
Acta Universitatis Carolinae. Mathematica et Physica

L. Úlehla; E. Humhal; Jan Wiesner; Vladimír Lelek
A phenomenological non-relativistic two-nucleon potential

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 16 (1975), No. 1, 3--53

Persistent URL: http://dml.cz/dmlcz/142358

Terms of use:
© Univerzita Karlova v Praze, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142358
http://project.dml.cz


1975 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 16, NO . 1 

A Phenomenological Non-relativistic Two-nucleon Potential 

L. ULEHLA 

Department of Theoretical Nuclear Physics, Charles University, Prague 

E. HUMHAL, J. WIESNER 

Czech Technical University, Prague 

V. LELEK 
Institute of Nuclear Research, Prague 

Received 29 October 1973 

The JINR and Livermore two-nucleon phase shift data have been simultaneously fitted for all 
orbital states j <, 5 by a phenomenological two-nucleon potential, the radial part of which is repre
sented as a sum of Yukawa type terms. The potential contains central, spin-orbit and tensor 
components and is dependent on the total angular momentum. The x2 test gives x2 per number of 
degrees of freedom less than 1.63. The corresponding scattering lengths and the deuteron main 
characteristics are reproduced. 

I . Introduction 

The history of the two-nucleon phenomenological potential is well known and has 
been described in references [1], [2]. There have been several relatively successful at
tempts to derive the realistic two-nucleon potential, a non-relativistic quantity, which 
reproduces the experimental two-nucleon data. 

The first class of realistic potentials was obtained under the assumption that the 
two-nucleon interaction contained a hard core — a repulsive and unpenetrable domain. 
The Hamada- Johnston [3] and Yale [4] potentials and their modifications belong to this 
type and are still widely used. 

Some difficulties in explaining the properties of nuclear matter lead to the conclusion, 
that the hard core was too strong and the idea of a soft core two nucleon interaction was 
accepted as another possibility. The Reid potential [5] is a member of this family. 

It had already been shown in 1966 [6] that most experimental two-nucleon phase 
shifts could be described on the basis of a simple assumption, according to which the 
radial part of the two-nucleon potential was represented as a sum of Yukawa terms. The 
repulsive soft core type interaction in the 1So state and in some other states was then 
obtained automatically in the fitting process. This idea was then followed in a series of 
papers where it was shown that the Yukawa type interaction, which is interesting also from 
the theoretical point of view, is a suitable representation of the two-nucleon forces. 



In the early studies of the two-nucleon problem attempts were made to obtain the 
potential in the frame of the strong interaction theory. Until now, the exact form of it has 

not been derived. The resulting potential is dependent on the starting principle, on 
approximations used during the calculation and on a relatively large number of not very 

well known coupling constants and masses of intermediary particles. They should be 
obtained by fitting the experimental two-nucleon data. Therefore this type of the poten
tial does not lie very far from the phenomenological. Usually it is highly singular [7] and 

corresponding cuts are necessary if it is used for nuclear calculations. 
The last group consists of the non-local or velocity dependent potentials, in which 

the radial non-locality is essential. In some cases they can be considered akin to the hard 

core potentials [8]. Although there are some theoretical indications, that the two-nucleon 
potential should be velocity dependent [9] this type is not commonly chosen for nuclear 
calculations because of real or expected mathematical complications. There is one 
exception — the separable Tabakin potential [10], which on the contrary was specifically 

constructed in a form suitable for nuclear computations. Its parameters can be determined 

fairly well and it can be considered as a realistic potential. 

When the phenomenological approach is accepted, the question of the uniqueness of 

the potential naturally arises. It was proved by Agranovich and Marchenko [11] that the 

nuclear potential V(x) is uniquely determined if the integral 

0 
V(x) | dx (1.1) 

converges, the unitary scattering matrix S(k) is known for all real momenta k for given 

(fixed) orbital momentum or total angular momentum and the bound state energy and the 

so called normalization constants are given. On the other hand it was shown by Newton 

and by Sabatier [12] that the two-nucleon potential is unique if the S matrix is known 

for all real orbital momenta at a given (fixed) energy and if the potential decreases more 

rapidly than x ~3/2 for large x. 
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In both cases it is assumed that the potential is a non relativistic quantity. This is 
certainly neither true for the energies higher than 300 MeV nor for large orbital momenta, 
where the notion of a potential is at least problematic. Hence, all these theorems and 
proofs have limited validity. The situation is made worse by the experimental fact, that the 
phase shifts for high orbital momenta and low energies are not known and cannot be 
obtained because of the small size. Schematically the basis on which the potential should 
be obtained is shown in Fig. 1. In the total angular momentum (^-energy (E) plane the 
full lines inside the dashed triangle represent the scattering data which can be seriously 
used for the derivation of a non-relativistic phenomenological two-nucleon potential. 

So far realistic two-nucleon potentials have been established individually for given 
orbital states or for the few lowest orbital states. The fact, that the potential, if it exists, 
must lead to strong correlations among the phase shifts for different orbital momenta, has 
not been used in practice, although the idea of such correlations has already been success
fully exploited in the Regge-Watson method of complex angular momenta. 

The aim of this paper is to derive a two nucleon potential by the simultaneous use of 
known phase shifts inside the triangle — i.e. in the whole non-relativistic region together 
with the deuteron data and through this procedure eliminate at least partially ambiguities 
in the potential. 

The computation has been based on three main assumptions: 

Al. the potential is independent on "radial/velocity", 
A2. the potential is linear in J2, where J is the total angular momentum, 
A3, the potential has a Yukawa type structure. 

I I . The Representation of the Two-nucleon Potential 

The theoretical form of the nonrelativistic two-nucleon potential is very well known 
[13]. Here, a slightly different representation is given. 

