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I. Introduction and preliminaries 

By a transformation monoid on a set A we mean any set of transformations of A 
which is closed under composition and contains the identical transformation. 
A transformation monoid H on A is called algebraic if H is just the set of endo
morphisms of some universal algebra (with arbitrary, not necessarily finitary 
operations); it is called finitary algebraic if H is the set of endomorphisms of some 
finitary algebra. 

The problem of characterizing algebraic and finitary algebraic transformation 
monoids, stated in [5], is solved only in some special cases: see e.g. [1] for the case 
of the semigroup H being cyclic; [9] for H containing all permutations; [4], [6] and 
[5] for H consisting of permutations only; [3] for H consisting of injective and 
constant transformations only. 

On the other hand, it follows from [7] that every transformation monoid H on A 
is the set of endomorphisms of a relational structure (with infinitary relations). 
H is the set of endomorphisms of a finitary relational structure iff H contains any 
transformation whose every finite restriction can be extended to a transformation 
belonging to H; this follows from [2], but an easy direct proof could be given. 

This shows that the original problem of characterizing algebraic and finitary 
algebraic transformation monoids is closely related to the following problem: given 
a relational structure, decide whether the transformation monoid of its endo
morphisms is algebraic (finitary algebraic, resp.). The two main results of the present 
paper, Theorems 2 and 6, are concerned with two special cases of this problem. 
In Theorem 6 we describe all unary relational structures whose set of endomorphisms 
is algebraic. Theorem 2 says that if H is an algebraic transformation monoid and 
any endomorphism of a given quasiordered set (which is not linearly ordered) 
belongs to / / , then H contains all transformations. This was announced by 
M. Sekanina in [8] in the special case of H being finitary algebraic (and the quasi-
ordered set being ordered). Sekanina's proof uses some deep results of [10] and, 
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as it seems, can not be generalized to the infinitary case. The present paper was 
inspired by [8]. I am indebted to A. Pultr for valuable advice. 

We identify an ordinal number / with the set of all ordinal numbers smaller 
than;. Let a set A and an ordinal number j be given. A* is the set of all mappings 
of/ into A. (We identify A1 with A and A2 with A X A.) By af-ary operation 
(or operation of arity j) on A we mean any mapping of A* into A. By af-ary relation 
on A we mean any subset of AK 

By an algebra we mean an ordered pair (A, F) where A is a set and F is a set 
of operations on A. If every / e F is finitary (i.e. of finite arity), then (A, F) is 
called finitary. If every f eF is unary, then <A, F) is called unary. If / is an 
operation on A, then we write <A,f) instead of <A, {/}>. By a relational structure 
we mean an ordered pair <A, R) where A is a set and I? is a set of relations on A. 
We speak of finitary and unary relational structures and write <A, r) instead of 
<A, {r}>. 

Let an algebra (A, F) be given. A transformation h of A is called endo-
morphism of <^4, F) if h(f(x)) = f(h o x) for all / e F and xeA* (j being the arity 
off). The set of endomorphisms of (A, F) is denoted by End(A, F). Let (A, R) 
be a relational structure. A transformation h of A is called endomorphism of <A, R) 
if hox er for all r eR and x er. The set of endomorphisms of <A, R) is 
denoted by End(A, R). 

Let (A, F) be an algebra. A set X c A is called closed in <A, F) if f(x) e X 
for all / G F and x e X* (j being the arity off). An algebra {A, F) is called quasi-
trivial if every subset of A is closed in (A, F). An algebra (A, F) is called trivial 
if every / e F is trivial; a f-ary operation / on A is called trivial if there exists an 
i ej such that f(x) = x(i) for all x e AK If <A, F) is trivial, then End(A, F) = AA, 
i.e. every transformation of A is an endomorphism of (A, F). 

Theorem 1. Let an algebra <A, F) and two different elements a, b of A be 
given. If every mapping of A into {a, b} is an endomorphism of <A, F), then 
End(A, F) = AA. 

Proof. Suppose that some transformation h of A is not an endomorphism. 
There exists an operation f eF of some arity- j and an xeA* such that h(f(x)) -j= 
4= f(h o x). There exists a mapping k of A onto {a, b} such that k(h(f(x))) #= 
4= k(f(hox)). As both koh and k are endomorphisms, we have k(h(f(x))) = 
= f(k oho x) = k(f(h ox)), a contradiction. 

