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1974 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA NO. 1-2 PAG. 189-193 

Tetrahedral Finite C(m)-elements 

A. ZENiSEK 
Comput ing Center of the Technical Universi ty, Brno 

In [3] and [4] there was expressed the following conjecture: The simplest polynomial on the 
d-dimensional simplex which generates piecewise polynomial and m-times continuously differenti-
able functions is of the degree 2dm + 1. 

It is known that this is true in the cases d = 1 and d = 2 for arbitrary m and in the case 
d = 3 for m ̂  2 (see, e.g., [3]). In this paper there is studied the case d = 3 generally. 

I. The Parameters Guaranteeing the C(m) -continuity 

Besides the usual notation for derivatives 

£><*/ = 3l«l//fo«- dy** dz**, 
a = (ai, a2, a3), |a| = ai + a2 + a3 

we shall use the operators Df and D^k which are defined by 
DfJ= Wflfyk Sift off = w/IW 3if-, 

/J = (j8i,j8a), \P\=Pi+fa. 
The symbols Sjk, tjk mean two arbitrary but fixed directions such that the direc
tions PjPk, S]k> tjk are perpendicular to one another, PjPk being a given edge of the 
tetrahedron U. The symbols st, n denote two arbitrary but fixed directions such 
that the directions m, su n are perpendicular to one another, rn being the normal 
to the f-th triangular face of the tetrahedron U. 

Let us prescribe at the vertices Pi and on the edges PjPk of the tetrahedron U 
the parameters 

D?p(Pi), | a | < 4 m , i = 1, ..., 4 (1) 

-OffcpCQ}!̂ ), \P\ =*, r = 1, ..., s; 5 = 1 , ..., 2m (2) 

where f = 1, 2, 3, * = 2, 3, 4 (; < *) and Q}J»5), ..., Q}J»*> are the points dividing 
the edge PjPk into s + 1 equal parts. 

At the center of gravity Qi of the triangular face which lies opposite to the vertex 
Pi let us prescribe the parameters 

^ ^ 0 L ' l.-K-*+ff-3.,--1.....4 (3) 

m *£ f fg° » | /3 |<2m+«r-l> I-=l , . . . ,4 (4) 
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where in the case 
m = 2K — 1 (5) 

it holds 
Q = 1, ..., (m + l)/2, a = 1, ..., (m + l)/2 (6) 

and in the case 
m = 2x (1) 

it holds 

Q = 1, ..., (m/2) + 1 , a = 1, ..., m/2 . (8) 

At last in the case of each o ^ 2 let us prescribe the parameters 

dsp(Q{il>s)) 
dvsg<>+2dn}«-2 r = 1, ..., 5; 5 = 2m + 1, ..., 2m + Q — 1 (9) 

and in the case of each a ^ 2 the parameters 

av5r+ia»r-1 r = 1, . . .,s; 5 = 2m + 1, ..., 2m +cт — 1 (10) 

where z = 1, ..., 4, / = 1, 2, 3, k = 2, 3, 4 (j ^ i, k ^ z, / < &), r^* is the direc
tion perpendicular to the normal m and to the edge PjPk and the values of D, a 
are given in the cases (5) and (7) by (6) and (8), respectively. 

It is easy to see that the total number of the parameters (1), (2), (3), (4), (9), 
(10) is given in both cases (5) and (7) by 

ATi = (452m3 + 612m2 + 208m + 24)/6 . (11) 

Thus it holds for m ^ 1 
Ni<N, (12) 

where N is the total number of coefficients of a polynomial of the degree 8m + 1 
in three variables, 

N= (8m + 2 ) (8m + 3) (8m + 4 ) / 6 . (13) 

The following theorem is a consequence of the theorems concerning the unique 
determination of triangular C(m)-elements [1,2]. 