The general scalar, isoscalar, time invariant and Hermitian potential operator 
satisfying Al has the form 

V = Vo + Via + V2b + V3c + V4a
2 (2.1) 

where 
Vt = Ui(r,J2) + rWi(r,J2) 

Ui = Ut ,Wi = wt 

s2 

c = ~ 

(2.2) 

where r = \r\ etc., r is the actual internucleon distance, J = L + s, J is the total angular 

momentum, L the angular momentum, s the total spin defined by 

7 = - 1 (a<D + 7<2>) (2.3) 

a = (s . L) + c, t-г*-? 
r 2 

r = P 



a = 

(X«) are the spin matrices of the individual nucleons. The operator a contains the spon-
orbit term, the operator b is connected with the S\2 term known from the expression for 
the tensor force 

S12 = 3b — c = 3 (a<-> .7) (a<2> . 7) \ — (a<D . a<2>) (2.4) 

The operator I is the isospin. 

The l-s-j representations of the operators a, b and c are: 

singlet state, / = / = 0, 1, 2 , . . . , (one row) 

a = b = c = 0 

triplet uncoupled state,/ = / = 1, 2, 3,... (one-row) 

a = 0, b = c = 1 (2.5) 

triplet coupled state/ = /+- 1,/ = 1, 2, 3,... (two-rowrepresentation) 

(o-;°-i)' 6 = i7Tr(i-i)' C = C i) 
t=yw+Tj 

triplet state 3P0 / = 0, / = 1 

a = b = —1 c = 1 

Because the operator c = s2/2 generates two mutually orthogonal idempotent ele
ments, the potential can be uniquely split into two terms. The first term represents the 
potential acting in the singlet state of the two-nucleon system and the second in the 
triplet state. The same procedure can be applied to the decomposition of the potential in 
isospin space. Because such a projection can be done with every term in (2A), the non-
relativistic two nucleon potential is in fact composed of four completely independent 
potential terms. Hence, one has to deal with the potential in the singlet iso-triplet or singlet 
even state, singlet isosinglet or singlet odd state, triplet isotriplet or triplet odd state and 
triplet isosinglet or triplet even state separately. 

Now writing the potential in the form 

V = Vo(l — c) + Via + V2b + (V0 + V3) c + V4a
2 (2.6) 

we see that in the singlet state 
V = Vo (2.7) 

and in the triplet state 
V = Via + V2b + V3 + V4a

2 (2.8) 

where Vo + V3 —> V3 can be considered as a new independent central term. 
Using the definitions (2.2) and the relation (2.4) one can easily rearrange (2.6) to give 

V=Vc+ VSL(S.L) + VTS12 + V{SLV (SL)* (2.9) 



where the central, spin-orbit, tensor and quadratic spin-orbit terms are linear combina
tions of the initial V<: 

Vc = V0(1 — C) + (VI + - i - V2 + V3 + V4) C 

V,L = (Vx + 2V4)< ( z l 0 ) 

VT = -j- V2 C 

V(5D« = VAC 

Both representations (2.6) and (2.9) of the potential will be used in this paper. 

When the representation of the operators a, b and c for fixed/ in the coupled triplet 
state is taken, one can also define the channel potentials: 

Vui-x =JVi + ^ Y + Vz +jW* 

= VC + ( j - 1) VSL - 2 ( ; ~ | } VT + ( j - I)2 * W j ^ 0 

T,= ^ | ^ V 2 = ^ | Z T l T F r ; V 0 (2,1) 

r ; , m = - ( j + 1) VI - - ^ - j - + V3 + (j + I)2 V4 

= Vc - (j + 2) V5L - 2 ^ f VT + (j + 2)2 J W 

which are intereesting for many nuclear calculations. We shall use the notion of the chan
nel potential also for the triplet uncoupled state, where it is given by: 

VV-D = V2+V3=VC— VSL + 2VT + 4V{SL)* IV 0 (2.12) 

We can now write for fixed/ the Schroedinger equations for the radial wave functions. 
In the singlet state and in the uncoupled triplet they have the form 

(£+"-^-£- . ) . - >-' 

o state 

:oupled state 

{& + t*-M^L-i;-"•>-) ».-'« = » 

0* 

similarly in the 3Po state 

+ * 2 _ ^ _ 

and in the triplet coupled state 

(2.13) 

(2.14) 

(2.15) 



Here- the system of natural units is taken (h = 1, c = I,/-1 = 197.32891 MeV [33]), the 
mass of the nucleon is mN = 4.757 f-1 of the pion fi = .707 f - 1 . The quantity x = /ur 
where r is the actual internucleon distance, the momentum k is measured in pion mass 
units 

WjvIJrel -~*lab 

l^-=mN —-
* = -,2 = ШN - — " ( 2 Л 6 ) 

Liiab is the energy of incident particle, Frei is the relative energy. The potentials etc. are 
defined by 

v = mNV - - tj = mNTj — (2.17) 

where V stands for Vo, V(^ etc. When the Coulomb field is present 

J- = - _ ! ,2 = -L- (2.18) 
O // 137,1 

otherwise 1/̂  = 0 . If the bound state is to be considered the substitution 

-k2^x2 = mN&^_ (2.i9) 

where -"bound is the energy of the bound state, has to be performed. 

III. The Two-nucleon data and the Deuteron Constants 

a) The phase shifts 

The JINR group [14] and the Livermore group [15] have presented very precise 
sets of the phase shift data, which almost coincide. In both cases the phase shift analysis 
is performed under the assumption, that the interaction of the two nucleons in higher 
orbital states is governed purely by one pion exchange. The maximum value of the total 
angular momentum j for which the interaction can deviate from the one pion exchange 
law is now usually taken equal to 5. 

The JINR group considers the nuclear proton-proton and proton-neutron phase 
shifts as equivalent, the Livermore group attempted to distinguish between them at least 
for the !S 0 state. Moreover, the Livermore group has given as well as the usual energy 
independent, an energy dependent analysis which has both an "experimental solution" 
and a "constrained solution". The latter represents a solution of some problems connected 
with the behaviour of phase shifts in the triplet even state (see Sec. V.f.) 

