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Two Classes of Numerical Methods for Stiff Problems 

M. K U B Í Č E K 
I n s t i t u t e of Chemical Technology, Prague 
K. V I Š Ň Á K 
Mathematical I n s t i t u t e , Czechoslovak Academy of Sciences, Prague 

Two classes of numerical methods for stiff problems are shown. Formulae contained in the 
second clase require to solve a system of only linear algebr. eqs. to obtain the solution of a nonlinear 
system of differential eqs. at each step. One such formula is tested on a very stiff problem and the 
comparison with other often used methods is given. 

Let us consider the differential equation of the form: 

./ = f(xy y) y(xo) = yo xe <*0, **> . (1) 

Under obvious conditions on/relations (1) are equivalent to: 

y" = /'(*- y) y(xo) = yo / (**) = /(**> _y(**)) x, xk e (x0, xd} . (2) 

Defining the mesh x% = xo + ih on the interval <xo3 **> CZ <*o5 Xd) and approxi
mating the relations (2) by finite differences at mesh-points, we can derive different 
formulae having the following general form: 

" Уn+1 ' 

== 
' Уn ' 

+ Һ 
" đi ' 

_ Уn+k _ _Уn _ dk _ 

f(Xn,Уn) +Һ2 

Єl 

f'(Xn, Уn) 

+ ҺB 

f(Xn+Ъ Уn+l) 

_f(xn+k, Уn+k) 
+ Һ2C 

f'(xn+ЪУn+l) 

f'(xn+k, Уn+k) 
(3) 

where: I — unit k x k matrix, B, C — k x k matrices, di, ei — real numbers, 
h — mesh size. 

We assumeyn to be a known starting value. The unknown values yn+i --,yn+k 
are to be calculated from the formula (3) and yn+k is used as a new starting value 
only. x 

We have shown for a sufficiently smooth right-hand side / the necessary and 
sufficient conditions for method (3) to be of order p. Further, we have proved that 
every formula (3) having order p ^ 1 is convergent and the rate of convergence 
is OtyP). 

63 



The class (3) contains as a subset the class of selfstarting overimplicit methods 
(SOM). It has been shown in [1] that there exist ^4-stable methods of arbitrarily 
high order in the class SOM. We have derived the ^4-stable formulae up to the 
order 6 which contain the second derivatives of the solution and therefore do not 
belong to the class SOM. We believe it is possible to show in a way similar to that 
referred in [1] that the formulae of class (3) (containing the second derivatives) 
can also yield _4-stable methods of any arbitrary order. But we have not proved 
it yet. 

By applying the formula (3) to a nonlinear system we have to solve a set of 
nonlinear eqs, at each step. We suggest to use a certain iterative procedure (resembling 
the Newton method) requiring an evaluation of the Jacobian (not Hessian) matrix 
of the right-hand side of original differential system only. This procedure is 
described in [2]. 

The main goal of this communication is to devise a way of avoiding any kind 
of iteration. 

We shall illustrate our procedure on the simplest type of the class (3). The 
class (3) takes for k = 1 the form: 

yn+i =yn +hdf(xn,yn) +h2ef'(xn,yn) +hbf(xn+i,yn+i) +h2cf'(xn+i,yn+i). (4) 

Let us now consider a system of diff. eqs. T h e n / a n d / ' are vector functions and 
dft 

it holds: f{ = -= \- Jifu where J is the Jacobian matrix of/ and the subscript i 
ox 

denotes that all values are taken at the point xuyu We replace in the formula (4) 

f(xn+i, yn+i) by fn + h -^- + JnAn and f'(xn+i, yn+i) by -^- + Jnfn + 

dfn 
+ Jn~^ VJl^n where An = yn+i —y n . Requiring the formula (4) to be of the 

ox 
order p > 2 w e finally obtain: 
[7 - hbjn - h2cj2

n] A„ = hfn + h2 [ (0.5 - b) Jnfn + 0.5 ^ + hcjn - | ^ ] (5) 

This formula beeing applied to y' = ay yields the same expression as the original 
formula (4). Therefore (5) is ^4-stable if and only if (4) is ^4-stable. We have proved 
that for a sufficiently smooth right-hand side / the formula (5) is convergent if (4) 
is convergent. If the order of (4) is p ^ 2, then the rate of convergence of (5) is 
0(h2). Referring to (5) a system of only linear algebraic Eqs. is to be solved at each 
step. For b = 1 and c = —0.5 the formula (5) is A-stable and of the second 
order. 

We have tested this formula on a very stiff system arising in the reactor kinetics 
(taken from [3]). 

y[ = — 0.04yi + \0*y2yz y2 = 0.04^i — 104j!23'3 — 3 . 107.y! 

y3 = 3 . 10^1 yi(0) = 1 j/2(0) = y3(0) = 0 
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Results obtained for x = 4 are in following table: 

Һ -VI 104;y2 lQva 

0.4 

0.2 
0.05 
0.02 
0.01 

0.98477 
0.92398 
0.90683 
0.90561 
0.90553 

0.38157 
0.24645 
0.22557 
0.22416 
0.22406 

0.35192 
0.75995 
0.93147 
0.94361 
0.94449 

§ 0.90552 0.22404 0.94458 

reference solution 

— Runge-Kutta method 

of 4-th order, h = 0.001 

The comparison with several other methods has shown that our technique can 
very succesfully compete with all methods considered. 

Method I.V1-.V1І I.У2-.V2І \yг-yl\ 

BVT 2.2 E - 4 3.8 E - 8 2.2 E - 4 

Calahan 1 . 4 E + 0 4.0 E - 5 1 . 4 E + 0 

Allen 9.8 E - l 4.7 E - 4 2.4E + 1 

I S I З ( - I O O ) 2 . 2 E - 3 4 . 0 E - 7 2 . 2 E - 3 
I S I З ( - o o ) 2 . 2 E - 3 3.9 E - 7 2 . 2 E - 3 

LWl 1 . 6 E - 4 2.4 E - 4 3 . 2 E - 3 
LW2 5.9 E - 4 2.9 E - 3 4 . 0 E - 2 

h = 0.02 x = 0.4 

BVT - method (5) 

LW1, LW2 - derived in [2] 

ISI3 (..) - derived in [4] 

The one-step nature of our method allows to implement an automatic step-size 
control. Results calculated by a step-size control procedure are compared with those 
obtained using the constant step-size in the following table (for x = 10): 

h \yi-Уl\ | y 2 - 3 ! 2 І A 0 4 | v з - 3 ' з | . Ю 
evaluation 
in RHS* 

constant 

step 

0.4 

0.05 

0.02 

0.027 

0.001 

0.000 

0.023 

0.001 

0.000 

0.27 

0.01 

0.00 

25 

200 

500 

step-size 
control 
procedure 

0.000 0.000 0.00 38 

* RHS — right-hand side 
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