Theorem 1. Let Px, P^, P# (x < X < /LC) be three vertices of the tetrahedron 
U and Qr the center of gravity of the triangular face PXPAP^. Let the polynomial 
p(x,y, z) of the degree 8m + 1 be given in such a way that the values (1) — (4), 
(9), (10) are equal to zero at the points Pi(i = x, A, ju), Qyk>

s) (j = x, X; k = X, /n; 
i < k) and QT. Then it holds 

D«p(x, y,z) = 0, |a| < m , (x, yy z) e nr , (14) 

where nr is the plane determined by the points Px, PA, P#. 

Corollary. Let Ui, U2 be two tetrahedrons with a common face and let 
Ui 0 U2 = 0. Let on each tetrahedron U\ there be given a polynomial p%(x, yy z) 
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(i = 1, 2) in such a way that the parameters (1) — (4), (9), (10) prescribed at the 

points of the common face are the same for both polynomials. Then the function 

f(x, y, z) = pi(x, y, z), (x, y, z) e Ui (i = 1, 2) (15) 

is m-times continuously differentiable on the union of Ui and CjV 

2. Existence of Tetrahedral O m >-elements 

It remains to complete the parameters (1) — (4), (9), (10) by N — N± para
meters in such a way that we get N independent conditions for N coefficients of a 
polynomial of the degree 8m + 1. The relatively simple case m < 2 is introduced 
in Theorem 2, the case m ^ 3 in Theorem 3. The following lemma is a gen
eralization of one device which was used in the proof of [1, Theorem 1]. 

Lemma 1. Let the polynomial p(x,y, z) of the degree n satisfies Eq. (14). 
Then it holds 

p(x, y, z) = [fT(x, y, z)]m+1 qn-m-i(x, y, z) , (16) 

where qn-m-i(x,y, z) is a polynomial of the degree n — m—1 and fT(x, y, z) is 
a linear function defined by the relation 

fт(x, y, z) = (17) 

X Xx Xx Xfi 

y y* yi yn 

Z Zx Zl Zfi 

1 1 1 1 

The symbols Xi, yt, z% (i = x, 1, ju) denote the coordinates of the vertices of the 
r-th triangular face. 

Theorem 2. A polynomial p(x, y, z) of the degree 8m + 1 (m ^ 2) is 
uniquely determined by the parameters (1)—(4), (9) and by 

D«p(Po), | a | < 4 m — 3 , (18) 

where Po is the center of gravity of the tetrahedron U. 

Proof. In the case m = 0 the assertion of Theorem 2 is trivial. Let in the 
case 1 ^ m ^ 2 all prescribed parameters be equal to zero. Then, according to 
Theorem 1 and Lemma 1, it holds 

p(x, y, z) = gm+i(x, y, z) q*m-3(x, y, z) (19) 
where 

gk(x, y, z) = [fi(x, y, z) f2(x, y, z) f3(x, y, z)/4(*, y, z)]k (20) 

and qAm-3(x,y, z) is a polynomial of the degree 4m — 3. 
As gm+i(Po) -?-- 0, we get from Eq. (19) and from the assumption that the 

parameters (18) are equal to zero 

Dag4 m_3(Po) = 0 , | a | < 4 m - 3 . (21) 

The conditions (21) imply g4m-3 (x, y, z) = 0. Thus, according to Eq. (19), 

p(x, y, z) = 0. Theorem 2 is proved. 
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The situation in the case m ^ 3 is more complicated because it is impossible to 
prescribe parameters (18). (The total number of the parameters (1)—(4), (9), (10), 
and (18) is in the case m ̂  3 greater than N.) 

Let {L4m-3, L4w-4, . • • 3 L2m-4, L2w-3-6^, L2m-4-6j}, where j = 1 , . . . , k in the 
cases m = 3k + 3, m = 3k + 4 and; = 1, . . . , k + 1 in the case m = 3k + 5, be a 
system of non—identical planes which are parallel to the face fi (x, y, z) = 0, 
intersect the tetrahedron U and do not contain both the vertices Pi and the centres 
of gravity Qt (i = 1, . . . , 4). Let R[r), . . . , fl$r, where Mr = (r + 1) (r + 2)/2, 
be a set of points lying both in the plane Lr and in the interior U of the tetrahedron 
U and being ordered in such a way as Mr integers in the Pascal triangle. Let 
h{r) (x,y, z) be such a linear function that h{r) (x,y, z) = 0 is the equation of the plane Lr. 

