac{\partial}{\partial \bar{z}^{\alpha}}+ \\
& +i B^{\bar{\beta}} \bar{B}^{\alpha} \frac{\partial^{2} F(0)}{\partial z^{\beta} \partial \bar{z}^{\alpha}} \frac{\partial}{\partial \bar{z}^{n}}+i \bar{B}^{\beta} B^{\alpha} \frac{\partial^{2} F(0)}{\partial \bar{z}^{\beta} \partial z^{n}} \frac{\partial}{\partial z^{\alpha}}-i \bar{B}^{\beta} B^{\alpha} \frac{\partial^{2} F(0)}{\partial z^{a} \partial \bar{z}^{\beta}} \frac{\partial}{\partial z^{n}}+ \\
& +i \bar{B}^{\beta} \bar{B}^{\alpha} \frac{\partial^{2} F(0)}{\partial \bar{z}^{\beta} \overline{\bar{z}}^{n}} \frac{\partial}{\partial \bar{z}^{\alpha}}-i \bar{B}^{\beta} \bar{B}^{\alpha} \frac{\partial^{2} F(0)}{\partial \bar{z}^{a} \partial \bar{z}^{\beta}} \frac{\partial}{\partial \bar{z}^{n}}=
\end{aligned}
$$

$$
\begin{gathered}
=2 i B^{a} \overline{B^{\beta}} \frac{\partial^{2} F(0)}{\partial \bar{z}^{\beta} \partial z^{n}} \frac{\partial}{\partial z^{\alpha}}-2 i B^{\beta} \overline{B^{\alpha}} \frac{\partial^{2} F(0)}{\partial z^{\beta} \partial \bar{z}^{n}} \frac{\partial}{\partial \bar{z}^{a}}- \\
-2 i \bar{B}^{a} B^{\beta} \frac{\partial^{2} F(0)}{\partial \bar{z}^{a} \partial z^{\beta}} \frac{\partial}{\partial z^{n}}+2 i B^{a} \bar{B}^{\beta} \frac{\partial^{2} F(0)}{\partial z^{a} \partial \bar{z}^{\beta}} \frac{\partial}{\partial \bar{z}^{n}}= \\
=i\left(B^{a} \bar{B}^{\beta} \frac{\partial^{2} F(0)}{\partial \bar{z}^{\beta} \partial z^{n}}-B^{\beta} \overline{B^{a}} \frac{\partial^{2} F(0)}{\partial z^{\beta} \partial \bar{z}^{n}}\right)\left(\frac{\partial}{\partial z^{a}}+\frac{\partial}{\partial \bar{z} \bar{a}}\right)+ \\
+\left(B^{a} \overline{B^{\beta}} \frac{\partial^{2} F(0)}{\partial \bar{z}^{\beta} \partial z^{n}}+B^{\beta} \overline{B^{\alpha}} \cdot \frac{\partial^{2} F(0)}{\partial z^{\beta} \partial \bar{z}^{n}}\right) \cdot i\left(\frac{\partial}{\partial z^{\alpha}}-\frac{\partial}{\partial \bar{z}^{\alpha}}\right)- \\
-2 i B^{a} \bar{B}^{\beta} \frac{\partial^{2} F(0)}{\partial z^{a} \partial \bar{z}^{\beta}}\left(\frac{\partial}{\partial z^{n}}-\frac{\partial}{\partial \bar{z}^{n}}\right) .
\end{gathered}
$$

Of course,

$$
\frac{\partial}{\partial y^{n}}=i\left(\frac{\partial}{\partial z^{n}}-\frac{\partial}{\partial \bar{z}^{n}}\right) .
$$

Consider once again the natural projection $\pi_{0}: \tau_{0} \rightarrow T_{0}\left(X^{2 n-1}\right) / \tau_{0}$, and write

$$
\pi_{0}\left(\frac{\partial}{\partial y^{n}}\right)=u
$$

then

$$
L_{0}\left(B^{a} \frac{\partial}{\partial z^{a}}+\bar{B}^{a} \frac{\partial}{\partial \bar{z}^{a}}\right)=-2 B^{a} \bar{B}^{\beta} \frac{\partial^{2} F(0)}{\partial z^{a} \partial \bar{z}^{\beta}} u
$$

This is the classical formula for the Levi map. It is easy to prove that $L_{x} \equiv 0$ at each point $x \in X^{2 n-1}$ is equivalent to the condition that $X^{2 n-1}$ is locally holomorphically equivalent to a hyperplane of \mathbf{C}^{n}.
3. Let us consider a manifold M^{3} with the structure described at the end of No 1. At each point $m \in M^{3}$, let us choose a frame (v_{1}, v_{2}, v_{3}), $v_{i} \in T_{m}\left(M^{3}\right)$, such that τ_{m} is spanned by v_{1}, v_{2} and $I_{m} v_{1}=v_{2}$. Each other frame of the same type is given by

$$
\begin{gather*}
w_{1}=\alpha v_{1}-\beta v_{2}, \quad w_{2}=\beta v_{1}+\alpha v_{2} \tag{3.1}\\
w_{3}=\gamma v_{1}+\delta v_{2}+\varphi v_{3} ; \quad\left(\alpha^{2}+\beta^{2}\right) \varphi \neq 0 .
\end{gather*}
$$

Let $v, v^{\prime} \in T_{m}\left(M^{3}\right)$,

$$
\begin{equation*}
v=a v_{1}+b v_{2}+c v_{3}, \quad v^{\prime}=a^{\prime} v_{1}+b^{\prime} v_{2}+c^{\prime} v_{3} . \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\varphi^{\star}\left(v, v^{\prime}\right)=A\left(a b^{\prime}-a^{\prime} b\right)+B\left(a c^{\prime}-a^{\prime} c\right)+C\left(b c^{\prime}-b^{\prime} c\right) \tag{3.3}
\end{equation*}
$$

where A, B, C are reals. For $v, v^{\prime} \in \tau_{m}$, we have $c=c^{\prime}=0$ and

$$
\varphi^{\star}\left(v, v^{\prime}\right)=A\left(a b^{\prime}-a^{\prime} b\right), \quad \varphi^{\star}\left(I v, I v^{\prime}\right)=A\left(a b^{\prime}-a^{\prime} b\right)
$$

From the condition $\varphi^{\star}\left(v_{m}, w_{m}\right)=-\varphi^{\star}\left(I_{m} v_{m}, I_{m} v_{m}\right)$, we get $A=0$. Let

$$
v=\tilde{a} w_{1}+\tilde{b} w_{2}+\tilde{c} w_{2}, \quad v^{\prime}=\tilde{a}^{\prime} w_{1}+\tilde{b}^{\prime} w_{2}+\tilde{c}^{\prime} w_{3},
$$

w_{1}, w_{2}, w_{3} being given by (3.1). Write

$$
\varphi^{\star}\left(v, v^{\prime}\right)=\tilde{B}\left(\tilde{a} \tilde{c}^{\prime}-\tilde{a}^{\prime} \tilde{c}\right)+\tilde{C}\left(\tilde{b} \tilde{c}^{\prime}-\tilde{b}^{\prime} \tilde{c}\right)
$$

Then

$$
a=\alpha \tilde{a}+\beta \tilde{b}, \quad b=-\beta \tilde{a}+\alpha \tilde{b}, \quad c=\varphi \tilde{c}
$$

and

$$
\begin{equation*}
\tilde{B}=\varphi(\alpha B-\beta C), \quad \tilde{C}=\varphi(\beta B+\alpha C) \tag{3.4}
\end{equation*}
$$

The case $B=C=0$ being excluded (otherwise $\varphi^{\star} \equiv 0$), there exist frames (w_{1}, w_{2}, w_{3}) with $\tilde{B}=1, \tilde{C}=0$, and we have the following result: On M^{3}, the considered structure induces a G-structure $B_{G}\left(M^{3}\right)$ such that ($\left.v_{1}, v_{2}, v_{3}\right)_{m} \in B_{G}\left(M^{3}\right)$ if and only if $v_{1}, v_{2} \in \tau_{m}, I_{m} v_{1}=v_{2}$ and $\varphi^{\star}\left(v, v^{\prime}\right)=a c^{\prime}-a^{\prime} c, v$ and v^{\prime} being given by (3.2); if $\left\{w_{1}, w_{2}, w_{3}\right\}_{m} \in B_{G}\left(M^{3}\right)$, then

$$
\begin{equation*}
w_{1}=\alpha v_{1}, \quad w_{2}=\alpha v_{2}, \quad w_{3}=\gamma v_{1}+\delta v_{2}+\alpha^{-1} v_{3} ; \quad \alpha \neq 0 . \tag{3.5}
\end{equation*}
$$

The last assertion follows easily from (3.4); indeed, we should have $1=\alpha \varphi, 0=\beta \varphi \varphi_{x}$.
Consider a G-structure $B_{G}\left(M^{3}\right)$ of this type, i.e., G is the group of the matrices

$$
\left(\begin{array}{lll}
\alpha & 0 & 0 \tag{3.6}\\
0 & \alpha & 0 \\
\gamma & \delta & \alpha^{-1}
\end{array}\right), \alpha \neq 0 .
$$

In a domain $V \subset M^{3}$, choose a section $\left(v_{1}, v_{2}, v_{3}\right)$ of $B_{G}\left(M^{3}\right)$; then

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}} \tag{3.7}\\
& {\left[v_{1}, v_{3}\right]=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3},} \\
& {\left[v_{2}, v_{3}\right]=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}}
\end{align*}
$$

a_{1}, \ldots, c_{3} being functions on V. In what follows, let us restrict ourselves to manifolds with non-integrable field of planes τ_{m}; thus $a_{3} \neq 0$ on V. From the Jacobi identity

$$
\left[v_{1},\left[v_{2}, v_{3}\right]\right]+\left[v_{2},\left[v_{3}, v_{1}\right]\right]+\left[v_{3},\left[v_{1}, v_{2}\right]\right]=0
$$

we get

$$
\begin{align*}
& v_{1} c_{1}-v_{2} b_{1}+v_{3} a_{1}+a_{1} c_{2}+b_{1} c_{3}-b_{3} c_{1}-a_{2} c_{1}=0 \tag{3.8}\\
& v_{1} c_{2}-v_{2} b_{2}+v_{3} a_{2}+b_{2} c_{3}+a_{2} b_{1}-b_{3} c_{2}-a_{1} b_{2}=0 \\
& v_{1} c_{3}-v_{2} b_{3}+v_{3} a_{3}+a_{3} c_{2}+a_{3} b_{1}-a_{1} b_{3}-a_{2} c_{3}=0
\end{align*}
$$

