
Acta Universitatis Carolinae. Mathematica et Physica

Milan Práger; Jiří Taufer; Emil Vitásek
Overimplicit methods for the solution of evolution problems

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 15 (1974), No. 1-2, 125--133

Persistent URL: http://dml.cz/dmlcz/142340

Terms of use:
© Univerzita Karlova v Praze, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142340
http://project.dml.cz


1974 ACTA UNIVERSITATIS CAROLIMAE - MATHEMATICA ET PHYSICA NO . 1-2 PAG. 125-133 

Overimplicit Methods for the Solution of Evolution Problems 

M. PRAGER, J. TAUFER, E. VITASEK 
Mathematical Inst itute , Czechoslovak Academy of Sciences, Prague 

I. Introduction 

It is known that in deriving the numerical methods for the approximate solution 
of many technical problems leading to systems of ordinary differential equations 
it is very often important not to aim only at the convergence or the high asymptotic 
accuracy but also to satisfy other requirements. Typical example of such problems 
are so-called stiff problems where we are interested in the component of the vector 
of the solution containing a strongly stifled term which is, consequently, negligible 
but which must be, when using an unconvenient method, still approximated. The 
similar problems arise in the solution of partial differential equations of parabolic 
type. This fact can be most easily comprehended assuming that the parabolic 
equation is solved by transformation on the system of ordinary differential equations 
(discretizing only the space variables) and observing that the resulting system of 
ordinary differential equations is the more stiff the more fine the mesh-size is. One of 
such above mentioned requirements is the Dahlquist's .4-stability which has often 
proved very reasonable. It is well known, however, that in the class of basic methods 
for the numerical solution of ordinary differential equations (linear multistep 
methods, Runge-Kutta methods) there do not exist ^4-stable methods of order 
higher than 2. The aim of this paper is therefore to introduce a larger class of 
methods for the solution of ordinary differential equations, a class which will 
contain _4-stable methods of arbitrarily high orders. Since it is also known that 
.^-stable linear multistep methods are necessarily implicit, the implicit character 
of our methods will be emphasized in such a way that instead of computing the 
approximate solution in one point from the known approximate solution in / pre
ceding points (as it is in the case of linear /-step method) we will compute the 
approximate solution in k successive points simultaneously from some system of 
equations, supposing that the solution is known in / successive points. From this 
reason our methods will be called overimplicit methods. 
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Уn+1 + ß Уn-l+1 = ҺC fn+1 + ҺD fn-l+l 

- Уn+k . -Уn - fn+k. .fn . 

2. The Definition of an Overimplicit Multistep Method 

For the sake of simplicity we will treat only one differential equation of the 
first order 

y'=f(*>y) ^ <a,b> (2.1) 
with the initial condition 

y(a) = r}. (2.2) 

The generalization for systems of first order differential equations will be obvious 
in what follows. Also for the simplicity, we will assume that the points xt in which 
the approximate solution is sought are equidistant, i.e., x% = a +ih, i =-= 0, 1, ... 
and h > 0 is constant. The right-hand term of the given differential equation is 
assumed to be defined, continuous and satisfying the Lipschitz condition with 
respect to y in the strip a ^ x fg b, — oo < 3; < oo so that the solution of the 
problem (2.1), (2.2) exists and is unique in the whole interval <a, b>. If we denote 
the approximate solution in the point Xi by yi one step of our method consists — as 
it was already mentioned — in computing the values yn+i> ...,yn+k of the 
approximate solution in the points xn+i> ...,xn+jc (assuming yn-i+i, •••-yn to be 
known) simultaneously from the system 

(2.3) 

where fi = f(xi,yi), C is a square matrix of order k, and B, D are k x /matrices. 

The fact that the function /(*, y) satisfies the Lipschitz condition guarantees 
the existence and the uniqueness of the solution of (2.3) for any sufficiently small h 
so that one step of our method is well defined. In order to describe the whole method 
it is necessary, moreover, to indicate how to continue in the following step, i.e. 
how to choose / new initial values. The method will be practicable obviously only 
in that case when the new initial values will be chosen from the values yn-i+2> •••> 
yn+k. In order to specify them exactly let us take an integer s, 1 ^ s fg k and the 
new initial values let be yn-i+i+8> ...,yn+s- Hence, the overimplicit method is 
characterized not only by the matrices B, C, D but also by the parameter 5. 

Let us note that if s < k it is necessary to forget just computed values 
yn+s+i, -..,yn+k and to recompute them in the following step. For the simple 
notation we will always denote the value of the approximate solution in the point x< 
by only one symbol yt even though this value need not be the same in different 
phases of the computation. 