2. Quasiordered sets 

Let r be a binary relation on A. If r is reflexive and transitive, then the relational 
structure <A, r) is called quasiordered set. If r is reflexive, transitive and anti-
symmetrical, then <A, r) is called ordered set. An ordered set {A, r) is linearly 
ordered if for any two elements a, b e A either (a, b) er or <b, a) er holds. An 
ordered set <A, r) is called antichain if (a, b) er implies a = b. 
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Theorem 2. Let {A, r> be a quasiordered set which is not linearly ordered. 
Let (A, F> be an algebra such that End(A, r) c End(A, F). Then End(A, F) = AA. 

Proof. If (A, r> is not ordered, then we may apply Theorem 1. If (A, r> is 
an antichain, then End(A, r) = AA. Thus we shall suppose that (A, r> is an 
ordered set which is neither an antichain nor a linearly ordered set. We have 
Card(A) > 3. By an endomorphism we shall mean an endomorphism of (A, r>. 
We shall write a < b instead of <a, b} er. Let / e F be I-ary. It is sufficient to 
prove End(A,f) = AA. 

L e m m a 1. <-4,/> is quasitrivial. 
Proof. Notice first that whenever b < c, then {b, c} is closed in (A,f); in 

fact, {b, c} is the range of the endomorphism h defined by h(y) = b if y < b and 
h(y) = c if y ^ b. Suppose that some X £ A is not closed in (A,f}. There exists 
zn x eX* such that/(#) £ X. Put f(x) = a. Suppose b < a < c for some b and c. 
Define an endomorphism k by k(y) = b if y < a; k(y) = a if y = a; k(y) = c 
if y ^ a. We have a = k(a) = k(f(x)) =f(k o x) where ko x e{b, c}J, a contra
diction, as {b, c} is closed. Consequently, a is either maximal or minimal. Choose 
an element d 4= a such that if a is not both maximal and minimal, then d is com
parable with a. Define an endomorphism g by g(a) = a and g(y) = d if y 4= a. 
We have a = g(a) = g(f(x)) =f(gox) where gox e {d}*, a contradiction, as any 
one-element subset of A is the range of a constant endomorphism and thus closed. 

L e m m a 2. There exist three pairwise different elements a, b, ceA such 
that a, b are comparable and one of the following two conditions is satisfied: 
(1) Every mapping k of {a, b, c} into {a, b, c} such that k(b) = b can be extended 

to an endomorphism. 
(2) Every mapping k of {a, b, c} into {a, b, c} such that either k(a) = k(b) or 

simultaneously k(a) = a and k(b) = b can be extended to an endomorphism. 
Proof. We have four possibilities: (i) There exist four elements a,b,c,d 

such that d < a <b, d <c <b and a, c are not comparable. Define a trans
formation h of A in this way: if y < a and y < c, then h(y) = d; if y < a and 
y ^ c, then h(y) = a; if y ^ a and y < c, then h(y) = c; if y jC a and jy S c> 
then /*(•>;) = b. Evidently, h is an endomorphism. If k is as in (1), extend k to a 
mapping A' with domain {a, b, c, d} by k!(d) = d; evidently, k! o h is an extension 
of k to an endomorphism. (ii) There exist three elements a, b, c such that a <b, 
c <b and a, c have no common lower bound. Define an endomorphism h: ify < a, 
then h(y) = a; if y < c, then h(y) = c; if y % a and y ^ c, then A(-y) = b. 
If & is as in (1), then k o h is an extension of k to an endomorphism. (iii) There exist 
a, b, c such that b < a, b < c and a, c have no common upper bound; this is dual to 
the previous possibility, (iv) None of the previous three possibilities takes place and 
there exist three elements a, b, c such that a < b and c is comparable with neither 
a nor b. Define an endomorphism h: if y is comparable with c, t.hen h(y) = c; 
if y is not comparable with c, then h(y) = a if y < a and h(y) = b if y S <*• 
If k is as in (2), then k o h is an extension of k to an endomorphism. 

45 



Let us fix three elements ay by c for which the just proved Lemma 2 holds. 
In both cases there exist three endomorphisms k\, k2 and £3 such that 

ki(a) = a; ki(b) = b; ki(c) = b; 
k2(a) = a; k2(b) = b; k2(c) = a; 
ki(a) = b; k3(b) = b; k3(c) = a. 

