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A Contribution to the Interpretation of Impedance 
Dispersion Curves of Powder Luminescent Materials 

J. KUBATOVA 
Institute of Physics, Czechoslovak Academy of Sciences, Prague 

Dispersion of the complex permittivity of powder luminescent materials in the region of acou
stic and radio frequencies is caused both by the relaxation processes in phosphors themselves and 
by the relaxation processes determined by the geometry of the powder grains in the binder or in the 
air. In the presented paper relations have been derived that explain the deviations of the experimen
tal curves from the Debye type dispersion curves and that enable to separate the mentioned two types 
of relaxation processes one from the other. 

I. Introduction 

It is useful to combine optical and luminescent measurements of luminescent 
materials with measurements of their electrical parameters e.g. conductivity and 
permittivity, by means of frequency dependence of the complex impedance. In the 
measurements of powder samples the behaviour of the studied material is influenced 
by the fact that the powder is embedded in an environment (binder or air) with other 
electrical parameters. The purpose of the paper is to find out the properties of the 
powder material itself without the influence of the environment. 

It is well known that in some materials, e.g. in alkalihalides the complex permit
tivity has a frequency dependence not only in the IR region - connected with electron 
and ion polarisation — but also in the region of acoustic and radio frequences con
nected with lattice imperfections [1]. 

The dispersion of the complex permittivity e = e' — je" in the mentioned fre
quency range (further only this region will be considered) is described by the Debye 
equations 
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€o> £00 are constants that equal the value of ef at very low and very high frequen
cies, r is a time constant of relaxations of dipoles present in the studied material, co 
the angular frequency of the applied voltage. 

Fig. 1 shows the grafic representation of the Debye equations. These equations 
were derived for the description of the behaviour of polar molecules but they are 
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Fig. 1. Grafic representation of the Debye equations 

used [2] for the description of relaxation processes in solids as well. The relaxation 
processes in solids are caused either by lattice imperfections having a dipole moment 
or by inhomogeneous conductivity. Besides, in powder materials the geometry of the 
sample configuration gives rise to a further type of relaxations (so called Maxwell-
-Wagner relaxations) that combine with the intrinsic relaxation processes of the 
investigated material. Dispersion relations are found also in luminescent materials 
exposed to light (so called photodielectric effect), while in the same materials in dark 
no dispersion is observed. In most materials this fact has been explained [3, 4, 5] 
on the base of inhomogeneous conductivity, whether macroscopical (dispersion of 
Maxwell-Wagner type) or microscopical (space-charge regions). In this case the time 
constant varies inversely as the conductivity and the dispersion region is determined 
by the reciprocal value of the time constant. It is therefore evident, that with decrea
sing conductivity the dispersion region shifts to low frequencies. The dark conducti
vity of the luminescent materials is very low and therefore dispersion may be found 
at frequencies lower than the acoustic and radio ones. On the other hand, the lumi
nescent powders exhibit photoconductivity, their time constant shortens when they 
are exposed to light and consequently the dispersion region shifts to higher (acoustic 
and radio) frequencies. 
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2. Dispersion Relations of Powder Samples 

The material studied was A IN : Mn in the powder form situated in a condenser 
in the space between one full copper electrode and one mesh nickle electrode. The 
distance of the electrodes was 0,2 mm. Mercury 200 W lamp with filters served as the 
light source. A precise Schering bridge ballancing the sample with parallel combi
nation of resistance R and capacity C was used for the measurements of the sample 
resistance (by means of the loss factor tg 6) and sample capacity in the region of 
frequencies from 300 Hz to 300 kHz and at the voltage of 10 V*. 

X 
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Fig. 2. The two-layer model of the sample (left side) and the equivalent compensatory circuit of the bridge 
(right side) 

For describing the behaviour of our sample it must be taken into account that 
the sample consists of A1N grains separated by air so that a two-layer model (Fig. 2) 
must be applied. R is the ohmic resistivity of the A1N grains as a whole in the given 
geometrical configuration, Ci their capacity and C2 capacity of the air interspace. 
Ri and Ci are quantities proportional to specific resistivity and permittivity that can 
be used for describing the spectral response and temperature course of the photocon
ductivity, activation energies of traps etc. R and C refer to the compensatory circuit. 

The following relations are valid: [6] 
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*) The author is indebted to Dr. W. Ludwig and Dr. P. Krispin from the Institut fur EJektro-
nenphysik of the German Acad, of Sci. for the kind permission to carry out the measurements on 
their apparatuses and for help and valuable discussions. 
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The relations are evidently of Debye type, under the assumption that jRi, d 
and C2 are frequency independent. However, experimental dispersion curves show 
deviations from the Debye type (Fig. 3) and demonstrate thus that the frequency 
dependence of Ri and C\ must be taken into account. Let us do if formally by a new 
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Fig. 3. Dispersion curves of AIN: Mn (1%) measured at two different intensities of light (Ix > I2; 
HBO 200 mercury lamp) 

set of Debye relations as all types of relaxations (see before in the mentioned fre
quency region can be described by them: 

C\ = Cioo + - — -77-7 = C10 — : — Z~TZ— = C10P, 
1 + æ2ů2 1 + co2ů2 

1 

Яl -Rohm 

1 (Сю - Cloo)<0*#2 

1 +*»-#-
Function F is defined as 

ғ = 
l + Şг^øa 

Cio  

1 + 0)2Ů2 

(8) 

(9) 

(10) 

Symbols C10 and Cloo equal the value of capacity of AIN at very low and very high 
frequencies and # is a time constant that determines the relaxation processes in AIN 
itself. 

In the equation (9) the first term on the right side means the ohmic conductivity 
and the other term the contribution of the relaxation processes to the conductivity. 

Inserting (8) and (9) into (4) and (6) we get 
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where function G is defined by 
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C2 Cloo , «. , 

and tg c 
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0. At intermediate frequencies the time constant r in the 
C2+C1 

relations for C and tg d is multiplied by a factor containing the frequency co (through 
the functions F and G) so that the measured dispersion curves are flatter than the 
ideal Debye curves. 

3. Conclusion 

Fitting of the experimental curves to the relations [11] and [12] enables to pick 
out the intrinsic dispersion curves [8] and [9]. A particular attention to the comparison 
of the experimental data and theoretical formulae will be paid in an other paper. 
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