3. Convergence of Overimplicit Methods 

Our first task is to indicate the conditions under which the method just described 
is convergent. In order to be able to formulate the basic theorems concerning this 
problem it is necessary to introduce some concepts and definitions. 
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Definition 3.1. The overimplicit method given by the matrices B = {b<y}, 
C = {ctj}> D = {dij} and by the parameter s is said to be of order p (p positive 
integer) if the following conditions are satisfied: 

/ / k i 

i + 2 bv= ° > * — 2 bu(l —i) = 2 ^ + 2 du> 
y-i y-i y-i y=-i 

** + ( - D* 2 w-jy = * 2 ^y^+c-1) ' - 1 2 ^e-1)*-1] > 
y-i y-i y-i 

v = 2, ...,/>; i = l , ...,*. (3.1) 

Definition 3.2. The method (2.3) li 5a/d to be consistent if it is of order at least 
one. 

Let us draw the attention to the fact that both the consistency and the order 
of the method are local properties of the method, i.e., they depend only on the 
matrices B, C, D and do not depend on s. 

The conditions (3A) express that the local error L(y(x); h) defined by 

L(y(x);h) = У(x+h) 

У(x + kh) 

+ ß y(X-(l-\)h) 

y(x) 

—ҺC y'(x+h) 

lý(x + kh) 

-ҺD y'(x-(l-l)h) 

У'(x) 

(3.2) 

is of order Ä-9+1. 

Because we are dealing with the multistep method it can be expected that the 
convergence will not be guaranteed only by the assumption that the local error 
is small but that some other conditions analogical to Dahlquist's stability conditions 
will have to be fulfilled. In order to be able to formulate them let us introduce 
further notations. 

Let there be given an overimplicit method and let firstly / 5g s. Define the 
matrix R by 

R = [0, , 8_, , /,, 0,,*_8] (3.3) 

where Omtn is m X n null matrix and /, is the identity matrix of order /. Further, 
define the matrix E by 

E = — RB. (3.4) 

Secondly, let I > s; define now the matrix S by 

S = [/8, 0 8 , *-*] . 
Further, let 

< - в д 

(3.5) 

(3.6) 
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and construct the matrix 
B<D = [Ok, ii+1) s-h B] ; 

let us divide SBM into i + 1 square blocks in such a way that 

SBW = [B05 ..., B<] 
and define 

(3.7) 

(3.8) 

£ = O,,, f, -**,*. 

-o,,, 

o , , , Л-O,,, ^Л, 

—ßo ... —ß.-i — ß * 

(3.9) 

After having introduced the matrix £ we are able to define the stability of an 
overimplicit method (2.3). 

Definition 3.3. The overimplicit method (2.3) is said to be stable if there exists 
a constant r such that for any n 

||E«|| ^ r. (3.10) 

Here £ is defined by (3.4) or (3.9) for / 5g s or / > s respectively and ||£|| is 
an arbitrary norm of £ as the linear mapping in the corresponding vector space; 
for the definiteness let us consider the spectral norm. 

Let us note that while the consistency depends on the matrices B, C, D and 
does not depend on s the stability depends only on B and s. 

Now we have all prepared to be able to formulate the basic theorems con
cerning the convergence of an overimplicit method. 

Theorem 3.1. A stable and consistent overimplicit method is convergent. 

Let us note to this theorem that if the convergence is understood in the usual 
sense, i.e., if any approximate solution the initial conditions of which converge by 
h -> 0 to the initial condition of the given differential equation converges to the exact 
solution then the conditions of Theorem 3.1 are not only sufficient but also 
necessary. 

Theorem 3.2. Let the solution of the given differential equation have continuous 
derivatives up to order p + 1. Then the approximate solution computed by an over-
implicit stable method of order p the initial conditions of which are approximated 
with the accuracy hP converges to the exact solution with the rate hv. 

4. -4-stability of Overimplicit Methods 

Let us investigate now the ^4-stability of overimplicit methods. The main 
result concerning this problem can be formulated very simply. 
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Theorem 4.1. In the class of overimplicit methods there exist A-stable methods 
of arbitrarily high orders. 

Let us indicate very briefly one of the possibilities how to prove constructively 
this theorem. 