Both groups use the Stapp representation [16] of the scattering matrix in the coupled 
triplet state. In this representation the S matrix has the form 

_ /cos 2eje
2idi>i-1 i sin 2e;- jQu-i + ^ + 0 \ 

;" ~~ \i sin 2ej eWu-i+tu+i) cos 2EJ e2idu+i / ^ ' ' 

where SJJ-I and djj+i are the phase shifts and £j is the mixing parameter. For ej = 0 
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71 
the corresponding triplet state is decoupled, for e = — maximum coupling occurs. It is 

easy to show (see Sec. IV.a) that in the case of maximum coupling the phase shifts are 
generally discontinuous even for real momenta k, but the sum djj-i + djj+i remains 
continuous. The discontinuity is due only to the parametrisation of the scattering matrix 
and it does not affect the continuity of the 5 matrix elements on the real momentum axis. 
But this effect shows that the energy dependent phase shift analysis, where the notion of 
the continuity of the phase shifts as a function of momentum k is applied, prefers only 
certain type of phase shifts. That is why we only use in this study the results of the energy 
independent solutions of the phase shift analysis. 

On the other hand the solutions of the energy independent phase shift analysis are 
not generally unique. Only such solutions, which are considered by the JINR or Liver-
more group as unique or likely to be unique are used in this paper. 

The complete set of the data used is contained in the reference [34]. 
In the singlet even state we differentiate between p-p and n-p scattering. There are 

not enough reliable data on n-n phase shifts and therefore one cannot estimate the 
degree of symmetry or asymmetry of the p-p, n-p and n-n nuclear phase shifts. 

One remarkable feature of the nucleon-nucleon phase shift analysis is the assumption 
that the interaction in higher orbital states (usually for/ > 5) is described by a one pion 
exchange, which implies that the nucleon-nucleon interaction is dependent on the total 
angular momentum J. Our second assumption (A2) accepts this idea and tries to describe 
the dependence of the potential on the total angular momentum — such dependence is 
generally and implicitly contained in the potential (2.1) or (2.9) by a linear approximation 
in J2. It leads to a decomposition of every potential term v(J) into two terms 

v{J) = V +J2v" (3.2) 

where v and v' are J2 independent. 

b) The effective range approximat ion 

The effective range approximation [1] and the measurement of the nucleon-nucleon 
scattering parameters at very low energies enable the phase shifts and their derivatives or 
certain functions of the phase shifts to be represented as power series in momentum 
k for k -> 0. For the 1S0 n-p or n-n state and for k -> 0 

k cot 6 = - ~ + -i- r0,8 k2 — Psrlsk* + ... (3.3) 
as 2 

where as is the scattering length, r0,s the effective range and Ps the dimensionless shape 
parameter. For the 1S0 p-p state and k -> 0 

kC2 cot 6 + 2krj h(ri) = — — + ~- r0,s k2 — Ps r§ff k* + ... (3.4) 
as Z 



where 

rj = — - C2 = 2лф27lr> — l)-1 

oo 

h(r)) = - • 57721 - l n ц + q- V * 
/ ,. я(я2 + »f 

(3.5) 

n = l 

and for the 3Si state and * -> 0 

k cot (3 = - — + 4 ~ r M * 2 - Pt rg , * * + . . . (3.6) 
at 2. 

where the meaning of individual parameters is obvious. 
In the effective range approximation another equation, which connects the scattering 

parameters and the bound state characteristics is quite often used [1]. But its validity 
cannot be generally proved without assuming a special analytic structure for the S matrix 
[12]. Therefore, let us limit the discussion only to equations (3.3)-(3.6). 

When the momentum is measured in the dimensionless units (2.16) as and r0yS in 
(3.3)-(3.6) are given as dimensionless quantities i.e. 

as = ju(as)exv (3.7) 
etc. 

The scattering lengths are measured directly and practically at zero energy and they 
are known with high accuracy. There is a very interesting and not yet satisfactorily ex
plained fact, that the as for p-p state and n-p state differ and there is also quite strong 
evidence [17] that the scattering length for xSo n-n state is different from both of these. 

If follows from (3.3)-(3.6) that the phase shift is an odd function of*, so that in all 
cases 

(dd(k)\ 

\ dk )k,o 
(3.8) 

holds, whereas the parameters ro and P are defined by much higher derivatives of the 
phase shifts. That is why in practice they can only be obtained at non-zero- energies and 
actually they are deduced as secondary quantities from such measurements. If all these 
quantities are known one can easily get the phase shifts for thex So p-p and n-p and for 3Si 
states at very low energies. 

In complete analogy with the experimental situation the scattering lengths have been 
used as primary experimental points during the present calculation. Their values have 
been taken as averaged from the data given in references [18] and the corresponding 
energy has been put strictly equal to zero. The values used are collected in the Table I., 
where the effective range and shape parameters are also given. Using all of them the 
phase shifts for the low energy region in the 1Sop-p and n-p and for 3Si states were cal
culated and used as experimental data of the same weight as the phase shift analysis data. 
From the theoretically calculated phase shifts in the low energy region and from the 
theoretically calculated scattering lengths one can then rederive the theoretical value of 
the effective range and shape parameters. 
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Tab. I. The experimental and calculated values of the effective range parameters are presented as 
dimensionless quantities (see (3.7)). To get the value of a and ro in/, they should be divided by the 
pion mass .707/--. The value of the shape parameter in the 1So state is strongly dependent on the 

reference energies chosen for the calculation. See also[18]. 

Ѕcattering length Effective range Ѕhape Parameter 

-So exp 

p-p theor 

- 5.527 ± .012 

- 5.528 

1.99 ± .02 

2.16 ± .09 

.025 ± .010 

.18 ± .20 

xSo exp 

n-p theor 

- 16.7400 ± .0020 

- 16.7402 

1.77 ± .12 

1.98 ± .05 

.014 ± .042 

.02 ± .01 

3 S i exp 

n-p theor 
3.825 ± .003 

3.827 

1.22 ± .02 

1.43 ± .03 

.055 ± .07 

- .03 ± .01 

Here again we meet certain indications that the nuclear interaction in p-p, n-p and 

n-n states may not be completely symmetric in isospace. If there is a dependence of 

nuclear forces on the third component of the isospin I, i.e. if the Hamiltonian is not a 
scalar in the isospin space- then the phenomenological potential has a more complicated 
form than (2.1). It is evident, that in such a situation the potential can again be split 
uniquely in the isotriplet state with the help of the corresponding isospin projection 
operators. Without doing it explicitly it is possible to consider the existence of different 
potentials for p-p, n-p and n-n interaction [19]. 

c) T h e bound state of the two-nucleon system and the deuteron constants 

The basic deuteron constants — the binding energy, the magnetic moment and the 
quadrupole moment — represent another set of very well known experimental data. If 
the potential was a purely non-relativistic quantity and the phase shifts for the triplet 
even state with/ = 1 were known for all real momenta k> then the potential for this state 
could not be uniquely determined in the inverse problem of scattering theory, unless the 
binding energy and two normalization constants were added to the data [11]. In principle, 
when the analytic structure of the potential is known, the normalization constants are 
expressible as functions of the binding energy, magnetic moment and quadrupole moment 
of the deuteron. This means that these constants must be included in any realistic calcula
tion of a phenomenological two-nucleon potential. The addition of the deuteron con
stants to the other two nucleon data may decrease the ambiguities in the potential caused 
by other effects. 

