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Note on Inverse Iteration and Ill-Conditioned 
Eigensystems 

J. H. WILKINSON 
National Physical Laboratory, Teddington 

Inverse iteration is one of the most powerful tools in numerical analysis. Used 
directly or in a concealed form as in the QR or LR algorithms it is at the heart 
of many of the most successful algorithms for computing eigensystems. 

The motivation for it is the following trivial observation. Suppose A has a 
complete system of normalized eigenvectors u% corresponding to eigenvalues A<. 
If JCO is an arbitrary vector then we may write 

xo = 2 a * M * 

using the ut as a basis. We then have 

xr = (A — pI)~rxo = 2 BtwKh — P)r- (1) 

If \ks — p\ = min \kt —p\ and the minimum is achieved for a single s then 
i 

as r is increased, xr is increasingly dominated by its component in the direction 
of us. In fact 

*r/||*r||2 -> kus (2) 

where k is a scalar of modulus unity. If \X8—p\ < < \fa — p\ (i -^ s) then co-
vergence is very fast. Conditions are very favourable if p has been determined as 
a computed eigenvalue using a stable algorithm. 

From (1) it is clear that xr steadily improves as an approximation to us, though 
if p is exceptionally close to Xs and Xs is well separated from the other eigenvalues 
one might expect one iteration to produce a fully acceptable approximation to us 

unless 0L8 happened to be pathologically small as a result of an unfortunate choice 
of XQ. In fact if Xs — p = e we have 

xr M a s м * + 2Æ5x] (3) 

which presents the situation in stark relief. Assuming exact computation there 
appears to be everything to be gained by continuing iteration as far as accuracy 
is concerned since from (3) the unwanted components suffer a diminution relative 
to that of us at each iteration. 
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In practice inverse iteration is usually carried out in the steps 

(A — pi) yr+i = xr, *r+l = yr+i /|br+l||2 . (4) 

The unnormalized vector yr+i is determined first at each stage and then the 
normalized version xr+i is derived from it. (A — pi)'1 is not computed directly 
but rather yr+i is derived from xr by solving the linear system in (4), usually by 
decomposing (A—pi) into its LU factors (with pivoting) or its QR factors. 
Although LR factorization is usually used in practice we shall assume a QR factoriza
tion since then we can make a categorical statement about stability when rounding 
errors are involved. 

It is interesting at each stage to form the residual vector rr defined by rr = 
= (A — pi) xr. (Here we are assuming that p does come from a stable eigenvalue 
routine so that it is natural to use it as the approximate eigenvalue when forming 
the residual). If this is done in practice one finds that when p is an approximation 
to an ill-conditioned eigenvalue, then after one iteration the residual n is usually 
negligible but all subsequent r8 are far larger! This contradicts our natural expect
ations since the xr should be "improving". Of course, when rounding errors are 
made xr cannot continue to improve indefinitely since we are allowing only a fixed 
number of digits for its representation. Nevertheless the large increase in the size 
of the residual calls for an explanation. 

Although the phenomenon is now fully understood and the analysis shows that 
a large increase in the residual would be common even if inverse iteration were 
performed exactly, it does not seem to be fully appreciated that the process of inverse 
iteration itself does not play a very important role. The main contributary factor 
is the nature of the basis ui, W2, • •- un in the case when A has an ill-conditioned 
eigensystem. 

An eigenvalue Xi is ill-conditioned if si = yiHxi is small, where yi and xi are 
normalized left-hand and right-hand eigenvectors corresponding to X\. It is well 
known that if si is small then at least one other si is small. We cannot have just 
one ill-conditioned eigenvalue! A group of k associated eigenvalues, say Ai, ..., A* 
will have a set of normalized eigenvectors ui, ..., uk which, although independent, 
will be almost linearly dependent in the sense that there will be a unit vector /? of 
order k such that ||/Svui + ... + pWkW is small. Although an arbitrary unit vector x 
will always be expressible in the form ^<x.w the components ai, ..., a* will be 
rather special for almost all x. 

We may illustrate this by an example in which n = 3, k = 3 and the ut are 
given by 

ul W2 us 

.701 645 809 .701 091 297 .702 148 790 

.589 614 626 .589 943 936 .589 315 138 

.400 059 689 .400 546 058 .399 618 250 
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The three vectors are parallel to three decimal places since |w< — UJ\ is of the 
order of 10~3. The trio of vectors is much more nearly linearly dependent since 
||.816 181 505wi — .388 450 021w2 — .427 731 607K3|| is of the order of 10~«. If we 
choose ai, a2> a3 at random with ||a||2 = 1 then for almost all choices the vector 
y = oLiyi + 0L2U2 + 0L3U3 will be in the same general direction as the m. It is only 
if we choose the a< rather specially that we shall obtain a vector in the rest of the 
3-space; when such special on are chosen there will be a great deal of cancellation 
when y is computed. On the other hand if we take a random unit vector and express 
it in terms of «i, *2> W3 then unless the vector happens to be roughly in the direction 
of the Ui it must be associated with a set of a< which are special in some sense. 

If we derive a set of orthonormal vectors vt from the ut we find that 

Vl = Ml 

v2 = (1.238)103*2 — (1.238)103«i 

V3 = (2.786)10«w3 — (2.529)10**2 — (2.57)105*1. 