First of all, in order to facilitate our task, let us seek _4-stable methods of 
arbitrarily high orders only in the subset of the class of overimplicit methods for 
which / -= 1 and B = (—1, ..., — \ ) T and which are of the order at least k. The 
methods of this subset will be called selfstarting overimplicit almost optimal methods 
from the reason that they need no starting procedure and that their order is at least k. 
Thus, in what follows we will deal only with the formulae 

yn+i 

. yn+k . 

with C and d given such that 

Уn 

lУn 

+ҺC [fn+il +hfnd 

Ţn+k 

(4.1) 

y(x + h) 

• y(x+ kh) 

У(x) 

У(x) 

— ҺC (x + h) 

. ý(x + kh) . 

hÿ(x) d = 0(h*+i) (4.2) 

holds for any sufficiently smooth function y(x). Thus, any matrix C and any vector d 
satisfying (4.2) define a selfstarting overimplicit almost optimal method. 

Let us note that this class is not empty. Any formula of the interpolation type 

yn+i = yn + h 2 yafn+h i = \, •••, k 
7 = 0 

where 

УІJ = í lj(t) át 
o 

(4.3) 

(4.4) 

and lj(t) is the elementary Lagrange interpolating polynomial for the points 
t = 0, ..., k is an element of our class since it is of order k + 1. The method 
(4.3) will be called the self-starting method of Adams type. 

Let us return now to the general selfstarting almost optimal method (4.1) and 
let us investigate its ^-stability. If we use this formula for solving the differential 
equation y! = ay, where a is a (complex) constant, we get 

(/ — zC) Г yn+\ : yn(e + zd) 

where 

and 

L yn+k 

e = (\,...,\)T 

z = <xh . 

(4.5) 

(4.6) 

(4.7) 
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Because only the value yn+s is used as the initial value in the following step of the 
method we are interested only in the values yrs> r = 0, 1, ... in fact. For them we 
obtain immediately by Cramer's rule 

where 

Ps(z) . , 
У(r+l)s = -øт^г- Уrs, Г = 0, 1, ... 

Q(z) = det (/ — zC) 

(4.8) 

(4.9) 

and Ps(z) is the determinant of the matrix which arises from the matrix / — zC 
by replacing its 5-th column by the vector e + zd. From (4.8) it follows now 
immediately that the necessary and sufficient condition for the .^-stability of a self-
starting formula (4.1) is that 

" Ps(z) 

QЮ 
< 1 (4.10) 

for any z with negative real part. 
The construction of a selfstarting _4-stable method is now based on the following 

statement. 
k 

Lemma 4.1. Let 2 a i z i oe any polynomial with ao = 1. Let t be the vector 
: = 0 

defined by 
k 

ak-i ,, } 1N, M*+1e (4.ll) -«2-
Í = 0 

(* + l)! 

where e is defined by (4.6) and M is the diagonal matrix of order k having the numbers 
l, ..., k on the diagonal. Further, let the matrix C be the solution of the equation 

(k—l) times 

M*V = CMV(I + M) + [OT^TO, (k + l) t] (4.12) 

where 0 is the null k-dimensional vector and V is the Vandermond matrix for the 
numbers l, ..., k, i.e., 

1° I1 ... I*-1 

2° I1 ... 2*-1 
(4.13) 

W kl ... k*-1 

Finally, let d be the vector defined by 

d = Me — Ce. (4.14) 

Then C and d define a selfstarting overimplicit almost optimal method for which 

Q(z) = det (/ — zC) = 2 aiZt 
«'=o 

(4.15) 
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and 
k j 

Ps(z)=2(2 (/-o!at)z j (s=h••"k) (4, i6) 

=o »=o 

With this lemma, the proof of Theorem 4.1 is now easy. It is sufficient to 
construct with help of this lemma such a selfstarting method that the corresponding 
polynomials Ps(z) and Q(z) have convenient properties. The simplest way is to take 
for the polynomial Q(z) (by given s, I = s -= k) the polynomial R(—sz), where 
R(z) is such a polynomial that the ratio R(z)/R(—z) is the Pade approximation 
of ez. Then it is P8(z) = Q(—z) and Theorem 4.1 follows from the well-known 
fact that R(z) has zeros in the left halfplane. 

5. Applicabil ity of -4-stable Methods 

In this last section of the paper we will investigate the applicability of ^-stable 
selfstarting methods for the numerical solution of partial differential equations of 
parabolic type. Let us study firstly the simpler problem which will indicate the 
results which can be expected. 