Let (w_{1}, w_{2}, w_{3}) be another section of $B_{G}\left(M^{3}\right)$, let us have (3.5) with α, γ, δ real-valued functions on V. Then

$$
\begin{align*}
& {\left[w_{1}, w_{2}\right]=A_{1} w_{1}+A_{2} w_{2}+A_{3} w_{3}} \tag{3.9}\\
& {\left[w_{1}, w_{3}\right]=B_{1} w_{1}+B_{2} w_{2}+B_{3} w_{3}} \\
& {\left[w_{2}, w_{3}\right]=C_{1} w_{1}+C_{2} w_{2}+C_{3} w_{3}}
\end{align*}
$$

We have

$$
\begin{gather*}
{\left[w_{1}, w_{2}\right]=\left[\alpha v_{1}, \alpha v_{2}\right]=\alpha \cdot v_{1} \alpha \cdot v_{2}-\alpha \cdot v_{2} \alpha \cdot v_{1}+\alpha^{2}\left(a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}\right)=} \\
=A_{1} \alpha v_{1}+A_{2} \alpha v_{2}+A_{3}\left(\gamma v_{1}+\delta v_{2}+\alpha^{-1} v_{3}\right), \tag{3.10}
\end{gather*}
$$

i.e.
$-\alpha \cdot v_{2} \alpha+\alpha^{2} a_{1}=\alpha A_{1}+\gamma A_{3}, \alpha \cdot v_{1} \alpha+\alpha^{2} a_{2}=\alpha A_{2}+\delta A_{3}, \alpha^{2} a_{3}=\alpha^{-1} A_{3}$.

Thus there exists a section (w_{1}, w_{2}, w_{3}) satisfying $A_{3}=1, A_{1}=A_{2}=0$, and we have the following result: There exists (locally) exactly one section (v_{1}, v_{2}, v_{3}) of $B_{G}\left(M^{3}\right)$ satisfying

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=} \tag{3.11}\\
& {\left[v_{1}, v_{3}\right]=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}} \\
& {\left[v_{2}, v_{3}\right]=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}}
\end{align*}
$$

The integrability conditions (3.8) reduce to

$$
\begin{align*}
& v_{1} c_{1}-v_{2} b_{1}+b_{1} c_{3}-b_{3} c_{1}=0 \tag{3.12}\\
& v_{1} c_{2}-v_{2} b_{2}+b_{2} c_{3}-b_{3} c_{2}=0 \\
& v_{1} c_{3}-v_{2} b_{3}+c_{2}+b_{1}=0
\end{align*}
$$

Now, let $B_{G}\left(M^{3}\right)$ be transitive. Then b_{1}, \ldots, c_{3} are constants, and the equations (3.12) reduce to

$$
\begin{equation*}
b_{1} c_{3}-b_{3} c_{1}=0, \quad b_{2} c_{3}-b_{3} c_{2}=0, \quad c_{2}+b_{1}=0 \tag{3.13}
\end{equation*}
$$

Let $b_{3} c_{3} \neq 0$. Then there are real numbers A, B, C such that

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=} \tag{3.14}\\
& {\left[v_{1}, v_{3}\right]=A B C v_{1}-A B^{2} v_{2}+B v_{3},} \\
& {\left[v_{2}, v_{3}\right]=A C^{2} v_{1}-A B C v_{2}+C v_{3} ; \quad B C \neq 0}
\end{align*}
$$

Let $b_{3} \neq 0, c_{3}=0$. Then $c_{1}=c_{2}=b_{1}=0$ and (3.11) are of the form

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=} \tag{3.15}\\
& {\left[v_{1}, v_{3}\right]=A v_{2}+B v_{3},} \\
& {\left[v_{2}, v_{3}\right]=0 ;}
\end{align*} \quad B \neq 0 ;
$$

the case $b_{3}=0, c_{3} \neq 0$ is symmetric. For $b_{3}=c_{3}=0$, we get

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=-v_{3}} \tag{3.16}\\
& {\left[v_{1}, v_{3}\right]=A v_{1}+B v_{2}} \\
& {\left[v_{2}, v_{3}\right]=C v_{1}-A v_{2}}
\end{align*}
$$

The following result follows: The Lie algebra of G (see the Theorem) is of the type (3.14) or (3.15) or (3.16) resp.

Finally, let us prove the existence of the transitive G-structures of the types (3.14)- (3.16). A simple check shows that the vector fields

$$
\begin{align*}
& u_{1}=\frac{1}{2}\left(1+2 y-3 x^{2}\right) \frac{\partial}{\partial x}+\frac{1}{2}(2 x+z-3 x y) \frac{\partial}{\partial y}+\frac{3}{2}(y-x z) \frac{\partial}{\partial z}, \\
& u_{2}=\frac{1}{2}\left(1-2 y+3 x^{2}\right) \frac{\partial}{\partial x}+\frac{1}{2}(2 x-z+3 x y) \frac{\partial}{\partial y}+\frac{3}{2}(y+x z) \frac{\partial}{\partial z}, \\
& u_{3}=x \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}+3 z \frac{\partial}{\partial z} \tag{3.17}
\end{align*}
$$

on $\mathbf{R}^{\mathbf{3}}$ satisfy

$$
\begin{equation*}
\left[u_{1}, u_{2}\right]=u_{3}, \quad\left[u_{1}, u_{3}\right]=u_{2}, \quad\left[u_{2}, u_{3}\right]=u_{1} \tag{3.18}
\end{equation*}
$$

In a suitable neighbourhood of the point $\left(\frac{1}{4} \pi, 0,0\right) \in \mathbf{R}^{3}$, consider the vector fields

$$
\begin{align*}
& w_{1}=\sin (y+z) \frac{\partial}{\partial x}+\frac{\cos x}{\sin x} \cos (y+z) \frac{\partial}{\partial y}-\frac{\sin x}{\cos x} \cos (y+z) \frac{\partial}{\partial z} \\
& w_{2}=\cos (y+z) \frac{\partial}{\partial x}-\frac{\cos x}{\sin x} \sin (y+z) \frac{\partial}{\partial y}+\frac{\sin x}{\cos x} \sin (y+z) \frac{\partial}{\partial z} \\
& w_{3}=\frac{\partial}{\partial y}+\frac{\partial}{\partial z} \tag{3.19}
\end{align*}
$$

the direct check proves

$$
\begin{equation*}
\left[w_{1}, w_{2}\right]=2 w_{3}, \quad\left[w_{1}, w_{3}\right]=-2 w_{2}, \quad\left[w_{2}, w_{3}\right]=2 w_{1} \tag{3.20}
\end{equation*}
$$

Now, consider the G-structure (3.14). Obviously, $\left[C v_{1}-B v_{2}, v_{3}\right]=0$. On a neighbourhood of a point $m_{0} \in M^{3}$, consider local coordinates (x, y, z) such that

$$
C v_{1}-B v_{2}=\frac{\partial}{\partial y}, \quad v_{3}=\frac{\partial}{\partial x}
$$

this being always possible. Let

$$
v_{2}=\alpha \frac{\partial}{\partial x}+\beta \frac{\partial}{\partial y}+\gamma \frac{\partial}{\partial z}, \quad \text { i.e., } \quad C v_{1}=B \alpha \frac{\partial}{\partial x}+(B \beta+1) \frac{\partial}{\partial y}+B \gamma \frac{\partial}{\partial z} .
$$

From (3.14 1,2), we get

$$
\frac{\partial \alpha}{\partial y}=C ; \quad \frac{\partial \beta}{\partial y}=0, \quad \frac{\partial \gamma}{\partial y}=0, \quad \frac{\partial \alpha}{\partial x}=-C, \quad \frac{\partial \beta}{\partial x}=-A C, \quad \frac{\partial \gamma}{\partial x}=0
$$

Consider the particular solution $\alpha=C(y-x), \beta=-A C x, \gamma=1$. Then

$$
\begin{align*}
& v_{1}=B(y-x) \frac{\partial}{\partial x}+\left(C^{-1}-A B x\right) \frac{\partial}{\partial y}+B C^{-1} \frac{\partial}{\partial z} \tag{3.21}\\
& v_{2}=C(y-x) \frac{\partial}{\partial x}-A C x \frac{\partial}{\partial y}+\frac{\partial}{\partial z} \\
& v_{3}=\frac{\partial}{\partial x}
\end{align*}
$$

this vectors being linearly independent and satisfying (3.14), they generate a G-structure of the type (3.14) on \mathbf{R}^{3}. Similarly, the vector fields

$$
\begin{equation*}
v_{1}=-(B x+y) \frac{\partial}{\partial x}-A x \frac{\partial}{\partial y}+\frac{\partial}{\partial z}, \quad v_{2}=\frac{\partial}{\partial y}, \quad v_{3}=\frac{\partial}{\partial x} \tag{3.22}
\end{equation*}
$$

generate a G-structure of the type (3.15) on \mathbf{R}^{3}. The type (3.16) is a little more complicated. First of all, suppose $A=B=0$; the G-structure of this type on \mathbf{R}^{3} is generated by the vector fields

$$
\begin{equation*}
v_{1}=\frac{\partial}{\partial x}, \quad v_{2}=-C y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}+\frac{\partial}{\partial z}, \quad v_{3}=\frac{\partial}{\partial y} \tag{3.23}
\end{equation*}
$$

Similarly, the G-structure of the type (3.16) with $A=C=0$ is generated by the vector fields

$$
\begin{equation*}
v_{1}=-B y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+\frac{\partial}{\partial z}, \quad v_{2}=\frac{\partial}{\partial x}, \quad v_{3}=\frac{\partial}{\partial y} . \tag{3.24}
\end{equation*}
$$