For every X ^ j define a mapping zx of j into {ay b} in this way: if i e Xy 

then zx(i) = a; if i ej — Xy then zx(i) = b. Denote by D the set of all X c j 
such that f(zx) = a. 

Lemma 3. Z) is an ultrafilter onj. 
Proof. As <_4,/> is quasitrivial, the setj belongs and the empty set does not 

belong to D. Let X e D and X ^ Y .= j . Define a mapping x of j into {ay by c} in 
this way: if i e Xy then x(i) = a; if i e Y — Xy then x(i) = c; if i ej — Yy then 
x(i) = b. We have ki(f(x)) =f(kiox) =f(zx) = a; this, together with f(x) e 
e {ay by c}y gives f(x) = a. Consequently, f(zy) =f(k2ox) = k2(f(x)) = k2(a) = a, 
so that y e D. To prove that D is a filter, we must show that if X e D and Y e Dy 

then X f] Y eDy too. Define an x e {ay c}j in this way: if i e Y — Xy then 
x(i) = a; if 1 £ y _ X (i.e. if i" e X (J (j — Y))y then JC(0 = c. Definey e {aybyc}i 
in this way: \fieX[\Yy theny(i) = a; if i" ej — y, thenj;(0 = b;ifi e Y — Xy 

then 3>(0 = c. If it were f(x) = a, we would have f(zx\j a - Y)) = f(^3 o x) = 
= k3(f(x)) = ^3(a) = b, which is impossible as X e D implies X \J (j — Y) e D. 
We get f(x) = c. If it were f(y) = cy we would have a = ^(c) = k3(f(y)) = 
= f(k3oy) = f(kiox) = ki(f(x)) = ki(c) = b, a contradiction; if it were f(y) = b, 
we would have f(zy) =f(k2oy) = k2(f(y)) = k2(b) = b, a contradiction again. 
We get f(y) = a and consequently f(zxny) =f(kioy) = ki(f(y)) = ki(a) = ay 

so that X 0 Y e D. We have proved that D is a filter. It remains to show that if 
X <=: j and X $ Dy then; — X eD. Define an x e {ay cy by x(0 = a if i eX and 
x(i) = c if iej-K. If it weref(*) = a, we would have f(zx) =f(kiox)= ki(f(x)) 
= ki(a) = a, a contradiction. Hence,f(x) = c, so thatf^y -x) = f(^3 o JC) = ^3(f00) 
= &3M = a and j — X eD. 

Lemma 4. Let * e_4' and deA. Then f(jc) = d iff {1 Gj; x(0 = d}eD. 
Proof. We shall suppose a < b, as a, b are comparable and in the case b < a 

the proof would be analogous. Letf(^) = d. Define two transformations hi and h2 

of A in this way: if y < dy then hi(y) = a; if JJ jC d, then hi(y) = b; if y > d, then 
^2^) = b; if .y i dy then h2(^) = a- Evidently, hi and h2 are endomorphisms. Put 
X = {i ej; x(i) < d} and Y = {1 ej; JC(0 > d}. We have /(jarjr) =f(hiox) = 
= hi(f(x)) = hi(d) = a and /(ar; _y) =f(h2 ox) = h2(f(x)) = h2(d) = b5 so that 
X eD and j — Y $ Dy so that X f| ^ eD y i.e. {1 e j ; JC(0 = d} eD. The direct 
implication is thus proved. Let, conversely, {i ej; x(i) = d} e D. We have proved 
above {i ej; x(i) =f(x)} eD. As the intersection of the two sets belonging to D 
belongs to D and is thus non-empty, there exists an i such that x(i) = d and x(i) = 
= f(*),i.e.d=f(*). 
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Let h be an arbitrary transformation of A. Let x eA* and put d =f(x). By 
Lemma 4 we have {i ej; x(i) = d} eD. AS evidently {i ej; x(i) = d} £ {i ej; 
h(x(i)) = h(d)}, the latter set belongs to D, too, so thatf (hox) = h(d) by Lemma 4-
We get heEnd(A,f). 

This completes the proof of Theorem 2. 
Corollary. Let {A, F> be a topological space such that the union of any 

system of closed sets of {A, F> is closed. (Any finite topological space satisfies this 
condition.) Let (A, P> be an algebra such that any continuous mapping of (A, F> 
into itself is an endomorphism of {A, Fy. If the open sets of (A, T> do not con
stitute a chain, then End(A, F) = AA. 

