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Finite Element Analysis of a System of Quasi-parabolic 
Partial Differential Equations 

J. BRILLA 

Ins t i tu te of Applied Mathemat ics and Comput ing T e c h n i q u e , 
Comenius Univers i ty , Bratislava 

Applying LAPLACE transform finite element method is generalized to solutions of a system 
of quasi-parabolic partial differential equations. 

# I. Introduction 

We shall consider a system of partial differential equations of shallow viscoelastic 
shells 

Kijki Fry w,w +h(ui,i +bijw)bki\ = Lq, 

Kijki (ukji + bkiw, j) = 0, (*',/, A, / = 1,2) , (1.1) 

where 

Kw = š *$«->> L=í ^Dv (1-2) 
v=0 r=0 

are polynomials in D = -----, w is the displacement of the middle surface of the shell 
ot 

in X3 direction and «i, W2 the displacements in xi, X2 directions, respectively, 
h — the thickness of the shell, by — tensor of curvature, Ktykl — tensors of stiff
nesses and q(x, t) — the transverse loading of the shell. We use the usual indicial 
notation. Latin subscripts have the range of integers 1,2 and summation over 
repeated subscripts is implied. Subscripts preceded by a comma indicate differen
tiation with respect to corresponding Cartesian spatial coordinates. 

In the case of real material it holds 

Kijki £ijBki > 0 (1.3) 

for arbitrary values of e#, where equality occurs if and only if stj = 0 for all t, j . 
Further the operators Kijki are symmetric 

Kijki = Kjiki = Kkiij (1.4) 

and polynomials (1.2) have real negative roots. 



Simultaneously we consider the system of integrodirferential equations 

i 

/

д [ Һ3 

Gijki(t — т) -jг- — w, ijкi + Һ(UІJ + bijw) bкi áт = Lq, (1.5) 

i 

3 

Gijki(t — T) y - (uk,ji + bkiw,j) ÚT = 0 , 

o 

where Gijki is symmetric and it holds 

Gtjki(0) en Ski > 0 . (1.6) 

We shall consider following boundary conditions 

dw ^ 
w = -=— = 0 , ui = u2 = 0 on dii (1.7) 

on 
or 

w = Kijki w, ij v^vf = 0 , ui = U2 = 0 on dQ , 
t 

where n denotes the outward normal and vn
{ direction cosines of this normal. 

From the physical point of view it is convenient to consider the initial conditions 
in the form 

£|~-£!--°' C'-*'.W-.)- 0.8) 
Initial values at t = 0+ can be different from zero and are to be obtained 

from the solution. 

2. Functional of the Generalized Potential Energy 

We shall assume that q(x, t) belongs to the class of slowly increasing functions 
U(x, t), which fulfil in Q for t > 0 and for each d > 0 the condition 

\u(x,t)\ <M(d)e*K (2.1) 

where M(d) depends on u but does not depend on x. 
Applying generalized Laplace transform [5] to equations (1.1) and (1.5) one 

obtains 

[ h3 ~ I 

-ry w, ijki + h(ui,j + bijw) bki\ = Lq , 
Kijki (uk,n + bki w,j) = 0 (i = 1,2) (2.2) 

and 
rh3 - 1 

pGijki Fry w>Wci + Kiiij + bijw) bki\ = Lq , 
pGim(uk,n +bkiw,i) = 0 (i = 1,2) (2.3) 

where tildas denote Laplace transforms. 





These conditions can be written in the form 

Kafifi = <7a > (3-4) 

where formulas for Ka$ and qa can be easily obtained from (2.4), (3.2), and (3.3). 
The solution of this system is given by the formula 

aa(p) = -fj^f . (3.5) 

As 

Kg = 2 K$p* (3.6) 
v = 0 

is a />-matrix, |Ka/?|-the determinant is a polynomial in p of the degree r{m -f In) 
and Pais-the adjoint matrix is a polynomial in /> of the degree r(m + 2n — 1). 
Thus aa(p) are rational functions of p and inverse transform can be achieved by the 
method of decomposition into partial fractions. Denoting the roots of the determi-
nental equation 

A(p) = foil = 0 (3.7) 

by —Pv and assuming that they are distinct one obtains 

s 

~ " V A*^Pv) ~ (X Q\ 
a* = / . , . qp (3.8) 

Z--/ P +Pv 
y=\ 

where 5 = r(m + In) and 

A (*\ FP*(—Pv) . Aii)f*\ dA(P) riQ\ 

A^(Pv) = AaK-Py) > Aa)V) = ~dj-' (3'9) 
Then 

-24 > ~-<xß\Pv) ~ /- i л x 
^ W = / * -L* W% ( З Л 0 ) 

y=\ 

and the inverse transform is given by the convolutional product 

5 t 

v>m= 2<P« $ foAvfoy) e-Py <*-T> dr . (3.11) 
y = l 0 

When the loading is constant in time q = q(x) H(t) and L = I 

™m = 2 (<?> <Pfi) <P«Aafi(Py) (1 — *-»*) . (3.12) 
y = l 

In the case of quasistatic problems p as can be proved are real positive and wn 

assumes the form of Dirichlet exponential series. Then the approximate numerical 
inverse transform can be applied [4]. Similar results can be obtained for u\ and 
U2, too. 
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