There is no two nucleon bound state known other than the deuteron. This fact puts 
some limits on the phase shifts. If the condition (1.1) is fulfilled and the S matrix is known 
for all real momenta k (in the non-relativistic theory), then the Levinson theorem says [11] 
that in the singlet and uncoupled triplet state 

11 



d(k)k=0 — d(k)k=00 =nn » = 0, 1, 2,... (3.9) 

where n is the number of possible bound states. Equation (3.9) is correct, if there is no 

resonance (or virtual state) for k = 0. For the triplet coupled state the generalised Levin-

son theorem gives in the Stapp representation of the S matrix (see (3.1)) in full analogy 

with the former case [11] 

(djj-i + djj+i)k=Q — (djj-i + djj+i)k=nQ = nn , n = 0, 1 , . . . (3.10) 

It can be shown [12] that in non-relativistic scattering theory d(k)k=oo —• 0. It follows 
then from (3.9) that in the singlet case and in the triplet uncoupled state 

(5(0) = 0 (3.11) 

must hold in the two-nucleon problem and from (3.10) in the coupled triplet state of the 

two nucleon 

6jj-i (0) + SJJ+I (0)=n y = l 

»JJ-I(P) + »J,J+I(0) = 0 7 V 1 ( * } 

If we assume on the basis of experimental evidence that the 3Si state interaction is mainly 
responsible for the existence of the deuteron, then 

Sjj-i(0)=7i 7 = 1 (3.13) 

The Levinson theorem is the only one in non-relativistic theory which connects the 
scattering data and the bound state parameters. Additional information about the rela
tionship between the bound state constants and scattering data can only be obtained if the 
potential is known a priori or if special assumptions about the analycity of the 5 matrix in 
the complex momentum plane are made. 

For the solution of the inverse problem only the three main bound state data should 
be taken as information additional to the phase shift data and the equations (3.11) and 
(3.12) should then be used to ensure the existence of the deuteron and no other bound 
state of the two-nucleon system. 

Again we express the binding energy, the magnetic moment and the quadrupole 
moment in dimensionless units. For the binding energy the experimental value [20] 
Fbound = (2.2247 ± .0001) MeV is taken. It gives (see (2.19)) 

f mяEtoęм = 3 2 ? 5 6 

Ѓ 

The magnetic moment is usually defined in nuclear magnetons. The quantity which 

should be reproduced is the difference between the deuteron magnetic momentum Ma 

and the sum of the magnetic momentum of the proton Mv and the neutron Mn 

AM = Md — (Mv + Mn) = .0223 ± .0001 [21] (3.15) 

The difference A M can be calculated if the two nucleon potential is known and both 
components u and w of the radial wave function are determined. 

12 



If 
1 o. 

- J («- + я>2) àx = 1 
ju 0 

then 

(3.16) 

<2 / 1 \ 1 °° 
AM = — — \{MV + Mn~— — fts-dx + AÍ (3.17) 

z \ z I fl o 
where the first term is known and denoted usually as 

_ 3 
~2 

{MP + MП—^PD (3.18) 

— PD is the D state probability — and the second term arises from the transformation of 
the Hamiltonian when the external magnetic field is switched on. This transformation 
substitutes [22] in the Hamiltonian for the relative motion of the deuteron 

the momentum p by: 

# = — P 2 +1/(7,5) (з.i9) 
ГПN 

7 - 7 + Ą-ľr.H) (3.20a) 

and adds to the Hamiltonian the interaction term 

e 
2røдг 

(Лí„ + Дfp) (* . Я) (3.20b) 

where H is the intensity of the external magnetic field. The transformation (3.20) gives 
rise to the occurence of the additional term M in (3.17) if the potential is dependent on the 

momentum />, i.e. in the representation used (see (2.2), (2.6)) on (s . L) and J2. The con
tributions from the individual potential terms to M are given in [34]. 

The quadrupole moment Qexp = (.279 + .014) f2 [23] gives in dimensionless units 

2 = / w 2 Q e x P = . 1 3 9 ± . 0 0 7 (3.21) 

When the deuteron eigen-function is known Q is given by 
oo 

Q = — -rl- I x2 (uw 1— w2) dx (3.22) 
* jt* 10 J \ 2|/2 / K 

IV. The Solution of the Inverse Problem 

Several mathematical methods for the solution of the inverse problem are available. 
One of the very well known and often used is based on the Schwinger variation principle 
for the phase shifts [24] and on the usual variational approach to the solution of the bound 
state problem. This method, similar to the one which will be described later has to assume 
a general analytic form for the potential. 

13 



The next method described in detail in reference [11] calculates the potential 
straightforwardly if condition (1.1) is fulfilled and the S matrix known for all real mo
menta. Evidently, it needs an assumption to be made about the behaviour of the phase 
shifts at higher energies. It is difficult to suggest the non-relativistic form of the phase 
shifts in the relativistic region. It can be shown that a slight change of the phase shift at 
higher energies may change the potential considerably and give it an unphysical shape [25]. 
Hence the practical application of the method also needs certain additional assumptions 
about the analytic form of the potential, e.g. the assumption that the potential decrea
ses more rapidly than an exponential for large x. 