Proof. Define a binary relation r on A: <a, b> e r iff a belongs to the closure 
of {b} in {A, T>. Evidently, {A, r> is a quasiordered set which is not linearly 
ordered and the endomorphisms of {A, r> are just the continuous mappings of {A, T> 
into itself. 

Theorem 3. Let r be a transitive relation on A such that whenever <a, b> e r, 
then {a, ay er and <b, b> e r. The transformation monoid End(A, r) is algebraic 
iff one of the following five cases takes place: 
(1) (A, r> is a linearly ordered set; 
(2) (A, r> is an antichain; 
(3) r = A x A; 
(4) r is empty; 
(5) r = {<<z, ay} for some a eA. 

Proof. In cases (2), (3) and (4) (A, r> has the same endomorphisms as the 
algebra with no operations; in the case (5) as the algebra with one constant a; in the 
case (1) as the algebra with one binary operation/ defined in this way: f(a, b) is the 
maximum of a and b. Let conversely End(A, r) = End(A, F) for some algebra 
(A, Fy. Denote by B the set of all a e A such that <a, ay er. If B = A, then it 
follows from Theorem 2 that either (1) or (2) or (3) takes place. Let B =# A; it is 
sufficient to suppose that B is non-empty and to prove Card(B) = 1: Fix an element 
c eA — B. As the constant transformation with value c does not belong to 
End(A, r) = End(A, F), there exists an operation / e F of some arity j such that 
f(x) 4= c where x is the oijly element of {c}K Let a be an arbitrary element of B. 
Define a transformation h of A by h(c) = c and h(y) = a if y #= c. We have 
h eEnd(A, r) = End(A, F), so that f(x) =f(h o x) = h(f(x)) = a. As aeB was 
arbitrary, Card(B) = 1. 

3. The condition End(A, F) = AA 

Evidently, if (A, Fy is an algebra, then End(A, F) = AA iff End(A,f) = AA 

for any / e F. 
Theorem 4. Let / be a f-ary operation on a set A of cardinality > 3. Then 

End(A,f) = AA iff there exists an ultrafilter D onj such that the following holds 
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for all x e Ai and a e A: 

f(x) = a iff {i ej; x(i) = a]eD. 

Proof follows from the proof of Theorem 2: the converse implication could 
be verified analogously as in the end of that proof, and the direct implication follows 
from Lemmas 3 and 4. 

Corollary 1. Let </l, F> be a finitary algebra, Card(A) > 3. If End(A, F) = 
= AA, then {A, F} is trivial. 

Proof. It is well-known that every ultrafilter on a finite set is trivial, i.e. it 
corresponds to an element of the set. 

Corollary 2. Le t /be aj-ary operation on an infinite set A. If End(A,f) = AA 

and / is not trivial, then Card(j) > Card(A) and Card(j) is a measurable 
cardinal. 

Proof. Let D be as in Theorem 4. A s / is not trivial, D is not trivial, too, i.e. 
no finite set belongs to D. Suppose that there exists an infective mapping x of j 
into A. Put a =f(x). The set {i ej; x(i) = a) has at most one element and belongs 
to D, a contradiction. We get Card(j) > Card(A). In order to prove that Card(j) is 
measurable it is sufficient to prove that whenever j is the union of some countable 
sequence Xi, X2, Xz,... of pairwise disjoint sets, then one of its members belongs 
to D. Choose a sequence a\, a2, a^,... of pairwise different elements of A and 
define a mapping y off into A by y(i) = an whenever i e Xn. There exists an m 
such that / (y) = am; we get Xm eD. 

If (A, F} is an algebra, denote by F' the set of all finitary algebraic operations 
(polynomials) of (A, F}. We have evidently End(A, F) c End(A, Ff). On the 
other hand, it can happen that (A, F'> is trivial but End(A, F) #= AA: 

Example . Let D be any non-trivial ultrafilter on co = {0, 1, 2 , . . . } . Let A 
be an infinite set. Define an co-ary operation/ on A in this way: if x eA and there 
exists an a e A such that {i em; x(i) = a} eD, then/(#) = a; if such an a does not 
exist, then/(x) = x(0). It is easy to show that {A, {/}'> is trivial but End(A,f) + AA. 