Now, consider the case $A^{2}+B C=0, A B \neq 0$, i.e.,

$$
\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=A v_{1}+B v_{2}, \quad\left[v_{2}, v_{3}\right]=-\frac{A^{2}}{B} v_{1}-A v_{2}
$$

We see that $\left[A v_{1}+B v_{2}, v_{3}\right]=0$, and the vector fields

$$
\begin{align*}
& v_{1}=-B y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+\frac{\partial}{\partial z} \tag{3.25}\\
& v_{2}=A B y \frac{\partial}{\partial x}+(1+A x) \frac{\partial}{\partial y}-A \frac{\partial}{\partial z} \\
& v_{3}=\frac{\partial}{\partial x}
\end{align*}
$$

generate the G-structure of this type on \mathbf{R}^{3}. If $A^{2}+B C \neq 0$ then the Lie algebra (3.16) L satisfies $[L, L]=L$ and it contains a basis (u_{1}, u_{2}, u_{3}) satisfying (3.18) or a basis (w_{1}, w_{2}, w_{3}) satisfying (3.20).
4. Consider the space \mathbf{C}^{2} and the pseudogroup Γ. The relation between the 1-parametric local subgroups of Γ and the holomorphic vector fields on \mathbf{C}^{2} is well known. Let

$$
\begin{equation*}
v=a(x, y) \frac{\partial}{\partial x}+b(x, y) \frac{\partial}{\partial y} \tag{4.1}
\end{equation*}
$$

be a (locally defined) holomorphic vector field; the corresponding local group G_{v} consists of the maps
given by

$$
\begin{equation*}
\varphi_{t}: \quad \tilde{x}=f(x, y, t), \quad \tilde{y}=g(x, y, t), \quad t \in(-\varepsilon, \varepsilon) \tag{4.2}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial f(x, y, t)}{\partial x}=a(f(x, y, t), g(x, y, t)), \frac{\partial g(x, y, t)}{\partial t}=b(f(x, y, t), g(x, y, t)), \\
f(x, y, 0)=x, \quad g(x, y, 0)=y \tag{4.3}
\end{gather*}
$$

We have $G_{v} \subset \Gamma_{\delta}$ if and only if

$$
\begin{equation*}
\frac{\partial a(x, y)}{\partial x}+\frac{\partial b(x, y)}{\partial y}=0 . \tag{4.4}
\end{equation*}
$$

Indeed, let us write

$$
D(x, y, t)=\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x}
$$

We have $D(x, y, 0)=1$. From (4.3), we get

$$
\frac{\partial D}{\partial t}=\left(\frac{\partial a}{\partial x}+\frac{\partial b}{\partial y}\right) D
$$

and the result follows easily. Denote by L_{s} the Lie algebra of holomorphic vector fields (4.1) on \mathbf{C}^{2} satisfying (4.4).

Let $w_{1}, w_{2} \in L_{s}, w_{1} \neq 0 \neq w_{2},\left[w_{1}, w_{2}\right]=0$; then there are (locally) Γ_{8}-coordinates (u, v) such that

$$
\begin{equation*}
w_{1}=\frac{\partial}{\partial u}, w_{2}=\alpha \frac{\partial}{\partial v}(0 \neq \alpha \in \mathbf{C}) \text { or } w_{2}=a(v) \frac{\partial}{\partial u} r e s p . \tag{4.5}
\end{equation*}
$$

Here, the Γ_{s}-coordinates (u, v) are defined (locally) as holomorphic coordinates $u=u(x, y), v=v(x, y)$ satisfying $\partial(u, v) / \partial(x, y)=1$. Indeed, we may choose (at least locally) Γ_{s}-coordinates $r=r(x, y), s=s(x, y)$ such that $w_{1}=\partial / \partial r$. Let

$$
w_{2}=b(r, s) \frac{\partial}{\partial r}+c(r, s) \frac{\partial}{\partial s}, \frac{\partial b}{\partial r}+\frac{\partial c}{\partial s}=0 .
$$

From $\left[w_{1}, w_{2}\right]=0$, we get

$$
\frac{\partial b}{\partial r}=0, \quad \frac{\partial c}{\partial r}=0
$$

Thus $b=b(s), c=\alpha \in \mathbf{C}$. Now, consider the Γ_{s}-coordinates $u=u(r, s), v=v(r, s)$. Then

$$
\begin{aligned}
& w_{1}=\frac{\partial u}{\partial r} \frac{\partial}{\partial u}+\frac{\partial v}{\partial r} \frac{\partial}{\partial v}, \\
& w_{2}=b(s)\left(\frac{\partial u}{\partial r} \frac{\partial}{\partial u}+\frac{\partial v}{\partial r} \frac{\partial}{\partial v}\right)+\alpha\left(\frac{\partial u}{\partial s} \frac{\partial}{\partial u}+\frac{\partial v}{\partial s} \frac{\partial}{\partial v}\right) .
\end{aligned}
$$

We have

$$
\frac{\partial u}{\partial r}=1, \quad \frac{\partial v}{\partial r}=0 \quad \text { and } \quad \frac{\partial v}{\partial s}=1
$$

i.e., $u=r+g(s), \quad v=s+\varrho, \quad \varrho \in \mathbf{C}, \quad$ and

$$
w_{2}=\left(b+\alpha \frac{d g}{d s}\right) \frac{\partial}{\partial u}+\alpha \frac{\partial}{\partial v} .
$$

If $\alpha \neq 0$, let us choose $g(s)$ such that

$$
\frac{d g(s)}{d s}=-\frac{b(s)}{\alpha} .
$$

5. Let L be a Lie algebra of the type (3.14), suppose $L \subset L_{8}$. Then

$$
\left[v_{2}-\frac{C}{B} v_{1}, v_{3}\right]=0
$$

and we may choose (locally) Γ_{s}-coordinates (u, v) such that

$$
\begin{equation*}
v_{3}=\frac{\partial}{\partial u}, \quad v_{2}-\frac{C}{B} v_{1}=\alpha \frac{\partial}{\partial v} ; \quad 0 \neq \alpha \in \mathbf{C} \tag{5.1}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{3}=\frac{\partial}{\partial u}, \quad v_{2}-\frac{C}{B} v_{1}=a(v) \frac{\partial}{\partial u} \tag{5.2}
\end{equation*}
$$

resp. Suppose (5.1) and

$$
v_{1}=b(u, v) \frac{\partial}{\partial u}+c(u, v) \frac{\partial}{\partial v}, \quad \frac{\partial b}{\partial u}+\frac{\partial c}{\partial v}=0 .
$$

From (3.142), we get

$$
-\frac{\partial b}{\partial u}=B, \quad \frac{\partial c}{\partial u}=A B^{2} \alpha,
$$

i.e.,

$$
b=-B u+\beta(v), \quad c=A B^{2} \alpha u+B v+\gamma_{0} ; \quad \gamma_{0} \in \mathbf{C} .
$$

From (3.141),

$$
\left[v_{1}, \frac{C}{B} v_{1}+\alpha \frac{\partial}{\partial v}\right]=-\alpha \frac{\partial b}{\partial v} \frac{\partial}{\partial u}-\alpha \frac{\partial c}{\partial v} \frac{\partial}{\partial v}=\frac{\partial}{\partial u},
$$

i.e., $\partial c / \partial v=B=0$. Thus we should have (5.2) because of $B \neq 0$. Let further L be of the type (3.15) and $L \subset L_{s}$. Then there are (locally) Γ_{s}-coordinates (u, v) such that

$$
\begin{equation*}
v_{3}=\frac{\partial}{\partial u}, \quad v_{2}=\alpha \frac{\partial}{\partial v} ; \quad 0 \neq \alpha \in \mathbf{C} \tag{5.3}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{3}=\frac{\partial}{\partial u}, \quad v_{2}=a(v) \frac{\partial}{\partial u} \tag{5.4}
\end{equation*}
$$

resp. Suppose (5.3) and let us write

$$
v_{1}=b(u, v) \frac{\partial}{\partial u}+c(u, v) \frac{\partial}{\partial v}, \frac{\partial b}{\partial u}+\frac{\partial c}{\partial v}=0 .
$$

From (3.151,2),

$$
\alpha \frac{\partial b}{\partial v}=-1, \quad \frac{\partial c}{\partial v}=0, \quad \frac{\partial b}{\partial u}=-B, \quad \frac{\partial c}{\partial u}=-A \alpha
$$

Because of $B \neq 0$, we have (5.4).
Now, let $M^{3} \subset \mathbf{C}^{2} \equiv \mathbf{R}^{4}$ be the orbit of the group $G \subset \Gamma_{s}$ such that its Lie algebra g is of the type (3.14) or (3.15) resp. Then we have shown that g contains (in suitable Γ_{s}-coordinates) the vector fields $\partial / \partial x, a(y) \partial / \partial x$, and the vector fields

$$
\frac{\partial}{\partial x^{1}}, a_{1}\left(x^{2}, y^{2}\right) \frac{\partial}{\partial x^{1}}+a_{2}\left(x^{2}, y^{2}\right) \frac{\partial}{\partial y^{1}} ; \quad a(y)=a_{1}\left(x^{2}, y^{2}\right)+i a_{2}\left(x^{2}, y^{2}\right) ;
$$

are tangent to $M^{3} \subset \mathbf{R}^{4}$. The plane τ_{m} is thus spanned by the vectors $\partial / \partial x^{1}, \partial / \partial y^{1}$, and the field τ_{m} is integrable. The groups $G \subset \Gamma_{s}$ satisfying the suppositions of the Theorem and possessing the Lie algebra of the type (3.14) or (3.15) do not exist.
6. Let us investigate the case $L \subset L_{s}, L$ being of the type (3.16). Suppose $\operatorname{dim}[L, L]=1$, i.e.,

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=0, \quad\left[v_{2}, v_{3}\right]=0 \tag{6.1}
\end{equation*}
$$

We may suppose the existence of Γ_{s}-coordinates (u, v) such that

$$
v_{2}=\alpha \frac{\partial}{\partial v}, \quad v_{3}=\frac{\partial}{\partial u} ; \quad 0 \neq \alpha \in C .
$$