Let us solve by an _4-stable selfstaring method the system of ordinary differen
tial equations 

X' = Ay (5.1) 

and let us suppose that A is a constant matrix with eigenvalues with negative real 
parts. The application of the method (4.1) on this system gives 

Yn+l 1 = У» + h(C 0 A) f yn+i I + h f diA 1 y„ (5.2) 

y»+*J LX»J Ly»+*J LdfcAJ 

where C ® A is so-called tensor product of the matrices C and A denned by 

C<x)A = cцA с\кА (5.3) 

cjti-A ckkA 

It is known that the eigenvalues of C (x) A are the products of the eigenvalues of 
C and A. Since the eigenvalues of C have positive real parts (as it follows from the 
_4-stability of the method under consideration) and the eigenvalues of A have 
negative real parts the matrix C ® A cannot have real positive eigenvalues and, 
consequently, / — h(C ® A) is regular for any h > 0. From here it follows 
firstly that an .4-stable selfstarting method applied on any differential equation of the 
form (5.1) has sense for any h > 0. Further, it can be easily shown that 

y<r+i). = Q-KhA) Ps(hA) yr8 (5.4) 

where P^(^) and Q(z) are polynomials defined in the preceeding section by (4.8). 
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If A is now the eigenvalue of A then Ps(hX) / Q(hX) is the eigenvalue of 
Q~\hA) P8(hA) and, since our method is .^-stable, this number is therefore smaller 
than 1 in magnitude. Thus, it holds 

\\[Q-1(hA)Ps(hA)]n\\-^0 for n -> oo (5.5) 
and, consequently, 

| | y r . | | -*0 for r ^ o o . (5.6) 

From (5.6) it follows that any _4-stable selfstarting almost optimal method 
can be applied to the system (5.1) with constant coefficients. 

This analysis suggests that the solution of partial differential equations of 
parabolic type with coefficients independent of time variable by selfstarting ^4-stable 
methods need not meet any substantial difficulties. 

Thus, let there be given a differential equation 

du _ 3 
dt dx 

with the initial condition 
u(x, 0) = g(x) 

and with the boundary conditions 
du(ty a) 

( ŕ ( * ) - ^ - ) -q(x)u+f(x) (5.7) 

(5.8) 

aiи(t, a) — ßip(a) 

0L2U(t,Ь) +ß2p(Ь) 

дx 

дu(t, b) 

дx 

П. 

= У2 

(p(x) = po > 0, q(x) ^ 0, <xi = 0, fa ^ 0, an+Pi>0). (5.9) 

Let us describe first of all what it is understood under the solution of (5.7) 
by a selfstarting method (4.1). Let u = ti (T > 0 is a constant) be the points on 
the time axis and denote the approximate solution of (5.7) on the line t = u, 
a < x < b by Ui(x). The solution of (5.7) by a selfstarting method (4.1) then 
means the determination of m(x) as a solution of the boundary value problem 
for the system of ordinary differential equations 

un+i(x) 

L un+k(x) 

un(x) 

un(x) 

+rC ^Un+l + f 

S£un+k +f 

+тd(J?un + / ) (5.10) 

where 

S£u = ^-í{p(-x)^)-q{x)u (5.11) 

Now, it can be really proved without any serious problems that 

(i) The system (5.10) has a solution for any T > 0. 

(ii) Ui(x) -> u(tu x) for T -> 0 and h = const. 
(iii) The rate of convergence is (under the convenient smoothness conditions) 
at least T*. 
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In the case of time dependent coefficients, the situation issubstantionally more 
complicated. The essence of the difficulties can be easy comprehended if we apply 
our methods to the solution of the system of ordinary differential equations (5.1) 
where the matrix A is variable. In the equation (5.2) we have then instead of 
C ex) A the matrix 

Ф» = CllA(xn+i) Ci2A(xn+2) • ••• CikA(xn+k) (5.12) 

L CklA(xn+l) Ck2A(xn+2) •••• CkkA(xn+k) J 

In this case, h > 0 can exist for which / — h&n is singular even if C corresponds 
to an ,4-stable method and A(x) has the eigenvalues with negative real parts for 
any x. Thus, the system corresponding to (5.2) need not have the solution for some 
h and so (5.6) cannot be satisfied. It can seem that this difficulties are inherent in the 
problem alone and not in the method used since in the case under investigation 
the system (5.1) need not be Ljapunov .stable and the validity of (5.6) cannot be 
therefore expected. But in the case that A(x) is symetric (and has negative eigenvalues) 
the system is Ljapunov stable but nevertheless, it can be shown that the difficulties 
indicated above may occur. 

From what it was said it seems that the ^-stability alone is not sufficient to 
guarantee the convergence in the case of the parabolic equation with time dependent 
coefficients. About these problems we know very little; we are able only, on the 
basis of the overimplicit formulae of Adams type, to construct concrete formulae 
converging even in the case of time dependent problems. 
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