4. Inversion of almost identical endomorphisms of algebras 

If a and b are two elements of A, then we define a transformation wab of A 
in this way: wab(a] = b; wab(x) =* x for all x eA — {a}. 

Theorem 5. Let an algebra (A, F} and two different elements asb eA be 
given; let A — {a} be closed in (A, F>. If Wba is an endomorphism of {A, F}, 
then Wab is an endomorphism, too. 

Proof. Notice first that Wba = WbaOWab- Suppose that Wba is an endo
morphism but Wab is not. There exists an operation / e F of some arity j and an 
xeA* such that wab(J(x)) =\=f(wabOx). 

Suppose^ (x) = b. We have b =j= f(wab o x); this and the endomorphism property 
Of Wba gives f(WbaOWabOx) =f(wabOx), SO that f(wabOx)=f(WbaOWabOx) = 
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= f(wbaOx) = Wba(f(x)) = WbaQ>) = a which is a contradiction because wabOx e 
e(A— {a}y and A — {a} is closed. 

Wegetf(x) =(= b. Consequently Wba(f(x))=f(x), so that f(wbaOx) =f(x). 
Suppose f(wbaOx) =f(x) 4= a. As f(x) = wab(f(x)) 4= f(wabOx), we have 

f(WbaOx) -j= f(WabOx), SO that f(WabOx) 4- f(WbaOx) = f(WbaOWabOx) = 
= Wba(f(wabOx)), which gives/(o>a&ox) = b; we get/(a;&« ox) = f(wbaowabOx) = 
= Wbd(f(wabOx)) = Wba(b) = a, a contradiction with the assumption. 

The case f(wbaOx) =f(x) = a remains. We have b 4=/(«>«& ox), so that 
Wba(f(WabOx)) =f(wabOx). Hence,f(wabOx) = Wba(f(wabOx)) =f(WbaOWabOx) = 
= f(wbaOx) = a where wab ox e(A — {a}y, a contradiction again. 

5. Unary relational structures 

Let (A, R) be a unary relational structure, so that R is an arbitrary set of 
subsets of A. Endomorphisms of (A, R) are just the transformations h of A such 
that whenever a er eR, then h(a) e r. 

For every a eA denote by a the set of all b e A such that a er eR implies 
b er. In other words, a is the intersection of all r e R such that a er; if a e r for 
no r eR, then a = A. We have a ea. 

Denote by B the set of all a e A such that a = {a}. 
Theorem 6. Let (A> R) be a unary relational structure. End(A> R) is algebraic 

iff the following four conditions are satisfied: 
(1) If B is empty, then every r eR is either empty or equal to A; 
(2) If Card(B) = 1, then B ^ r for any non-empty r eR; 
(3) Whenever a,beA — B and b e a, then a = b; 
(4) Whenever ai, ..., an (where n > 2) are pairwise different elements of A — B 

and wi, ..., un pairwise different elements of B such that u± eai f) £2, 
u2 eCL2 fl <*3, ...yunean f) 5i, then ai = ... = an. 
If End(A, R) is algebraic, then there exists a unary algebra <^, F) such that 

£wrf(_4, #) = End(A, F). 
Proof. Put H = End(A, R). We shall first prove the direct implication. Let 

<./!, F) be an algebra such that End(A, F) = H. 
Lemma A. If a e A — B, then A — {a} is closed in <^4, F). 
Proof. There exists a b ea such that b 4= a. The mapping wab (defined in 

Section 4) evidently belongs to H and consequently to End(A, F) , so that its range, 
the set A — {a}, is closed in <^4, F). 

L e m m a B. If B .= X s A, then X is closed in <^4, F). 
Proof follows immediately from Lemma A. 
Let us prove (1). Suppose that B is empty but some non-empty r e R is different 

from A. Choose an a e A — r. By Lemma B the set {a} is closed, so that the constant 
transformation with value a is an endomorphism of (A, F) and belongs thus to H> 
which is evidently impossible. 
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Let us prove (2). Denote by b the only element of B. By Lemma B the set {b} 
is closed in <_4, P>, so that the constant transformation with value b is an endo-
morphism; this implies b er for any non-empty r eR. 

Let us prove (3). Evidently b __ a. As b e a, we have wab e H; by Theorem 5 
and Lemma A this implies Wba e H. Consequently a e b, i.e. a __ b. 