Let

$$
v_{1}=b(u, v) \frac{\partial}{\partial u}+c(u, v) \frac{\partial}{\partial v}, \quad \frac{\partial b}{\partial u}+\frac{\partial c}{\partial v}=0 .
$$

From ($6.1_{1,2}$), we get

$$
\frac{\partial b}{\partial u}=0, \quad \frac{\partial b}{\partial v}=\frac{1}{\alpha}, \quad \frac{\partial c}{\partial u}=\frac{\partial c}{\partial v}=0
$$

i.e.,

$$
b=-\frac{v}{\alpha}+\beta, \quad c=\gamma ; \quad \beta, \gamma \in \mathbf{C}
$$

we have $\gamma \neq 0$ because of the non-integrability of the field τ_{m}. Consider the Γ_{s}-coordinates $x=u, y=v-\alpha \beta$. Then

$$
v_{2}=\alpha \frac{\partial}{\partial y}, \quad v_{3}=\frac{\partial}{\partial x}, \quad v_{1}=-\frac{v}{\alpha} \frac{\partial}{\partial x}+\gamma \frac{\partial}{\partial y},
$$

and the general element of L is

$$
\begin{equation*}
v=R\left(-\frac{v}{\alpha} \frac{\partial}{\partial x}+\gamma \frac{\partial}{\partial y}\right)+S \alpha \frac{\partial}{\partial y}+T \frac{\partial}{\partial x} ; \quad R, S, T \in \mathbf{R} . \tag{6.2}
\end{equation*}
$$

The associated local group G_{v} is given by (4.3), i.e.,

$$
\frac{\partial f}{\partial t}=-\frac{R}{\alpha} g+T, \frac{\partial g}{\partial t}=R \gamma+S \alpha
$$

It is easy to see that its finite equations are

$$
f=x-\frac{R t}{\alpha} y-\frac{1}{2} R S t^{2}-\frac{1}{2} \frac{\gamma}{\alpha} R^{2} t^{2}+T t, \quad g=y+\gamma R t+\alpha S t
$$

Write $R t=a, \quad S t=b, \quad T t=c ; \quad$ we get

$$
\begin{equation*}
f=x-\frac{a}{\alpha} y-\frac{1}{2} a b-\frac{1}{2} \frac{\gamma}{\alpha} a^{2}+c, \quad g=y+\gamma a+\alpha b \tag{6.3}
\end{equation*}
$$

Thus

$$
\bar{f}=\bar{x}-\frac{a}{\bar{\alpha}} \bar{y}-\frac{1}{2} a b-\frac{1}{2} \frac{\bar{\gamma}}{\bar{\alpha}} a^{2}+c, \quad \bar{g}=\bar{y}+\bar{\gamma} a+\bar{\alpha} b,
$$

i.e.,

$$
\begin{gathered}
f-\bar{f}=x-\bar{x}-a\left(\frac{y}{\alpha}-\frac{\bar{y}}{\bar{\alpha}}\right)-\frac{1}{2} a^{2}\left(\frac{\gamma}{\alpha}-\frac{\bar{\gamma}}{\bar{\alpha}}\right), \\
\frac{g}{\alpha}-\frac{\bar{g}}{\bar{\alpha}}=\frac{y}{\alpha}-\frac{\bar{y}}{\bar{\alpha}}+a\left(\frac{\gamma}{\alpha}-\frac{\bar{\gamma}}{\bar{\alpha}}\right)
\end{gathered}
$$

the elimination of a yields

$$
\left(\frac{y}{\alpha}-\frac{\bar{y}}{\bar{\alpha}}\right)^{2}+2\left(\frac{\gamma}{\alpha}-\frac{\bar{\gamma}}{\bar{\alpha}}\right)(x-\bar{x})=\left(\frac{g}{\alpha}-\frac{\bar{g}}{\bar{\alpha}}\right)^{2}+2\left(\frac{\gamma}{\alpha}-\frac{\bar{\gamma}}{\bar{\alpha}}\right)(f-\bar{f}),
$$

and we get the type (I).
Let us investigate the case $L \subset L_{8}, L$ being of the type (3.16) with $\operatorname{dim}[L, L]=2$. Then $A^{2}+B C=0$. First of all, suppose $A=B=0$, the case $A=C=0$ being symmetric. The algebra L is of the type

$$
\begin{equation*}
\left[v, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=B v_{2}, \quad\left[v_{2}, v_{3}\right]=0 ; \quad B \neq 0 . \tag{6.4}
\end{equation*}
$$

In \mathbf{C}^{2}, there are Γ_{s}-coordinates (u, v) such that

$$
v_{2}=\alpha \frac{\partial}{\partial v}, \quad v_{3}=\frac{\partial}{\partial u} ; \quad \alpha \neq 0 .
$$

Let

$$
v_{1}=b(u, v) \frac{\partial}{\partial u}+c(u, v) \frac{\partial}{\partial v}, \quad \frac{\partial b}{\partial u}+\frac{\partial c}{\partial v}=0 .
$$

From ($6.4_{1}, 2$), we get

$$
\frac{\partial b}{\partial v}=-\frac{1}{\alpha}, \quad \frac{\partial c}{\partial v}=0, \quad \frac{\partial b}{\partial u}=0, \quad \frac{\partial c}{\partial u}=-\alpha B,
$$

i.e.,

$$
v_{1}=\left(-\frac{v}{\alpha}+b_{0}\right) \frac{\partial}{\partial u}+\left(-\alpha B u+c_{0}\right) \frac{\partial}{\partial v} ; \quad b_{0}, c_{0} \in \mathbf{C} .
$$

Consider the Γ_{s}-coordinates $x=u-c_{0} \alpha^{-1} B^{-1}, y=v-\alpha b_{0}$. Then

$$
v_{1}=-\frac{y}{\alpha} \frac{\partial}{\partial x}-\alpha B x \frac{\partial}{\partial y}, \quad v_{2}=\alpha \frac{\partial}{\partial y}, \quad v_{3}=\frac{\partial}{\partial x} .
$$

The general element $v \in L$ is

$$
\begin{equation*}
v=R\left(-\frac{y}{\alpha} \frac{\partial}{\partial x}-\alpha B x \frac{\partial}{\partial y}\right)+S \alpha \frac{\partial}{\partial y}+T \frac{\partial}{\partial x} ; R, S, T \in \mathbf{R} ; \tag{6.5}
\end{equation*}
$$

and the local group G_{v} is given by

$$
\frac{\partial f}{\partial t}=-\frac{R}{\alpha} g+T, \quad \frac{\partial \varrho}{\partial t}=-R \alpha B f+S \alpha .
$$

Consider the group

$$
\begin{gather*}
f=a x-\frac{1}{\alpha} b y+c, \quad g=-a B b x+a y+\alpha d ; \tag{6.6}\\
a, b, c, d \in \mathbf{R}, \quad a^{2}-B b^{2}=1 .
\end{gather*}
$$

We get its identity for $a=1, b=c=0$. Let $a(t), b(t), c(t), d(t)$ be its one-parametric subgroup G_{1}, let $t=0$ correspond to its identity. Then

$$
a \frac{\mathrm{~d} a}{\mathrm{~d} t}-B b \frac{\mathrm{~d} b}{\mathrm{~d} t}=0, \quad \frac{\mathrm{~d} a(0)}{\mathrm{d} t}=0 .
$$

The vector field

$$
v=\left(-\frac{1}{\alpha} \frac{\mathrm{~d} b(0)}{\mathrm{d} t} y+\frac{\mathrm{d} c(0)}{\mathrm{d} t}\right) \frac{\partial}{\partial x}+\left(-\alpha B \frac{\mathrm{~d} b(0)}{\mathrm{d} t} x+\alpha \frac{\mathrm{d} d(0)}{\mathrm{d} t}\right) \frac{\partial}{\partial y}
$$

being associated to G_{1}, we see that (6.6) corresponds to (6.5). We have

$$
\begin{gathered}
\bar{f}=a \bar{x}-\frac{1}{\bar{\alpha}} b \bar{y}+c, \quad \bar{g}=-\bar{\alpha} B b \bar{x}+a \bar{y}+\bar{\alpha} d, \\
f-\bar{f}=a(x-\bar{x})-b\left(\frac{y}{\alpha}-\frac{\bar{y}}{\bar{\alpha}}\right), \quad \bar{\alpha} g-\alpha \bar{g}=-\alpha \bar{\alpha} B b(x-\bar{x})+a(\bar{\alpha} y-\alpha \bar{y})
\end{gathered}
$$

and

$$
B(f-\bar{f})^{2}-\left(\frac{g}{\alpha}-\frac{\bar{g}}{\bar{\alpha}}\right)^{2}=B(x-\bar{x})^{2}-\left(\frac{y}{\alpha}-\frac{\bar{y}}{\bar{\alpha}}\right)^{2}
$$

Thus we have obtained the type (II).
Now, let L be of the type (3.16) with $A^{2}+B C=0, A B \neq 0$, i.e.,

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=A v_{1}+B v_{2}, \quad\left[v_{2}, v_{3}\right]=-\frac{A^{2}}{B} v_{1}-A v_{2} \tag{6.7}
\end{equation*}
$$

Then $\left[A v_{1}+B v_{2}, v_{3}\right]=0$, and there are Γ_{s}-coordinates (u, v) such that

$$
\begin{aligned}
& A v_{1}+B v_{2}=\alpha \frac{\partial}{\partial v} \quad(0 \neq \alpha \in \mathbf{C}), \quad v_{3}=\frac{\partial}{\partial u} \\
& v_{1}=b(u, v) \frac{\partial}{\partial u}+c(u, v) \frac{\partial}{\partial v}, \quad \frac{\partial b}{\partial u}+\frac{\partial c}{\partial v}=0
\end{aligned}
$$