The method which has been used in this paper is the so called phase function or 
variable phase method developed simultaneously by several authors, nowadays extensively 
described in the case of the singlet state by Calogero [26] and in the case of the triplet 
state by Babikov [27]. Both authors give surveys of other related studies. This method is 
relatively simple for the computer, because it is based on a solution of first order differen
tial equations. Although they are non-linear, their physical meaning is transparent. For 
the practical application of this method one has to assume a general analytical form of the 
potential. 

Our third assumption (A3) concerns the analytic form of the radial part of the two-
nucleon potential. First, we accept the generally recognised fact that the radial part of the 
two-nucleon potential behaves at large distances from the origin as a simple Yukawa 
potential, i.e. 

e~x 
v(x) = const x —• oo (4.1) 

The next step is more severe. To preserve as large a mathematical simplicity for the poten
tial as possible we take the radial part of the potential as a function for which 

lim xv(x) = a ] a | < oo (4.2) 
x-+0 

This condition has been used in many theoretical studies, because it allows the scattering 
and bound state problem to be investigated in depth. It is also supported by studies on 
the analytic properties of the S matrix and by the practical use of this assumption in deri
vations of the two-nucleon potential [6]. 

Weaker assumptions can be formulated in this way: 

lim xnv(x) =OL | a | < o o w > 2 (4.3) 

If n = 2 the Schroedinger equation for the relative motion of the two nucleons remains of 
the Fuchs type near the origin but the singularity allowed in the potential can interfere 
with the action of the classical orbital term J2\x2 and the physical picture deteriorates. 
This fact can also cause considerable difficulties in the calculations, when a variational 
method is used to determine the potential parameters. If n > 2 one meets mathematical 
difficulties, which in many practical cases can be overcome by a cut-off of the potential 
near the origin, i.e. by reducing its singularity. 

14 



Now, if the conditions (4.1) and (4.2) hold the potential can always be represented as 
a series 

oo 

v(x) = — 2^ ane~nx (4-4) 
n = l 

i.e. as a superposition of Yukawa potentials. The functions e~nx are not orthonormal but 
the series can be easily rearranged to give a series of orthonormal functions. The expres
sion (4.4) is more convenient, because it corresponds directly to the superposition of Yuka
wa terms and may be considered as an interaction due to one pion, two-pion etc. exchange 
contributions. Here we will use (4.4) as a mathematical description of the potential. 

If condition (4.2) is violated by the potential which is found during the solution of 
the iverse problem the quantity 

a = 2*n (4-5) 
will indicate the degree of insufficiency of the potential (4.4). 

a) The phase function method at non-zero energy. 

Let us briefly recapitulate the system of equations for the phase functions. For 
singlet and for uncoupled triplet states in which the Coulomb field is absent the fol
lowing equations: 

d'e(x) = — - ^ - [cos de(x). jeikx) — sin de(x) ne(kx)]2 I = j (4.6) 

where the phase functions have the limits 

lim de(x) = de (4.7) 

and where je(z) and ne(z) are the spherical or Riccati-Bessel functions [26] are used. In 
contrast to the normal formulation we take for the singlet p-p state a modified form [28], 
in which the phase function obeys the equation 

- , ( x ) - / ( / + 1 ) + ^ 
x* 

K(x) = s m 2 [kx — rj In 2kx + ae + de(x) — nl] + 

(4.8) 

* - - 2 -

JL 
x2 r ni 1 

H —-- sin 2 \kx — rj ln 2kx + ae + de(x) — Һт) 
where rj = 1/(2 kg) (see (2.18)), ae is the Coulomb phase 
shift defined by 

^. ni+i + h,) 
ry+i—h)) 

The phase function again fulfils (4.7). 

(4.9) 
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This system is free of divergences and gives 

lim tg <?(*) = — at (4.21) 

i.e. the triplet scattering length at. 

c) The eigen-function of the deuteron 

The "phase function" method can be formulated in a certain sense also for the deu
teron [28], but it does not give the eigen-function of the deuteron, which should be known 
for many reasons. Therefore, in this study, the deuteron eigen-function, the radial 
components of which are denoted as u and w have been derived directly from the system 
(2.15) where j = 1 and l/o = 0 and the substitution 

k*-+ — x2 (4.22) 
is performed. 

The eigen-function is normalized according to (3.16) and with the help of it the mag
netic and quadrupole moments are calculated (see III. c). There are two solutions of the 
system (2.15) which are regular under the present conditions at x = 0 and two singular 
solutions at this point. The boundary conditions for the deuteron wave function are 

u(x) = 0 w(x) = 0 x = 0 

/ 3 3 \ (4.23) 
u(x) = e~*x w(x) = Ke~«x 1 -\ h —^r x -> oo 

\ XX X2Xl J 
and define the eigen-function as a special superposition of the two regular solutions. The 
eigen-function, if it is to be obtained by direct integration of the system (2.15) must be 
constructed from the two regular solutions satisfying the boundary conditions at x = 0 
and from the solution fulfilling the conditions at infinity being matched at a certain point 
within the interval (0, oo). The matching at this point is defined by the continuity of the 
eigen-function and its first derivative. The method gives the correct mixture of the two 
regular solutions, the constant K, which defines the asymptotic ratio of the S and D 
states in deuteron and the characteristic value of x, i.e. of the binding energy. 

d) The variational method 

For a fit to the two-nucleon data the potential (2.6) is now written in dimensionless 
units (2A7). 

v = vo if c = 0 i.e. in the singlet case (4.24) 

i) = via + z>2b + vs + v^ci2 if c = i.e. in the triplet case (4.25) 

where each term v\ is expressed (see (4.4) and (3.2) in the form 

- Ť 2 « !' + JЧ') e~™ J2 - j ( j + 1) (4.26) 
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The variational method applied is the usual statistical x2 method. The calculated phase 
shifts de=j i djj±i> the calculated mixing parameters e^ the scattering lengths and the 
deuteron constants — let us denote this set by oV, where N is the total number of experi
mental points — are functions of the coefficients an

{) and bn
{) 

(^)theor = drfap , #> ) (4.27) 
Defining the functional 

o - X ^ / (djVptheor — (<3iv)exp \ ,. 0 Q s 
5 = T Z I n 1 (4,28) 

N 

where (̂ jv)exp and ON represent the experimental set of data and their errors, we may find 
the coefficients an

%) and b{i) from its stationarity. 