L e m m a C. Let a and b be two different elements of A — B; let a f| b f] B 
contain two different elements u, v. Then a = b. 

Proof. It is sufficient to prove b e a. Suppose b $ a. For every pair p, q of 
elements of A define a transformation kpqofA in this way: kpq(a) = p; km(b) = q; 
if y e A — {a, b}, then kpq(y) = y. We have kbb $ H, so that there exists an 
operation / eF of some arity / and an x e Aj such that kbb(f(x)) 4= f(kbb o x). 

Suppose f(x)e{a, b}, so that b +f(kbbOx). We have kau(f(kbbOx)) = 
=f(kauokbbOx)=f(kuuox) = kuu(f(x)) = u and consequently f(kbbOx) = u. 
Quite similarly f(kbb o x) = v. u =|= v gives a contradiction. 

We get f(x)${a, b}, so that /(*) 3=f(kbbOx). We have kau(f(kbbOx)) = 
= fikau o kbbox) = f(kuuox) = kuu(f(x)) =f(x); this is possible only if 

f(kbbOx) = b. Thus f(x) = kau(b) = u; quite similarly f(x) = v and u + v gives 
a contradiction. This completes the proof of Lemma C. 

Let us prove (4). We may suppose n ^ 3, as the case n = 2 is covered by 
Lemma C. For any integer i denote by c(i) the only element of { 1 , . . . , n} which is 
congruent with i mod n. Define three transformations h, k,g of A in this way: 
if i e{\, ...,n}, then h(at) = uca+D, k(ai) = aC(i+D and g(at) = w<; if 
y $ {ai, ..., an}, then h(y) = k(y) = g(y) = y. Suppose h $ H, so that there exists 
an operation/ e F of some arity; and an x e Ai such that h(f(x)) =j= f(hox). 

Suppose f(x) = ai for some ie{\, ..., n}, so that uca+D =\= f(hox). As 
gok^eH, we have/fe okn~lox)= g(kn -\f(x))) = g(kn -\at)) = uc(i _i). As g e H, 
we have g(f(kn~1ox)) = WC(«--D, so that f(kn~1o x) is equal either to Wc(*-i) or to 
aC(i -D and consequently f(g o kn ~2 o x) = f(g o /JW -1 o kn -1 o x) = g(kn - 1(/(^n _1 o x))) 
is equal either to wC(i-i) or to uC(i-2). We get similarly f(gokn~sox) e {uC(i-D> 
uC(i-2), uC(i-z)}, etc; finally, f(gokox) e {uC(i-i), uca-2), ..., wc«-n+i)}, i.e. 
f(hox) * ut. We have g(kn~\f(kox))) =f(goknlokox) = f(gox) = g(f(x)) = ut, 
so that either f(kox) = Ui or f(kox) = aca+D', we get in the first case 
f(hox) =f(gokox) = g(f(kox)) = g(ui) = m and in the second case f(hox) = 
= uC(i+D'> however, both these cases are already excluded. 

Suppose/(x) = Ui for some i, so that ut +f(hox). Similarly as in the previous 
case f(gokn-lox) = Ui, so that f(kn~1ox) e {ut, at}, from which we get 
f(gokn~2ox) e {uu uC(i-D}; etc; finally f(gokox) e {ut, uca-D,..., uca-n+2)}, 
i.e. f(hox) =f= uc<M-i). We have g(kn~l(f(kox))) = uu so that either f(kox) = ut 

or f(kox) = aC(i+D', a contradiction in both cases. 
Suppose f(x) $ {a\, ..., an, u\, ..., un}. Similarly as in the previous cases 

f(gokn~1ox) =f(x), so that f(kn~1ox) =f(x), so that f(gokn~2ox) =f(x), etc; 
finally f(gokox) =f(x), i.e. f(hox) =f(x), a contradiction. 
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We get h eH, so that u2 e a i , . . . , un e an-\, u\ e an. This gives a\= ... = an 

by Lemma C. 
The direct implication is thus proved. Let us prove the converse. 
If B is empty, then (1) gives H = AA and everything is evident. 
Let Card(B) = 1; put B = {b}. For every a e A define a unary operation 

ua on A in this way: if y ea, then ua(y) = y; if y eA — a, then ua(y) = b. It is 
easy to prove H = End(A,{ua; a eA}). 