We have

$$
v_{2}=-\frac{A}{B} b \frac{\partial}{\partial u}+\frac{1}{B}(\alpha-A c) \frac{\partial}{\partial v}
$$

from (6.7 $7_{1,2}$)

$$
\frac{\partial b}{\partial v}=-\frac{B}{\alpha}, \quad \frac{\partial c}{\partial v}=0, \quad \frac{\partial b}{\partial u}=0, \quad \frac{\partial c}{\partial u}=-\alpha
$$

i.e.,

$$
v_{1}=\left(-\frac{B}{\alpha} v+b_{0}\right) \frac{\partial}{\partial u}+\left(-\alpha u+c_{0}\right) \frac{\partial}{\partial v} ; \quad b_{0}, c_{0} \in \mathbf{C} .
$$

In the Γ_{s}-coordinates

$$
x=u-\frac{c_{0}}{\alpha}, \quad y=v-\frac{b_{0}}{\alpha} B
$$

we get

$$
A v_{1}+B v_{2}=\alpha \frac{\partial}{\partial y}, \quad v_{3}=\frac{\partial}{\partial x}, \quad v_{1}=-\frac{B}{\alpha} y \frac{\partial}{\partial x}-\alpha x \frac{\partial}{\partial y}
$$

The general element $v \in L$ being

$$
\begin{equation*}
v=R\left(\frac{y}{\alpha} \frac{\partial}{\partial x}+\frac{\alpha}{B} x \frac{\partial}{\partial y}\right)+S \alpha \frac{\partial}{\partial y}+T \frac{\partial}{\partial x} ; R, S, T \in \mathbf{R} \tag{6.8}
\end{equation*}
$$

we do not obtain now groups-compare (6.8) with (6.5).
7. Above we have considered all possibilities for $L \subset L_{8}$ with $\operatorname{dim}[L, L]<3$. Now, there are exactly two Lie algebras (over \mathbf{R}) with $\operatorname{dim} L=\operatorname{dim}[L, L]=3$:

$$
\begin{equation*}
\left[w_{1}, w_{2}\right]=w_{3}, \quad\left[w_{1}, w_{3}\right]=-w_{2}, \quad\left[w_{2}, w_{3}\right]=w_{1} \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[w_{1}, w_{2}\right]=w_{3}, \quad\left[w_{1}, w_{3}\right]=w_{2}, \quad\left[w_{2}, w_{3}\right]=w_{1} . \tag{7.2}
\end{equation*}
$$

First of all, let us consider the Lie algebra L (7.2). The change $v_{1}=v_{3}, v_{2}=$ $=w_{2}-w_{1}, v_{3}=w_{2}+w_{1}$ of its basis yields

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]=v_{2}, \quad\left[v_{1}, v_{3}\right]=-v_{3}, \quad\left[v_{2}, v_{3}\right]=-2 v_{1} . \tag{7.3}
\end{equation*}
$$

In \mathbf{C}^{2}, there are Γ_{s}-coordinates (r, s) such that

$$
v_{2}=\frac{\partial}{\partial r}, \quad v_{1}=a(r, s) \frac{\partial}{\partial r}+b(r, s) \frac{\partial}{\partial s}, \quad \frac{\partial a}{\partial r}+\frac{\partial b}{\partial s}=0 .
$$

From (7.31),

$$
\frac{\partial a}{\partial r}=-1, \quad \frac{\partial b}{\partial r}=0
$$

and there exist a function $\alpha(s)$ and $b_{0} \in \mathbf{C}$ such that

$$
v_{1}=(-r+\alpha(s)) \frac{\partial}{\partial r}+\left(s+b_{0}\right) \frac{\partial}{\partial s} .
$$

Let us choose the Γ_{s}-coordinates

$$
u=r-\left(s+b_{0}\right) \int \alpha(s) d s, \quad v=s+b_{0}
$$

Then

$$
v_{2}=\frac{\partial}{\partial u}, \quad v_{1}=-u \frac{\partial}{\partial u}+v \frac{\partial}{\partial v} .
$$

Let

$$
v_{3}=e(u, v) \frac{\partial}{\partial u}+f(u, v) \frac{\partial}{\partial v}, \quad \frac{\partial e}{\partial u}+\frac{\partial f}{\partial v}=0 .
$$

From (7.33), we obtain

$$
\frac{\partial e}{\partial u}=2 u, \quad \frac{\partial f}{\partial u}=-2 v,
$$

and there exists a function $\varphi(v)$ and $f_{0} \in \mathbf{C}$ such that

From (7.32),

$$
v_{3}=\left(u^{2}+\varphi(v)\right) \frac{\partial}{\partial u}+\left(-2 u v+f_{0}\right) \frac{\partial}{\partial v} .
$$

$$
v \frac{\mathrm{~d} \varphi(v)}{\mathrm{d} v}+2 \varphi(v)=0
$$

and we obtain the existence of $\varphi_{0} \in \mathbf{C}$ such that

$$
v_{3}=\left(u^{2}-\frac{\varphi_{0}}{v^{2}}\right) \frac{\partial}{\partial u}+\left(-2 u v+f_{0}\right) \frac{\partial}{\partial v} .
$$

Finally, introduce the Γ_{s}-coordinates

$$
x=u+\frac{f_{0}}{2 v}, \quad y=v
$$

we have

$$
\begin{equation*}
v_{1}=-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}, \quad v_{2}=\frac{\partial}{\partial x}, \quad v_{3}=\left(x^{2}-\frac{\alpha^{2}}{y^{2}}\right) \frac{\partial}{\partial x}-2 x y \frac{\partial}{\partial y} . \tag{7.4}
\end{equation*}
$$

Now, it is easy to check that (7.4) are the infinitesimal transformations of (III).
Let the vector fields w_{1}, w_{2}, w_{3} on \mathbf{C}^{2} generate the algebra (7.1). Then the vector fields $i w_{1}, i v_{2}, i w_{3}$ generate the algebra (7.2), and the vector fields $v_{1}=i w_{3}, v_{2}=$ $=w_{2}-i w_{1}, v_{3}=w_{2}+i w_{1}$ satisfy (7.3). Thus we obtain the existence of Γ_{s}-coordinates (x, y) such that

$$
i w_{3}=-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}, \quad w_{2}-i w_{1}=\frac{\partial}{\partial x}, w_{2}+i w_{1}=\left(x^{2}-\frac{\alpha^{2}}{y^{2}}\right) \frac{\partial}{\partial x}-2 x y \frac{\partial}{\partial y} .
$$

Our result is as follows: Let the vector fields w_{1}, w_{2}, w_{3} satisfy (7.1), then there are (local) Γ_{s}-coordinates (x, y) such that

$$
\begin{align*}
& w_{1}=\frac{1}{2} i\left(1-x^{2}+\frac{\alpha^{2}}{y^{2}}\right) \frac{\partial}{\partial x}+i x y \frac{\partial}{\partial y}, \\
& w_{2}=\frac{1}{2}\left(1+x^{2}-\frac{\alpha^{2}}{y^{2}}\right) \frac{\partial}{\partial x}-x y \frac{\partial}{\partial y}, \tag{7.5}\\
& w_{3}=i x \frac{\partial}{\partial x}-i y \frac{\partial}{\partial y} .
\end{align*}
$$

8. Consider the space \mathbf{R}^{4} and its decomposition $\mathbf{R}^{4}=\mathbf{R}_{1}^{2} \oplus \mathbf{R}_{2}^{2}$. Denote by H the group $\left\{\gamma \in G L\left(\mathbf{R}^{4}\right) ; \gamma\left(\mathbf{R}_{1}^{2}\right)=\mathbf{R}_{1}^{2}, \gamma\left(\mathbf{R}_{2}^{2}\right)=\mathbf{R}_{2}^{2}\right\}$, and let Γ be the pseudogroup of local diffeomorphisms $\varphi: U \subset \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ satisfying ($\left.d \varphi\right)_{x} \in H$ for each $x \in U$. We wish to study hypersurfaces $M^{3} \subset \mathbf{R}^{4}$ with respect to Γ. Let $m \in M^{3}, T_{m}\left(M^{3}\right)$ the tangent space of M^{3} at m; denote by $S_{i}^{2}(m) ; i=1,2$; the plane for which $m \in S_{i}^{2}(m)$ and $S_{i}^{2}(m) \cap R_{i}^{2}=\Phi$. In what follows, let us restrict ourselves to the study of hypersurfaces $M^{3} \subset \mathbf{R}^{4}$ satisfying the following conditions: (i) M^{3} is analytic; (ii) $t_{i}(m)=T_{m}\left(M^{3}\right) \cap S_{i}^{2}(m)$ is one-dimensional for each $m \in M^{3}$ and
$=1,2$; (iii) $\tau_{m} \subset T_{m}\left(M^{3}\right)$ being the plane spanned by $t_{1}(m)$ and $t_{2}(m)$, the field τ_{m} is non-integrable. By means of the theory of systems of partial differential equations in involution (see, p.ex., K. Kuranishi, Lectures on involutive systems of partial differential equations; Publ. da Soc. Mat. de Sao Paulo, 1967), it is not difficult to prove

Theorem. Let $M^{3} \subset \mathbf{R}^{4}$ be a hypersurface and $\Phi: M^{3} \rightarrow \mathbf{R}^{4}$ an analytic mapping such that both M^{3} and $\widetilde{M}^{3}=\Phi\left(M^{3}\right)$ are hypersurfaces satisfying the conditions mentioned above. Let $(d \Phi)_{m}\left(t_{i}(m)\right)=\tilde{t}_{i}(m)$ for each $m \in M^{3}$ and $i=1,2$; let $m_{0} \in M^{3}$ be a fixed point. Then there is a neighbourhood $U \subset M^{3}$ of m_{0} and a diffeomorphism $\varphi \in \Gamma$ such that φ is defined on U and $\varphi / U=\Phi$.