A random unit x will be of the form favi + /J2̂ 2 + /?3*>3 where ||/?||2 = 1 and 
since the vt are orthogonal the fa will be random; the probability that |/?3, < 10~* 
is of the order of 10_*. Now we have 

x = J^favi = faux + 10%[1.238*2 —1.238*i] + 10%[2.786*3 —2.529*2 — 0.257*i] 

= uiiPi — (1.238)10% — (0.257)10%] 

+ *2[(1.238)10% — (2.529)10%] 

+ *3[(2.786)10%] 

= ai*i + a2*2 + 0L3U3 . (5) 

The components of uu U2, «3 are dominated by the terms in /S3 unless ^3 
happened to be small. Loosely speaking almost all unit vectors when expressed 
in the form ^onut have large components ai, a2, a3 which are roughly in the ratio 
—0.257, —2.529, 2.786. 

Now let k be a random unit vector and consider the vector y defined by 

y = &iai*i + &2a2*2 + ^ 3 * 3 . (6) 

The coefficient &iai, &20C2, &3a3 will in general be of the order of magnitude 
106 but they will not be in the special ratio of the on themselves. No cancellation 
will take place and ||-y|| will be of order 106 for almost all choices of k. This simple 
transformation will have the effect of changing the norm from 1 tolO6. 

However if we make a second transformation of the same kind to give z we have 

Z = k\0L\Ul + k\0L2U2 + £ |a3*3 • ( 7 ) 

In general \\z\\ will be again of order 106. The first transformation will, for 
almost all k, give an increase in norm of 106; the second transformation will not 
increase the norm at all. Further transformations of the same type will not as a rule 
have any startling effect on the norm though if k[ = k\ = k\ = k for some r then 
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at this stage the coefficients will again have the special ratio and the norm of the 
vector will again drop to unity. In the next step it will again display the enormous 
increase in norm! It is this simple mechanism which is at work in inverse iteration. 
The phenomenon has nothing to do with rounding errors. 

The first step of inverse iteration is defined by 

(A — XI) yi = xo where ||*o||2 = 1 , (8) 

*i =.yi/IMl2 where ||*i||2 = 1 . (9) 

The first residual n corresponding to the normalized xi is given by 

n = (A- XI) X! = xolM* i INI2 = 1 /IMI2 • (10) 

Hence r± is small if ||.yi||2 is large. Suppose the value of X we are using is associated 
with a group of ill-conditioned eigenvalues so that the vectors uu ui, .-.,Uk are 
nearly linearly dependent. A random unit vector JCO will be expressible in the 
form 

n k n 

* ° = 2Xiut = 2 ^iUi + 2 a*w* (**) 
i = l i = l i = * + l 

and for almost all xo the ai, ..., a* will be very large and specially related. 
yi is given by 

k n 

3,1==2o^byMi + 2o^i)-Wi- (12) 

x=l i=k+\ 

Suppose X is an approximation to X\ ; we may write Xi — X = ei(i = 1, ...yk). 
where ei will certainly be fairly small; it will not usually be pathologically small 
since, although we are assuming that it is an exact eigenvalue of A -\-E where 
||-S||/||-4||2 is of the order of the machine precision, we are interested in the case when 
Xi is ill-conditioned. Usually the other ei (i = 2, ..., k) will also be moderately 
small since this is an ill-conditioned group. The remaining Xi — X will not be at 
all small. Equation (12) may therefore be expressed in the form 

k n 

yi==^ [2 k m u t + 2 w=ku] (n) 

t'-=l i=k+l 
k 

where ki = Si/ei. The expression ^cum has therefore undergone just the type 
i= I k k 

of transformation we discussed above. Although ^£onui is of order unity, ^ktonui 
1=1 *= 1 

will almost certainly be large; its size will be related to the nearness of the set of 
vectors ui,...,ujc to linear dependence. ||jri|| will therefore be large for two reasons. 

k 

First because 1/ei is fairly large and secondly because ]T*«a«w' is large. The first 
1 

residual will therefore be very small. 
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y\ is now normalized to give x\. The coefficients of ui (i = 1? •••? *) W-U not 
now be large and when we perform the second iteration the only factor contributing 
to H.V2II2 being large is 1/ei. Except in the rare cases when [(Xi — X)j(X\ — X)]r = 
= 1 (i = 1, ..., k) for some r we shall never again get a very large ||j!r||. The sub
sequent residuals corresponding to X and the successive xt will be much larger than 
for X and x\. Of course with exact computation xr would converge slowly to u\ 
and hence ultimately xr would give a negligible residual corresponding to X\ but 
not to X\ In fact 

Au\ — Xu\ = Au\ — X\u\ -\- (X\ — X) u\ = (X\ — X) u\ 

giving \\Ax—Xu\\\ = e\ (14) 

confirming that the smallness of the later residual is related only to e\ and is not 
reinforced by the near linear dependence of the u\, •••> ujc. 

The condition [(Xi — X)/(X\ — X)]r = 1 discussed above might seem to be so 
improbable as to be not worth discussing. This is not quite true. When A has 
a non-linear divisor such a situation usually arises when the eigenvector is found 
via a transformation of A which has involved rounding errors. If the original A 
has a cubic divisor for example one usually finds that the residuals are patho
logically small every third iteration. 

Rounding errors in general affect the above arguments only very slightly in 
spite of the fact that (A — XI) is almost singular. This is because we obtain exact 
solutions of (A + F — XI)y = x when we solve (A — XI)y = x, where 
IIPII/H ÎI is of machine procision. However when we include rounding errors there 
is no possibility of the xr tending steadily to u\ since at each stage we effectively 
iterate with some (A + F — XI)'1 and the F is different each time. In the ill-
conditioned case the first iteration is the only one giving a related x and X. 
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