Let Card(B) > 2; choose two different elements p, q eB. For every a eA — B 
such that a f] B is empty define two unary operations fa and ga on A in this way: 
if y ea, then fa(y) = ga(y) =y;ifyeA — a, then fa(y) = /> and ga(y) = q. For 
every aeA — B such that a f| -3 is non-empty choose an element za e a f]B and 
define a unary operation ta on 4̂ in this way: ify ea, then ta(y) = y; ify eA and 
there exists a finite sequence a\, ..., an (where n > 2) of elements of _4 — B and 
a finite sequence u\, ..., un-\ of pairwise different elements of B such that a\, ...,an 

are pairwise different, u\ ea\ f] at, ...,un-\ ean-\ f] an, a\ = a and y e an, then 
ta(y) = u\; in all other cases ta(y) = za. 

We must show that ta was well defined. If y e a (so that ta(y) = y) and if at the 
same time ta(y) is defined by means of a\, ...,an and u\,..., un-\, theny ean f] a\, 
so that y eB; the condition (4), applied to a\, ..., an, u\, ..., un-\,y, gives y = m 
for some /, so that u% ea\; the condition (4), applied to a\, ..., at, u\, ..., Ui, gives 
i = 1, so that y = u\ and both definitions of ta(y) give the same result. Let ta(y) be 
defined by means of a\,..., an, u\, ..., un-\ and at the same time by means of 
b\, ..., bm, v\, ..., vm-\. Suppose u\ =j= v\. As y e an f] bm, there exists an i > 2 
(take the smallest such i) such that there exists a j > 2 (again, take the smallest 
such j) such that a\ f] bj is non-empty; choose some w ecu [j bj. If it were a\ = 
bj, we would have evidently i = j = 2 and both u\ and ^i would belong to a\ f] 
a.2, so that a\ = xn, a contradiction. We get at =# bj. Evidently, the assump
tions of (4), applied to a\, ..., a\, bj, ..., b%, u\, ..., ut-\, w, Vj-\, ..., v\, are 
satisfied, but the conclusion is not. We get u\ = v\, so that both definitions 
of ta(y) give the same result. 

Denote by F the set of all the operations fa, ga (where a f] B is empty) and ta 

(where aeA — B and a f] B is non-empty), together with all constant unary 
operations with values belonging to B. We shall prove H = End(A, F). 

Let us prove h(fa(y)) = fa(h(y)) for all h e H, y e A and aeA — B such that 
a f] Bis empty. Ify ea, thenh(fa(y)) = h(y) = fa(h(y)),because evidently h(y) ea, 
too. Let y $a. If it were h(y) e a, then using (3) we would have h(y) e B, a 
contradiction, as a f] B is empty. We get h(y) $ a, too, so that h(fa(y)) = h(p) = 
= P=fa(p)=fa(h(y)). 

Quite similarly h(ga(y)) = ga(h(y)). 
Let us prove h(ta(y)) = ta(h(y)) for all h e H, y e A and aeA — B such 

that a f] B is non-empty. If yea, then h(ta(y)) = h(y) = ta(h(y)), because 
evidently h(y) e a, too. If ta(y) is defined by means of a\, ..., an, u\, ..., un-\, so 
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that ta(y) = ui and y e dn, then evidently h(y) e an and ta(h(y)) is defined by 

means of at, •. •> aw, wi,..., «„_i, too, so that h(ta(y)) = h(ui) = u\ = ta(h(y)). 

Ify$a and foCy) is not defined by finite sequences, then using (3) it is easy to see 
that h(y) $ a and ta(h(y)) is not defined by finite sequences, too, so that h(ta(y)) = 

=*= h(Za) = Za = ta(h(y)). 
It remains to prove End(A, F) c H. Let h e End(A, F) and suppose /* £ H. 

There exists an a e .4 such that h(a) £ a. As any element of .8 is a fixed point of /*, 
we have a eA — B. Suppose that a f] B is empty and /*(a) 4= p. We have 
h(a) = h(fa(a)) =fa(h(a)) = />, a contradiction. We get a contradiction similarly 

in the case h(a) #= a (using only ga instead of fa). Hence, a [\ B is non-empty. 

We have h(a) == h(ta(a)) = ta(h(a))9 a contradiction, as /z(a) ^ a, and the range 
of r« is equal to a. 
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