To each hypersurface $M^{3} \subset \mathbf{R}^{4}$, we associate a G-structure $B_{G}\left(M^{3}\right)$ as follows. Let $\left(v_{1}, v_{2}, v_{3}\right)$ be a frame in $T_{m}\left(M^{3}\right)$. Then $\left(v_{1}, v_{2}, v_{3}\right) \in B_{G}\left(M^{3}\right)$ if and only if v_{i} spans $t_{i}(m)$ for $i=1,2 . \quad\left(w_{1}, w_{2}, w_{3}\right) \in B_{G}\left(M^{3}\right)$ being another frame at $m \in M^{3}$, we have

$$
\begin{equation*}
w_{1}=\alpha v_{1}, \quad w_{2}=\beta v_{2}, \quad w_{3}=\gamma v_{1}+\delta v_{2}+\varphi v_{3} ; \quad \alpha \beta \gamma \neq 0 . \tag{8.1}
\end{equation*}
$$

In a neighbourhood U of $m \in M^{3}$, let us choose an analytic section (v_{1}, v_{2}, v_{3}) of $B_{G}\left(M^{3}\right)$; $\left(w_{1}, w_{2}, w_{3}\right)$ being another section of $B_{G}\left(M^{3}\right)$, we have (8.1) with α, \ldots, φ real-valued functions on U. The vector fields $v_{1}, v_{2},\left[v_{1}, v_{2}\right]$ being \mathbf{R}-linearly independent, we may write

$$
\begin{align*}
& {\left[v_{1},\left[v_{1}, v_{2}\right]\right]=a_{1} v_{1}+a_{2} v_{2}+a_{3}\left[v_{1}, v_{2}\right],} \tag{8.2}\\
& {\left[v_{2},\left[v_{1}, v_{2}\right]\right]=b_{1} v_{1}+b_{2} v_{2}+b_{3}\left[v_{1}, v_{2}\right]}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[w_{1},\left[w_{1}, w_{2}\right]\right]=A_{1} w_{1}+A_{2} w_{2}+A_{3}\left[w_{1}, w_{2}\right],} \tag{8.3}\\
& {\left[w_{2},\left[w_{1}, w_{2}\right]\right]=B_{1} w_{1}+B_{2} w_{2}+B_{3}\left[w_{1}, w_{2}\right] .}
\end{align*}
$$

From the Jacobi identity

$$
\left[v_{1},\left[v_{2},\left[v_{1}, v_{2}\right]\right]\right]+\left[v_{2},\left[\left[v_{1}, v_{2}\right], v_{1}\right]\right]=0
$$

we get

$$
\begin{align*}
& v_{1} b_{1}-v_{2} a_{1}+a_{1} b_{3}-a_{3} b_{1}=0, \tag{8.4}\\
& v_{1} b_{2}-v_{2} a_{2}+a_{2} b_{3}-a_{3} b_{2}=0, \\
& v_{1} b_{3}-v_{2} a_{3}+b_{2}+a_{1}=0
\end{align*}
$$

and analoguous equations for A_{1}, \ldots, B_{3}. Introduce the functions

$$
\begin{equation*}
p=\left(\alpha \beta^{2}\right)^{1 / 3}, \quad q=\left(\alpha^{2} \beta\right)^{1 / 3} \tag{8.5}
\end{equation*}
$$

over U so that the equations $\left(8.1_{1,2}\right)$ become

$$
\begin{equation*}
w_{1}=p^{-1} q^{2} v_{1}, \quad w_{2}=p^{2} q^{-1} v_{2} . \tag{8.6}
\end{equation*}
$$

Then

$$
\begin{aligned}
& {\left[w_{1}, w_{2}\right]=\left[p^{-1} q^{2} v_{1}, p^{2} q^{-1} v_{2}\right]=} \\
& =\left(q \cdot v_{2} p-2 p . v_{2} q\right) v_{1}+\left(2 q \cdot v_{1} p-p . v_{1} q\right) v_{2}+p q\left[v_{1}, v_{2}\right], \\
& {\left[w_{1},\left[w_{1}, w_{2}\right]\right]=(.) v_{1}+(.) v_{2}+\left(q^{3} a_{3}+3 p^{-1} q^{3} \cdot v_{1} p\right)\left[v_{1}, v_{2}\right]=} \\
& =(.) v_{1}+(.) v_{2}+p q A_{3}\left[v_{1}, v_{2}\right], \\
& {\left[w_{2},\left[w_{1}, w_{2}\right]\right]=(.) v_{1}+(.) v_{2}+\left(p^{3} b_{3}+3 p^{3} q^{-1} . v_{2} q\right)\left[v_{1}, v_{2}\right]=} \\
& =(.) v_{1}+(.) v_{2}+p q B_{3}\left[v_{1}, v_{2}\right],
\end{aligned}
$$

and we have

$$
\begin{equation*}
p^{-1} q^{2}\left(a_{3}+3 p^{-1} \cdot v_{1} p\right)=A_{3}, \quad p^{2} q^{-1}\left(b_{3}+3 q^{-1} \cdot v_{2} q\right)=B_{3} \tag{8.8}
\end{equation*}
$$

The section (v_{1}, v_{2}, v_{3}) of $B_{G}\left(M^{3}\right)$ being given, there exists (possibly in a small neighbourhood $U_{1} \subset U$ of $m \in M^{3}$) a section (w_{1}, w_{2}, w_{3}) of $B_{G}\left(M^{3}\right)$ satisfying (8.3) with $A_{3}=B_{3}=0$; indeed, it is sufficient to take the section (8.6) where p, q are any solutions of the system

$$
\begin{equation*}
v_{1} p=-\frac{1}{3} p a_{3}, \quad v_{2} q=-\frac{1}{3} q b_{3} . \tag{8.9}
\end{equation*}
$$

In what follows, let us restrict ourselves to the sections $\left(v_{1}, v_{2}, v_{3}\right),\left(w_{1}, w_{2}, v_{3}\right)$ of $B_{G}\left(M^{3}\right)$ satisfying

$$
\begin{equation*}
a_{3}=b_{3}=0 \quad \text { or } \quad A_{3}=B_{3}=0 \quad \text { resp. } ; \tag{8.10}
\end{equation*}
$$

we have $(8.6)+\left(8.1_{3}\right)$ with

$$
\begin{equation*}
v_{1} p=0, \quad v_{2} q=0 \tag{8.11}
\end{equation*}
$$

Now,
$\left[w_{1},\left[w_{1}, w_{2}\right]\right]=\left(2 p^{-1} q^{3} \cdot v_{1} v_{2} p+2 q^{2} \cdot v_{2} v_{1} q-2 p^{-1} q^{2} \cdot v_{2} p \cdot v_{1} q+\right.$

$$
\begin{equation*}
\left.+q^{3} a_{1}\right) v_{1}+\left(-q^{2} \cdot v_{1} v_{1} q+q^{3} a_{2}\right) v_{2}=p^{-1} q^{2} A_{1} v_{1}+p^{2} q^{-1} A_{2} v_{2} \tag{8.13}
\end{equation*}
$$

$\left[w_{2},\left[w_{1}, w_{2}\right]\right]=\left(p^{2} . v_{2} v_{2} p+p^{3} b_{1}\right) v_{1}+\left(-2 p^{2} . v_{1} v_{2} p-2 p^{3} q^{-1} \cdot v_{2} v_{1} q+\right.$

$$
\left.+2 p^{2} q^{-1} \cdot v_{2} p \cdot v_{1} q+p^{3} b_{2}\right) v_{2}=p^{-1} q^{2} B_{1} v_{1}+p^{2} q^{-1} B_{2} v_{2}
$$

i.e.,

$$
\begin{gather*}
-q^{3} \cdot v_{1} v_{1} q+q^{4} a_{2}=p^{2} A_{2} \tag{8.14}\\
p^{3} \cdot v_{2} v_{2} p+p^{4} b_{1}=q^{2} B_{1} \\
2 q \cdot v_{1} v_{2} p+2 p \cdot v_{2} v_{1} q-2 v_{2} p \cdot v_{1} q+p q a_{1}=A_{1} \\
-2 q \cdot v_{1} v_{2} p-2 p \cdot v_{2} v_{1} q+2 v_{2} p \cdot v_{1} q+p q b_{2}=B_{2} . \tag{8.15}
\end{gather*}
$$

The equations (8.4) reduce to

$$
\begin{equation*}
v_{1} b_{1}-v_{2} a_{1}=0, \quad v_{1} b_{2}-v_{2} a_{2}=0, \quad b_{2}+a_{1}=0 \tag{8.16}
\end{equation*}
$$

and analoguous equations for A_{1}, \ldots, B_{2}; thus, (8.15) is a consequence of (8.143) and (8.163).

Let us consider the system (8.11) $+(8.14)$. From (8.11) and (8.141.2), we get

$$
\begin{array}{ll}
v_{1} v_{1} p=0, & v_{1} v_{2} q=0 \tag{8.17}\\
v_{2} v_{1} p=0, & v_{2} v_{2} q=0 \\
v_{2} v_{2} p=p^{-3} q^{2} B_{1}-p b_{1}, & v_{1} v_{1} q=q a_{2}-p^{2} q^{-3} A_{2}
\end{array}
$$

and

$$
\begin{align*}
& v_{1} v_{1} v_{1} p=v_{2} v_{1} v_{1} p=v_{1} v_{2} v_{1} p=v_{2} v_{2} v_{1} p=0, \tag{8.18}\\
& v_{1} v_{2} v_{2} p=2 p^{-3} q B_{1} \cdot v_{1} q+p^{-3} q^{2} \cdot v_{1} B_{1}-p \cdot v_{1} b_{1}, \\
& v_{2} v_{2} v_{2} p=-3 p^{-4} q^{2} B_{1} \cdot v_{2} p-b_{1} \cdot v_{2} p+p^{-3} q^{2} \cdot v_{2} B_{1}-p . v_{2} b_{1}, \\
& v_{1} v_{1} v_{2} q=v_{2} v_{1} v_{2} q=v_{1} v_{2} v_{2} q=v_{2} v_{2} v_{2} q=0, \\
& v_{1} v_{1} v_{1} q=a_{2} \cdot v_{1} q+3 p^{2} q^{-4} A_{2} \cdot v_{1} q+q \cdot v_{1} a_{2}-p^{2} q^{-3} \cdot v_{1} A_{2}, \\
& v_{2} v_{1} v_{1} q=-2 p q^{-3} A_{2} \cdot v_{2} p+q \cdot v_{2} a_{2}-p^{2} q^{-3} \cdot v_{2} A_{2} .
\end{align*}
$$