If we denote the number of coefficients an
i} and bn

i] as 1VC, x2 *s given by 

Z2 = 2 S (4.29) 
and the quantity 

xl = X2IW-Ne) (4.30) 

tests the adequacy of the x2 obtained. 

The optimum number Nc of the coefficients was found by trial so as to satisfy three 
conditions. The number 1VC should be small enough in comparison with 1V to preserve as 
many degrees of freedom as possible and high enough to give a minimum value of %*. The 
third condition follows from the known feature of this statistical method. By increasing the 
number Nc the quantity xl may decrease but the errors in the calculated coefficients may 
increase considerably. If they are to be relatively small, the number Nc should not exceed 
a certain limit. 

The errors of the coefficients an
{) and bn

{) — let us denote them by Aan
{) and Abn

i] — 
are strongly correlated. It is impossible to change only one of the coefficients without 
affecting the quality of the fit. If necessary, all coefficients have to be changed in a proper 
way. 

To estimate the quality of errors two quantities are introduced, the averaged relative 
error 

_ i y / M ^ , AW \\ Ps-—a:2*\\i®- + -w\) ( } 

and the maximum value of the relative error 

- * ľ ? \ a<>< ' *<<> 1/ (4.32) 

The condition, which is appropriate to the quality of experimental data used in the 
present calculation, reads 

PNc < .3 q < 1.0 (4.33) 
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For the given set of experimental data the optimum numbers 

Nc ~ 8 in the singlet even state 

Nc ~ 5 in the singlet odd state 

Nc ~ 20 in the triplet odd state 
Nc ~ 15 in the triplet even state 

have been obtained. 

The variational method for the deuteron is, in principle, the same as for the phase 
shifts and scattering lengths. The computation may be simplified a little by noticing that 
any of the potential coefficients may play the role of the deuteron eigen-value instead of 
the energy, i.e. one may fix the binding energy to its experimental value during the solu
tion of the deuteron wave equation and consider the set of the coefficients as a representa
tion of the eigen-value of the given problem. This procedure has been carried out during 
the present calculations, i.e. the quantity x has been kept fixed and equal to its experi
mental value (3.14). 

V. The Results 

The sets of experimental data contained in [34] have been simultaneously used for the 
derivation of the two-nucleon potential for the singlet even, singlet odd and triplet odd 
and even states. The simultaneous fitting of the data gives certain correlations, which can 
be, as we shall see, quite large for phase shifts of different angular momenta. 

a) T h e singlet even p r o t o n - p r o t o n nuclear potent ia l 

The difference between the scattering lengths for p-p and n-p interactions indicates 
a difference between the basic p-p and n-p nuclear interactions. We shall therefore 
distinguish between these two interactions. For the description of the proton-proton 
nuclear interaction we use the potential (2.7) written in the form given in (3.2) and (4.4) i.e. 

(*) = ^2[aľ ,+j(;+iЖ0)] e-M*) = — / [ < 0 ) + ; ( / + 1) *rj e~™ j = l = 0, 2, 4. 

a(0) = 6(0) = o w > 4 (5.1) 

where the number Nc of the non-zero coefficients an and bn was chosen to be optimum 
(see IVd). 

By using the variational method the coefficients an and bn have been obtained. Their 
values are given in the Table II. They are dimensionless, to get their value in MeV the 
simple multiplicative transformation (an)M€V = 20.76 an should be performed. 

The corresponding %l which is %2 divided by the number of degrees of freedom is 
equal to 1.30. The errors of the coefficients an and bn are small. The new values of the 
coefficients an and bn do not differ significantly from values published earlier [6] so that 
the results of calculations [30], where the potential [6] was applied to the investigation 
of some off-shell processes remain unchanged as well as the result of other calculations 
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Tab. I I . -X I I . and Tab. XIV . The potential coefficients are dimensionless. T o obtain their value in 
MeV the transformation (2A7) should be performed. It gives (a„) MeV = 20.76a,t. 

Table I I 

n J0) 
an 

A(0) 

1 - 2.1205 .1706 

2 38.636 - 4.4435 

3 - 211.20 24.481 
4 246.11 - 31.421 

where it was used. The shape of the potential and the behaviour of the phase shifts is only 
changed slightly. The calculated phase shifts are plotted in Fig. 2-4 where the experimen
tal points and the results of the Livermore [15] energy dependent phase shift analysis 
(dashed line) are also given. The directly calculated scattering length as and the effective 
range and shape parameters rederived from the phase shifts computed at the energies 
k = .1 and k = .3 are given in Table I. 

Fig. 4 

Fig. 2-4 . The singlet even p-p calculated phase shifts — solid lines. The Livermore phase shifts 
obtained from the energy dependent phase shift analysis — dashed lines. The experimental points 
used in the calculation are denoted by crosses. The phase shifts are given in radians as a function of 

momentum k, k = .1553 |/E(MeV) 
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The experimental data are very well reproduced. The resulting phase shifts coincide 
within the error bands with the results of the energy dependent phase shift analysis. The 
deviations between the results of these two independent calculations occur mainly in the 
higher energy region, k ~ 3, where relativistic effects play their role. This conclusion is 
supported by the strong correlation between the deviation of the xGi phase shift at higher 
energies and the behaviour of the phase shifts for lower angular momenta. A potential 

Fig. 5. Thef(2) representation of the singlet even proton-proton potential (the Coulomb interaction 
is not included). f(z) = x ex v(x), x = /ur where /« = .707f_1 and r is the actual internucleon dis
tance. The solid curves denoted by 0, 2, 4 correspond to the potential acting in j = I = 0, 2, 4 
orbital states. The dashed line is thef(2) representation of the Reid potential [5] for the xSo state 
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which gives the *G4 phase shift very close to that obtained from the energy dependent 
phase shift analysis can be easily obtained, but in such a case the description of the other 
two phase shifts is worse — the corresponding xl = 2-36. This value is almost twice as 
large as for the optimum potential. In both cases i.e. for the potential defined in Table II 
and for that just mentioned the deviation of the XG4 phase shift from the values given by 
the energy dependent analysis at low energies may be attributed to the lack of experimen
tal data in this region. 

