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Kacanov - Galerkin Method and its Application 

S. F U Č Í K 
D e p a r t m e n t of Mathematical Analysis, Charles Univers i ty , Prague 

A. KRATOCHVÍL, J. NEČAS 
Inst itute of Mathemat ics, Czechoslovak Academy of Sciences, Prague 

The Kacanov's method on the convergence of approximants of the minimum of nonquadrat-
ical functionals is explained in the book by MICHLIN [4, pp. 369—370] and it was firstly applied 
by L. M. KACANOV [2]. The proof of the convergence of this method was given by ROZE [7], but 
in [4] on p. 369 (footnote 2) it is remarked that the proof contains a mistake. The convergence of 
this method for the solving of the magnetostatic field in nonlinear media has been proved in the 
paper by KACUR, NECAS, POLAK and SOUCEK [3]. The proof in the abstract setting of the convergence 
has been given in the authors* paper [1], 

This communication deals with the KACANOV-GALERKIN method and with the application 
to the second and mixed problems for elastoplastic materials, where the deformation theory of 
plasticity is used (see for example NECAS [6]). 

KaCanov-Galerkin Method 

Let H be a Hilbert space with the inner product (...) and let H be a closed 
subspace with the same inner product. Suppose that f : H -> R\ is a functional 
defined on H with the Gateaux derivative f'(u) in each point u eH which is con
tinuous on H and/' takes the bounded subset in H onto bounded subsets. 

Let cp eH and x*eH. Let a > 0 and suppose that for each u eH and 
heH it is 

(i) (fc/f(«+*)-/'(«)) ^ ft IWI2. 
From the well-known theorem (see e.g. VAJNBERG [8, Thm. 9.2]) it follows that 
there exists a uniquely determined xo e H satisfying 

/(so + -O — (xo + x\ <p) --= min {f(v + vm) — (v+ x\ <p)} . (1) 
veH 

The main goal of the Kacanov's method is the introducing the functional 
0 : H x H x # - > Ri such that (P(w,.,.) : H x //-> R\ is a bilinear and 
symmetric form for each fixed u eH. Suppose that there exist C2, c$ > 0 such that 
for each u,v,weH and heH it is: 

(ii) <P(u,h,h)>C2\\h\\2, 
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(iii) 0(U, u, h) = (hj'(u)\ 

(iv) — &(u, v,v) — — 0(u, u, u) —f(v) +f(u) > 0 , 

(v) 0(u, v, w) < cs |M|. |M| . 

The reason for introducing the functional 0 which approximates in the sense 
(iii), (iv) our functional / is that 0(u, v, v) is quadratic, so it is easy to find the 
minimum of the functional \0(u*> v, v) — (v, tp). 

For the Kacanov-Galerkin method suppose that tpn -> cp, x* -> x*, 
oo oo 

2 \\xn+i — x*\\y 2 Ir9^+i — <Pn\\ a r e t n e convergent series and {Hn} is a sequence 
n=\ n = l 

of closed subspaces of H such that 

(Vi) Hn <=//„+!, \JHn = H. 

Let *i 6 Hi. Then (again by [8, Thm. 9.2]) there exists a uniquely determined 
sequence {xn}

 c H such that xn e Hn and 

— <t>(xn + Xn+u Xn+l + X*+u Xn+1 + X*+i) — (xn+i + X*+\, <pn+l) = 

= min {-— 0(xn + xn+u v + x*n+u v + xn+i) — (v + x*n+u <pn+i) , 
veHn + i \ 2 ) 

n= 1,2, . . . . (2) 

Theorem, lim ||JCW — *o|| = 0 . 
n^-oo 

(The proof has the following steps: 

(1) The sequence {||*n||} is bounded. 

(2) lim ||*w+i — xn\\ = 0.) 
n—>tx> 

Application 

Our Theorem can be applied to the variational problem: 
r(u,u) 

min J / —y-- ft2(u) + — J /u(x, a) dcr d :̂ — / UiFidx — / mgids [ , 

u—u*ev Q o Q rl 

where Q is a bounded domain in I?3 with the boundary dQ = A \J F2 \J R, 
A n F2 = 0, Fi, F2 are open sets in dQ, F2 ^ 0, two dimensional measure of R 

is zero; W = [W\(Q)]% V = [W\(Q)]*> (W\(Q) and W\(Q) are the Sobolev 
spaces — see e.g. NECAS [5, Chapt. 1]); Ft e L2(Q) are the components of the body 
force, gi e L2(A) are the components of the boundary force vector; k(x) e Loo(-2) 
is the bulk modulus of the material; /u<(x, s) is the Lame's coefficient, /u(x, s) is 
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measurable in x e Q for fixed s e < 0, oo) and continuously differentiable in the 

variable 5 e < 0, 00) for almost all x eii; u is the displacement vector; etj(u) = 

= — 1-=-^ +-^- 1 is the infinitesimal strain tensor; ft(u) = eu(u) and 
2 \ oxj oxi J 

2 
Г(u> v) = 2ЄІJ(U) ЄІJ(V) — ů(u) &(v) 

Under the assumptions: 
3 

0 < juo < fi(x, s) < — k(x) < ki < + 00 , 

Kx,s)+2M£A.s>x>0y 

OS 

-§£-(*>*) £ 0 , 
we can set in abstract Theorem: 

E(M,M) 

f(u) = Y J [*(*) #2(") + J /•(*» «0 <H d* , 
a 0 

#(«, w, *) = I [*(*) *(») #(lt) + /«(*> r ("> «)) • I>> lOl dx . 
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