The equations (8.2) may be rewritten as

$$
\begin{align*}
& v_{1} v_{1} v_{2}-2 v_{1} v_{2} v_{1}+v_{2} v_{1} v_{1}-a_{1} v_{1}-a_{2} v_{2}=0 \tag{8.19}\\
& 2 v_{2} v_{1} v_{2}-v_{2} v_{2} v_{1}-v_{1} v_{2} v_{2}-b_{1} v_{1}+a_{1} v_{2}=0
\end{align*}
$$

Applying them to the functions p, q, we get

$$
\begin{align*}
& v_{1} v_{1} v_{2} p=a_{2} \cdot v_{2} p \tag{8.20}\\
& v_{2} v_{1} v_{2} p p^{-3} q B_{1} \cdot v_{1} q-\frac{1}{2} a_{1} \cdot v_{2} p+\frac{1}{2} p^{-3} q^{2} \cdot v_{1} B_{1}-\frac{1}{2} p \cdot v_{1} b_{1} \\
& v_{2} v_{2} v_{1} q=-b_{1} \cdot v_{1} q, \\
& v_{1} v_{2} v_{1} q=-p q^{-3} A_{2} \cdot v_{2} p-\frac{1}{2} a_{1} \cdot v_{1} q-\frac{1}{2} p^{2} q^{-3} \cdot v_{2} A_{2}+\frac{1}{2} q \cdot v_{2} a_{2}
\end{align*}
$$

Applying v_{1} and v_{2} to (8.143), we get

$$
2 q \cdot v_{1} v_{1} v_{2} p+2 p \cdot v_{1} v_{2} v_{1} q-2 v_{2} p \cdot v_{1} v_{1} q+p a_{1} \cdot v_{1} q+p q \cdot v_{1} a_{1}=v_{1} A_{1}
$$

$$
2 q \cdot v_{2} v_{1} v_{2} p+2 p \cdot v_{2} v_{2} v_{1} q-2 v_{1} q \cdot v_{2} v_{2} p+q a_{1} \cdot v_{2} p+p q \cdot v_{2} a_{1}=v_{2} A_{1}
$$ i.e.,

$$
\begin{aligned}
& q^{3}\left(v_{1} a_{1}+v_{2} a_{2}\right)=p^{-1} q^{2} \cdot v_{1} A_{1}+p^{2} q^{-1} \cdot v_{2} A_{2}=w_{1} A_{1}+w_{2} A_{2}, \\
& p^{3}\left(v_{2} a_{1}-v_{1} b_{1}\right)=p^{2} q^{-1} \cdot v_{2} A_{1}-p^{-1} q^{2} \cdot v_{1} B_{1}=w_{2} A_{1}-w_{1} B_{1}
\end{aligned}
$$

by means of (8.20). These equations being satisfied because of (8.16), we see that all the differential consequences of (8.143) are consequences of the system (8.11) + $+\left(8.14_{1,2}\right)$.

From (8.2) $+(8.10)$, we get

$$
\begin{align*}
& {\left[v_{1},\left[v_{1},\left[v_{1}, v_{2}\right]\right]\right]=v_{1} a_{1} \cdot v_{1}+v_{1} a_{2} \cdot v_{2}+a_{2}\left[v_{1}, v_{2}\right],} \tag{8.21}\\
& {\left[v_{2},\left[v_{2},\left[v_{1}, v_{2}\right]\right]\right]=v_{2} b_{1} \cdot v_{1}-v_{2} a_{1} \cdot v_{2}-b_{1}\left[v_{1}, v_{2}\right],}
\end{align*}
$$

i.e.,

$$
\begin{align*}
L_{1} \equiv & v_{1} v_{1} v_{1} v_{2}-3 v_{1} v_{1} v_{2} v_{1}+3 v_{1} v_{2} v_{1} v_{1}-v_{2} v_{1} v_{1} v_{1}-v_{1} a_{1} \cdot v_{1}-v_{1} a_{2} \cdot v_{2}- \\
& -a_{2} \cdot v_{1} v_{2}+a_{2} \cdot v_{2} v_{1}=0 \\
L_{2} \equiv & v_{1} v_{2} v_{2} v_{2}-3 v_{2} v_{1} v_{2} v_{2}+3 v_{2} v_{2} v_{1} v_{2}-v_{2} v_{2} v_{2} v_{1}-v_{2} b_{1} \cdot v_{2} a_{1} \cdot v_{2}+ \\
& +b_{1} \cdot v_{1} v_{2}-b_{1} \cdot v_{2} v_{1}=0 . \tag{8.22}
\end{align*}
$$

Now,

From $L_{1} q=0, L_{2} p=0$, we obtain

$$
\begin{gather*}
3 p q^{-4} A_{2} \cdot v_{2} p \cdot v_{1} q-3 p q^{-3} A_{2} \cdot v_{1} v_{2} p-3 p^{2} q^{-4} A_{2} \cdot v_{2} v_{1} q+ \tag{8.23}\\
+\frac{3}{2} p^{2} q^{-4} \cdot v_{2} A_{2} \cdot v_{1} q-p q^{-3} \cdot v_{1} A_{2} \cdot v_{2} p+\frac{3}{2} q \cdot v_{1} v_{2} a_{2}+\frac{3}{2} q a_{1} a_{2}- \\
-\frac{3}{2} p^{2} q^{-3} a_{1} A_{2}-\frac{3}{2} p^{2} q^{-3} \cdot v_{1} v_{2} A_{2}-q \cdot v_{2} v_{1} a_{2}+p^{2} q^{-3} \cdot v_{2} v_{1} A_{2}=0, \\
3 p^{-4} q B_{1} \cdot v_{2} p \cdot v_{1} q-3 p^{-4} q^{2} B_{1} \cdot v_{1} v_{2} p-3 p^{-3} q B_{1} \cdot v_{2} v_{1} q+ \\
\quad+\frac{3}{2} p^{-4} q^{2} \cdot v_{1} B_{1} \cdot v_{2} p-p^{-3} q \cdot v_{2} B_{1} \cdot v_{1} q+p^{-3} q^{2} \cdot v_{1} v_{2} B_{1}- \\
-\frac{3}{2} p^{-3} q^{2} \cdot v_{2} v_{1} B_{1}-p \cdot v_{1} v_{2} b_{1}+\frac{3}{2} p \cdot v_{2} v_{1} b_{1}-\frac{3}{2} p^{-3} q^{2} a_{1} B_{1}+\frac{3}{2} p a_{1} b_{1}=0 .
\end{gather*}
$$

$$
\begin{aligned}
& v_{1} v_{1} v_{2} v_{1} q=3 p q^{-4} A_{2} \cdot v_{2} p \cdot v_{1} q-p q^{-3} \cdot v_{1} A_{1} \cdot v_{2} p-p q^{-3} A_{2} \cdot v_{1} v_{2} p-\frac{1}{2} v_{1} a_{1} \cdot v_{1} q- \\
& -\frac{1}{2} q a_{1} a_{2}+\frac{1}{2} p^{2} q^{-3} a_{1} A_{2}+\frac{3}{2} p^{2} q^{-4} \cdot v_{2} A_{2} \cdot v_{1} q-\frac{1}{2} p^{2} q^{-3} \cdot v_{1} v_{2} A_{2}+ \\
& +\frac{1}{2} v_{2} a_{2} \cdot v_{1} q+\frac{1}{2} q . v_{1} v_{2} a_{2}, \\
& v_{1} v_{2} v_{1} v_{1} q=6 p q^{-4} A_{2} \cdot v_{2} p . v_{1} q-2 p q^{-3} \cdot v_{1} A_{2} . v_{2} p-2 p q^{-3} A_{2} . v_{1} v_{2} p+ \\
& +v_{2} a_{2} \cdot v_{1} q+q . v_{1} v_{2} a_{2}+3 p^{2} q^{-4} . v_{2} A_{2} . v_{1} q-p^{2} q^{-3} . v_{1} v_{2} A_{2} \text {, } \\
& v_{2} v_{1} v_{1} v_{1} q=v_{2} a_{2} . v_{1} q+a_{2} . v_{2} v_{1} q+6 p q^{-4} A_{2} . v_{2} p . v_{1} q+3 p^{2} q^{-4} \cdot v_{2} A_{2} . v_{1} q+ \\
& +3 p^{2} q^{-4} A_{2} . v_{2} v_{1} q+q . v_{2} v_{1} a_{2}-2 p q^{-3} . v_{1} A_{2} . v_{2} p-p^{2} q^{-3} . v_{2} v_{1} A_{2} \text {, } \\
& v_{1} v_{2} v_{2} v_{2} p=-6 p^{-4} q B_{1} . v_{2} p . v_{1} q-3 p^{-4} q^{2} . v_{1} B_{1} . v_{2} p-3 p^{-4} q^{2} B_{1} . v_{1} v_{2} p- \\
& -v_{1} b_{1} . v_{2} p-b_{1} \cdot v_{1} v_{2} p+2 p^{-3} q . v_{2} B_{1} . v_{1} q+p^{-3} q^{2} \cdot v_{1} v_{2} B_{1}- \\
& -p . v_{1} v_{2} b_{1}, \\
& v_{2} v_{1} v_{2} v_{2} p=-6 p^{-4} q B_{1} \cdot v_{2} p \cdot v_{1} q+2 p^{-3} q \cdot v_{2} B_{1} \cdot v_{1} q+2 p^{-3} q B_{1} \cdot v_{2} v_{1} q- \\
& -3 p^{-4} q^{2} . v_{1} B_{1} . v_{2} p+p^{-3} q^{2} . v_{2} v_{1} B_{1}-v_{1} b_{1} \cdot v_{2} p-p . v_{2} v_{1} b_{1}, \\
& v_{2} v_{2} v_{1} v_{2} p=-3 p^{-4} q B_{1} \cdot v_{2} p . v_{1} q+p^{-3} q \cdot v_{2} B_{1} . v_{1} q+ \\
& +p^{-3} q B_{1} . v_{2} v_{1} q-\frac{1}{2} v_{2} a_{1} . v_{2} p-\frac{1}{2} p^{-3} q^{2} a_{1} B_{1}+ \\
& +\frac{1}{2} p a_{1} b_{1}-\frac{3}{2} p^{-4} q^{2} \cdot v_{1} B_{1} \cdot v_{2} p+\frac{1}{2} p^{-3} q^{2} . v_{2} v_{1} B_{1}- \\
& -\frac{1}{2} v_{1} b_{1} . v_{2} p-\frac{1}{2} p . v_{2} v_{1} b_{1} .
\end{aligned}
$$