One may conclude from this result that the JINR and Livermore independent energy 
phase shifts data for the singlet even p-p state are equivalent and that the energy depen
dent and independent Livermore analysis are nearly identical in the region below400 MeV. 

The ratio of the coefficients bn and an for a given n is of order . 1. Its value support the 
validity of a linear approximation for the J2 dependence of the derived potential vo(x). 
The values 

*J = 2 K0 > +JU + 1) ^ 0 ) ] , *o = 7 L 4 3 > a2 = 4 -154 , a4 = — 152,8 

show that the singlet even potential has a soft core in the 1So and lDz states and that the 
condition (4.2) is satisfactorily fulfilled. In Fig. 5 the functions. 

/>(*) = 2 K ' + J'U + i) lC 1 ' - 1 = «*(*>* (5-2) 
z = e~x j = I 

are plotted for j = 0- 2, 4. They represent the potential curves, the region of repulsion, 
f(z) > 0 and attraction, / (z) < 0. The corresponding function/^) for the Reid potential 
[5] is drawn as a dashed line in this figure. It is seen that the Reid potential is steeper near 
the origin and its soft core more pronounced than in the present case. 

b) The singlet even neu t ron -p ro ton nuclear potent ia l 

The analytic form of the potential is in this case taken again in the form (5.1) i.e. 

vo = 1 2 K0) +JU + -) *i0)] e-** j = 1 = 0,2, 4. (5.3) 
a<o> ._-_. 0 bn

0) =0 n > 4 

and the total number Nc of the coefficients is kept equal to 8, although the less accurate 
data for the n-p interaction would require a slightly smaller number. The reason for 
Nc = 8 is to have the possibility of comparing the resulting potential with that obtained 
for the p-p interaction. 

Table III 

n J0) 

O-n 

i,(0) 

1 - 1.7364 .1071 
2 31.3968 - 2.5496 
3 - 184.48 12.759 
4 219.61 - 12.986 
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Fig. 6 

Fig. 7 
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In this case the effective range data (Table I) and for all states the Livermore phase 
shift data have been used. The x2 method gives the values of the coefficients which are 
presented in Table III. 

The Xn = -94 but the errors of the coefficients an and bn are higher than in the 
preceeding case. The condition (4.33) is still well satisfied. 

Fig. 8 

Fig. 6-8. The singlet even neutron-proton calculated phase shifts — solid lines. The Livermore 
phase shifts obtained from the energy dependent analysis — dashed lines. For further explanation 

see caption to Fig. 2-4 

The scattering length obtained directly and the effective range and shape parameters 
derived from the calculated phase shifts at energies k = .1 and k = .23 are presented in 
Table I. The calculated phase shifts are illustrated in Fig. 6-8. 

The description of all experimental data is good and again it coincides practically 
with the Livermore energy dependent phase shift analysis. The 1So n-p phase shift lies a 
little lower than that given by the Livermore analysis and the XG^ phase shift again shows 
the same kind of deviations as in the p-p case. 

It should be pointed out that the differences in the calculated phase shifts for p-p and 
n-p states are principally due to the effective range parameters and to the difference in the 
experimental 1So n-p and p-p phase shifts. 

The potential for the xSo state has the same general features as the potential for the 
corresponding p-p state. The major difference between the n-p and p-p singlet even poten-
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tials is found at higher angular momenta, where the repulsive action of the soft core is 
also seen in the XG4 state. The f(z) representation (5.2) of the n-p potential is given in 
the Fig. 9. In this case there is no remarkable difference between the new xSo n-p 
potential and that derived in the reference [6] but there are some differences in the 
higher orbital states. 

For nuclear calculations, with the exception to be described later, both potentials in 
the !So n-p and p-p and in the 1Z>2 n-p and p-p states can be considered as equivalent. 

Fig. 9. The f(z) representation of the singlet even neutron-proton potential (see caption to Fig. 5). 
The solid lines denoted by 0, 2, 4 describe the potential acting in j = / = 0, 2, 4 orbital states 

The p-p and n-p potentials (Tab. II and III) give different effective range parame
ters and especially different p-p and n-p scattering lengths. The p-p potential cannot be 
used for calculation of n-p scattering lengths and vice versa. The p-p potential gives the 
n-p scattering length a's = 11.9 in dimensionless units i.e. 16.7/. This value coincides with 
the n-n scattering length [17] and may be interpreted as an indication of n-n and p-p 
symmetry in the nuclear interaction but the calculated value disagrees with the value of 
the n-p scattering length. An incorrect result also would be obtained when the n-p poten
tial is applied to the calculation of the p-p scattering length. 

c) The s inglet odd nuc leon-nuc leon po ten t ia l 

The optimum number Nc of potential coefficients was found to be about 6 for the 
singlet odd two-nucleon potential (see Sec. Hid). They were equally divided between the 
J 2 independent and J2 dependent terms and the potential was written in the usual form: 
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Ч*) = 4 " 2 ta"0> + JÜ + 1} K°)] Є'ПX !' = Z = Ь 3,5. 
n 

a<.°> = б ÿ ) = 0 я > з 

(5.4) 
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Fig. 10 

Fig. 11 
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The stationary value of the functional (4.28) was found for the values of the coeffi
cients an and bn which are given in Table IV. 

Table IV 

n «Ł 0 ) 
A(0) 

1 

2 
3 

1.9968 
- 31.973 

90.186 

- 0.1644 
3.2606 

- 6.7926 

The corresponding xl = V20 shows that the description of the data is good. Here, 
the condition (4.33) is also well satisfied. 

This result, as well as the phase shift curves plotted in Fig. 10-12 where they are 
compared with the phase shifts obtained from the Livermore energy dependent phase 
shift analysis (dashed lines), again show that the JINR energy independent and Livermore 
energy dependent phase shift analysis data are practically equivalent. The deviations of 
the calculated phase shifts from the Livermore energy dependent solution are now caused 

-0.C5 t 

Fig. 12 

Fig. 10-12. The singlet odd calculated phase shifts — solid lines. The Livermore phase shifts 
obtained from the energy dependent analysis — dashed line, (see caption to Fig. 2-4) 
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by both the effects which we met in the singlet even state, namely, by relativistic effects 
and a certain lack of experimental data in the n-p interaction. 