Theorem 3. A polynomial p(x, y, z) of degree 8m + 1 (m ̂  3) is uniquely 
determined by the parameters (1)—(4), (9), (10) and by the parameters (25)—(27): 

p(R<;>), s=l,...,Mr; r = 2m — 4 , . . . , 4m —3, (25) 

^ - ^ ^ - ^ \P\<rn-4-3j,i=l,...,4 (26) 

where; = 0, ..., k — 1 in the case m = 3k + 3 ; ; = 0 , . . . , k in the cases m = 3k + 
+ 4 and m = 3k + 5, 

/>(#('>), 5 = 1 , . . . , Mr', r = 2m — 4 — 6;, 2m — 3 — 6; (27) 

where ; = 1, . . . , k in the cases m = 3k + 3 and m = 3& + 4; ; = 1, . . . , * + 1 
in the case m = 3k + 5. 

We sketch the proof in the case m = 3k + 3: Let us suppose that all the para
meters (1)—(4), (9), (10), (25)—(27) (the total number of which is equal to N) are 
equal to zero. Then, according to Theorem 1 and Lemma 1, p(x,y, z) is of the form 
(19). Applying on the polynomial (19) homogeneous parameters (25) we get, accord
ing to Lemma 2 and with respect to the relation 2m — 5 = 6k + 1: 

p(x, y, z) = gm+i (x, y, z)ho(x, y, z) q<>k+i(x, y, z) (28) 

where h0(x, y, z) = h^m~Z)(x, y, z)h^m~A)(x, y, z) ... h{2m~^(x, y, z) . As the 
parameters (1) are equal to zero, we get, according to Lemma 3, 

D«qek+i(Pi) = 0 , | a | < 3 * , t = l , . . . , 4 . (29) 

Homogeneous parameters (26) with j = 0 imply, according to Lemma 4, 

Dtq<>k+i(Qi) = 0 , | f l < 3 * — 1, i = l , . . „ 4 . (30) 

It follows from Eqs. (29), (30) that 

06*+i(*> y, z) = g±(x, y, z) qek-s(x, y, z). (31) 

Substituting (31) into (29) and then applying homogeneous parameters (27) with 
; = 1 we get 

p(x,y, z) = gm+2(x, y, z)hi(x, y, z)q^k-i)+i(x, y, z) (32) 
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where hi(x, y, z) = ho(x, y, z) h(2m~10)(x, y, z) h^2m~9) (x, y, z). It is easy to prove by 

induction that after k steps we get 

p(x, y, z) = gm+k+i(x, y, z)hk(x, y, z) qi(x, y, z). (33) 

where hk(x, y, z) = hk_i(x, y, z) h(2m~z-*k)(x, y, z) h(2m-*-*k)(x, y, z). As the 
parameters (1) are equal to zero Lemma 2 implies qi(x, y, z) = 0. Thus p(x, y, z) = 
= 0. Theorem 3 is proved. 

Lemma 2. Let qr(x, y, z) be a polynomial of degree r. If 

qr(Rn = 0, 5 = 1 , . . . , ( r + l ) ( r + 2)/2 

then 

qr(x,y, z) = h(r) (x,y, z) qr-i (x,y, z) . 

Lemma 3. Let the polynomial p(x, y, z) be of the form 

P(x, y, z) = gk(x, y, z) h(x, y, z) q(x, y, z) (34) 

where the polynomial gx(x, y, z) is defined by Eq. (20) and the polynomial h(x, y, z) 
satisfies the relations h(Pi) ?-= 0 (i = 1,..., 4). If 

D*p(Pi) = 0, | a | < 5 (s>3X) 

then 

D*q(Pi) = 0, |a| < .5 — 3A . 

Lemma 4. Let the polynomial p(x, y, z) be of the form (34) where the poly
nomial h(x, y, z) satisfies the relations h(Qi) =?-- 0. If 

m^Ш = o, m dn\ 

then 

D!q(Qi) = 0, | / J | < s . 
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