Multiplying (8.143) by $\frac{3}{2} p q^{-4} A_{2}$ or $\frac{3}{2} p^{-4} q B_{1}$ resp. and adding it to (8.23 $)$ or (8.232) resp., we get

$$
\begin{gather*}
\frac{3}{2} p^{2} q^{-4} \cdot v_{2} A_{2} \cdot v_{1} q-p q^{-3} \cdot v_{1} A_{2} \cdot v_{2} p+\frac{3}{2} q \cdot v_{1} v_{2} a_{2}+\frac{3}{2} q a_{1} a_{2}- \tag{8.24}\\
\quad-\frac{3}{2} p^{2} q^{-3} \cdot v_{1} v_{2} A_{2}-q \cdot v_{2} v_{1} a_{2}+p^{2} q^{-3} \cdot v_{2} v_{1} A_{2}-\frac{3}{2} p q^{-4} A_{1} A_{2}=0, \\
\frac{3}{2} p^{-4} q^{2} \cdot v_{1} B_{1} \cdot v_{2} p-p^{-3} q \cdot v_{2} B_{1} \cdot v_{1} q+p^{-3} q^{2} \cdot v_{1} v_{2} B_{1}- \\
-\frac{3}{2} p^{-3} q^{2} \cdot v_{2} v_{1} B_{1}-p \cdot v_{1} v_{2} b_{1}+\frac{3}{2} p \cdot v_{2} v_{1} b_{1}+\frac{3}{2} p a_{1} b_{1}-\frac{3}{2} p^{-4} q A_{1} B_{1}=0 .
\end{gather*}
$$

From (8.6),
$v_{2} v_{1}=q^{-2} \cdot v_{2} p . w_{1}+p^{-1} q^{-1} \cdot w_{2} w_{1}, v_{1} v_{2}=p^{-2} \cdot v_{1} q \cdot w_{2}+p^{-1} q^{-1} \cdot w_{1} w_{2}$.
Finally, we get

$$
\begin{array}{r}
p^{-1} q^{5}\left(3 v_{1} v_{2} a_{2}-2 v_{2} v_{1} a_{2}+3 a_{1} a_{2}\right)=3 w_{1} w_{2} A_{2}-2 w_{2} w_{1} A_{2}+3 A_{1} A_{2}, \tag{8.26}\\
p^{5} q^{-1}\left(3 v_{2} v_{1} b_{1}-2 v_{1} v_{2} b_{1}+3 a_{1} b_{1}\right)=3 w_{2} w_{1} B_{1}-2 w_{1} w_{2} B_{1}+3 A_{1} B_{1}
\end{array}
$$

from (8.6), (8.25) and (8.24).
Let us write

$$
\begin{array}{ll}
j_{1}=3 v_{1} v_{2} a_{2}-2 v_{2} v_{1} a_{2}+3 a_{1} a_{2}, & j_{2}=3 v_{2} v_{1} b_{1}-2 v_{1} v_{2} b_{1}+3 a_{1} b_{1}, \tag{8.27}\\
\mathscr{f}_{1}=3 w_{1} w_{2} A_{2}-2 w_{2} w_{1} A_{2}+3 A_{1} A_{2}, \mathcal{f}_{2}=3 w_{2} w_{1} B_{1}-2 w_{1} w_{2} B_{1}+3 A_{1} B_{1} .
\end{array}
$$

Then

$$
\begin{equation*}
\alpha^{3} \beta j_{1}=\mathfrak{f}_{1}, \quad \alpha \beta^{3} j_{2}=\mathscr{f}_{2} \tag{8.28}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
j_{1} j_{2} \neq 0 \tag{8.29}
\end{equation*}
$$

and write

$$
\begin{equation*}
k_{1}=\left|j_{1}-3 j_{2}\right|^{1 / 8}, \quad k_{2}=\left|j_{1} j_{2}-3\right|^{1 / 8} \tag{8.30}
\end{equation*}
$$

Then

$$
\begin{equation*}
k_{1}=|\alpha| \cdot K_{1}, \quad k_{2}=|\beta| \cdot K_{2} \tag{8.31}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{1} w_{1}=\operatorname{sgn} \alpha \cdot k_{1} v_{1}, \quad K_{2} w_{2}=\operatorname{sgn} \beta \cdot k_{2} v_{2} . \tag{8.32}
\end{equation*}
$$

Theorem. On M^{3}, be given a G-structure $B_{G}\left(M^{3}\right)$ of the considered type. In a neighbourhood of $m_{0} \in M^{3}$, let us choose its section (v_{1}, v_{2}, v_{3}) in such a way that (8.2) and (8.10) are satisfied. Suppose that we have (8.29) for the functions j_{1}, j_{2} defined by (8.27). Consider the vector fields

$$
\begin{equation*}
V=k_{1} v_{1} . \quad V_{2}=k_{2} v_{2} \tag{8.33}
\end{equation*}
$$

k_{1} and k_{2} being defined by (8.30). These vector fields are invariant up to the sign, i.e., choosing another section (w_{1}, w_{2}, w_{3}) satisfying (8.3) and (8.10), we have $W_{1} \equiv K_{1} w_{1}=$ $= \pm V_{1}, W_{2} \equiv K_{2} w_{2}= \pm V_{2}$.
9. Consider the space \mathbf{C}^{2}, i.e., the space \mathbf{R}^{4} endowed with a fixed automorphism $I: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ satisfying $I^{2}=-i d$. Let $H^{\prime} \subset G L\left(\mathbf{R}^{4}\right)$ be the subgroup of elements $\gamma \in G L\left(\mathbf{R}^{4}\right)$ satisfying $\gamma I=I \gamma$. The local diffeomorphism $\varphi: U \subset \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ is called holomorphic if $(d \varphi)_{x} \in H^{\prime}$ for each $x \in U$. Our task is to study hypersurfaces $M^{3} \subset \mathbf{R}^{4}$ with respect to the pseudogroup Γ^{\prime} of all local holomorphic diffeomorphisms.

Let $m \in M^{3}$. Write $\tau_{m}=T_{m}\left(M^{3}\right) \cap I T_{m}\left(M^{3}\right) ; \tau_{m}$ is always a plane. Let us restrict ourselves to hypersurfaces for which the field of planes τ_{m} is non-integrable. To M^{3}, we associate a G^{\prime}-structure $B_{G^{\prime}}^{\prime}\left(M^{3}\right)$ as follows. The frame (u_{1}, u_{2}, u_{3}) of $T_{m}\left(M^{3}\right)$ belongs to $B_{G^{\prime}}^{\prime}\left(M^{3}\right)$ if and only if $u_{1} \in \tau_{m}, u_{2}=I u_{1} . \quad\left(\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}\right)$ being another frame of $B_{G^{\prime}}^{\prime}\left(M^{3}\right)$ over m, we have

$$
\begin{align*}
& \tilde{u}_{1}=\varrho u_{1}-\sigma u_{2}, \tag{9.1}\\
& \tilde{u}_{2}=\sigma u_{1}+\varrho u_{2}, \\
& \tilde{u}_{3}=\varkappa_{1} u_{1}+\varkappa_{2} u_{2}+\varkappa u_{3} ; \quad\left(\varrho^{2}+\sigma^{2}\right) \varkappa \neq 0 .
\end{align*}
$$

In a neighbourhood of $m \in M^{3}$, let us choose a section $\left(u_{1}, u_{2}, u_{3}\right)$ of $B_{G^{\prime}}^{\prime}\left(M^{3}\right)$. We may write

$$
\begin{align*}
& {\left[u_{1},\left[u_{1}, u_{2}\right]\right]=c_{1}, u_{1}+c_{2} u_{2}+c_{3}\left[u_{1}, u_{2}\right],} \tag{9.2}\\
& {\left[u_{2},\left[u_{1}, u_{2}\right]\right]=d_{1} u_{1}+d_{2} u_{2}+d_{3}\left[u_{1}, u_{2}\right] .}
\end{align*}
$$

Consider the complexification $T^{C}\left(M^{3}\right)=T\left(M^{3}\right) \oplus i T\left(M^{3}\right)$ of the tangent bundle $T\left(M^{3}\right)$ and its vector fields

$$
\begin{equation*}
v_{1}=u_{1}+i u_{2}, v_{2}=u_{1}-i u_{2} \text { or } w_{1}=\tilde{u}_{1}+i \tilde{u}_{2}, w_{2}=\tilde{u}_{1}-i \tilde{u}_{2} \text { resp. } \tag{9.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
w_{1}=\alpha v_{1}, w_{2}=\beta v_{2}, \quad \text { where } \quad \alpha=\varrho+i \sigma, \beta=\varrho-i \sigma \tag{9.4}
\end{equation*}
$$

Further,

$$
\begin{align*}
{\left[v_{1},\left[v_{1}, v_{2}\right]\right]=} & \left\{d_{1}-c_{2}-i\left(d_{2}+c_{1}\right)\right\} v_{1}+\left\{d_{1}+c_{2}+i\left(d_{2}-c_{1}\right)\right\} v_{2}+(9 \tag{9.5}\\
& +\left(c_{3}+i d_{3}\right)\left[v_{1}, v_{2}\right], \\
{\left[v_{2},\left[v_{1}, v_{2}\right]\right]=} & \left\{-d_{1}-c_{2}+i\left(d_{2}-c_{1}\right)\right\} v_{1}+\left\{-d_{1}+c_{2}-i\left(d_{2}+c_{1}\right)\right\} v_{2}+ \\
& +\left(c_{3}-i d_{3}\right)\left[v_{1}, v_{2}\right] .
\end{align*}
$$

To obtain invariants of $M^{3} \subset \mathbf{C}^{2}$, we proceed formally in the same way as we have done in the preceding section.