The potential acting in the singlet odd state is weaker than the singlet even potential-
it is repulsive in the/ = 1 and/ = 3 state and "attractive" in the/ = 5 state. A clear pic
ture of its behaviour is given in Fig. 13, where the function 

(*) = xe*v0(x) = ^ -an0) + JU + 1) K0)] 2*"1 (5.5) 

is drawn and compared with the corresponding/^) for the Reid potential in the 1P\ state. 

Fig. 13. The/(2) representation of the singlet odd potential (see caption to Fig. 5). The solid lines 
1, 3, 5 describe the potential acting inj = l = 1, 3, 5 orbital states. The dashed line is the/(2r) 

representation of the Reid potential in lPi state [5] 

d) The trip let odd two-nucleon potent ial 

The potential for the triplet state is taken in the form (2.8) (see also (2.17)) 

v = v±a + v^b + V3 + v$a2 (5.6) 

An equivalent expression for it reads 

v = vc + VSL (5 . L) + vTSi2 + V(SD* (S . L)2 (5.7) 

where vc, VSL etc. are linear functions of v% (see (2.10), (2.17)) and where vc denotes the 
central, VSL the spin-orbit, VT the tensor and V(SLY the quadratic spin-orbit potential 
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term. For a given; and / we can define the channel potentials (see (2.11), )2.12) and also 
(2. 17)), so that in the uncoupled triplet (odd) state we have 

VU) =v2 + V3 j = I = 1, 3, 5 . (5.8) 

and in the coupled triplet (odd) state 

VjJ-l = M + V2 . + V3+ j2V4 j = 2, 4 . 

»-^ES- J - * . * . (wo 

Vj,j+l = — (; + 1) vi — v2 - . +vz + (j + l)2 v4 j = 0 ,2 , 4. 

The coupled triplet odd state for; = 6, for which only two experimental points at high — 
practically relativistic — energies are available has not been considered in this study. 

The J2 dependence of the potential (3.2) is again expressed by splitting every term 
Vi into two terms 

Vi = v'{ + J2v{ -> v't + j'U + 1) < (5.10) 

where v\ and vi are now only functions of the radial internucleon distance. Hence, alto
gether 8 functions vt and v" should be found in a simultaneous fit of the triplet odd 
scattering data. This number is a little high. When one tries to fit only the channel poten
tials VJJ-U tj, and VJJ+I (5.9) and vW (5.8) to the scattering data in a given channel, as is 
usually done, the task is considerably simplified, because only three functions, i.e. Vjj-u 
tj and VJJ+I in the coupled state and only one function vM in the uncoupled state are 
unknown. Let us therefore examine some possible simplifications of the problem in the 
general case. If we found the potentials only for the coupled states, where the channel 
potentials are given by (5.9), then we could use a transformation, which is based on the 
property of the operator a. This operator in the coupled triplet state, i.e. in the two-row 
representation (2.5) fulfils the valuable relation 

a2 + a=j(j+l) (5.11) 

which leads, when it is inserted in (5.6), to 

v = (vi — ZJ4) a + V2b + V3 + V4JU + 1) (5.12) 

The new potential consists of the spin-orbit term (vi — ©4) tensor term V2 and a central 
J2 dependent term (yz + J2vi). The quadratic spin-orbit term is removed. It means that 
by fitting the channel data in the coupled triplet state no more than three independent 
functions VJJ-I, tj> VJJ+I or (vi — ©4)3 and (v$ + J^) can be obtained. Although such 
transformation cannot be generally performed, i.e. outside the two-row representation, it 
suggest that the potential can be simplified by excluding the quadratic spin-orbit term 
because the J2 dependence of the other terms in the potential can partially substitute for 
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the action of this particular term. We try to put V4 = 0 in the following and deal only 
with the potential 

v = via + vrf) + vs (5.13) 
where, of course, every term is written in the form (5A0). 

The optimum number Nc of the potential coefficients for the triplet odd two-nucleon 
interaction was found to be about 20. To divide the 20 coefficients among the individual 
terms v\ and v'- we assume that each term v\ and v"iy (i = 1 2 3), has four, generally non
zero, coefficients with the exception of v[ where we put v[ = 0. 

Table V 

n aľ A<*> Ьn 
a(2) 

"n 

A<
2
> Ьn „<

3
> an 

A<
3
> Ьn 

1 .1270 .0 1.5398 .0077 .1545 - .0567 

2 - 4.6337 .0 - 12.572 - .4733 — 1.1852 1.7567 

3 38.334 .0 82.185 5.5287 — 46.588 - 11.175 

4 - 90.398 .0 - 99.558 - 13.4653 132.25 17.605 

These two simplifications need to be verified by a fit to the experimental data. The 
values of the coefficients for the x2 minimum are given in Tab. V, VI, VII and VIII. 
The Tab. V, contains the coefficients for the potential (5.6), (5A3) where each v% is given 
as a superpositions (see (5A0)) 

VI --.-?«' *' + KІ + l)lCЧ<rй* 1 = 1,2.3. 

-<•> = *<•>=<> я > 4 

ЫГ = 0 

(5.14) 

ТаЫе VI 

n „<
c
> an 

Л«> bn 
an

SL) : 
i 

т ( S L ) 

Ьn 

(T) 
an 

bn 

1 0.7948 - .0541 .1270 .0 .5133 .0026 

2 - 10.010 1.5984 - 4.6337 i .0 - 4.1906 - .1578 

3 19.141 - 9.3319 38.334 í .0 27.395 1.8429 

4 8.6690 13.167 - 90.398 ! 

1 
1 

.0 - 33.186 - 4.4884 

Tab. VI presents the corresponding coefficients for the same potential expressed in the 
form (5.7), where again 

c~ 2 [ a n + M + ! ) *n] e~nx {=c'S1, T 

(5-15) 
aj," = 6<;> = 0 n > 4 

blSL) = 0. 

»« 
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Table VII 

j n an Ф al!>1+l) 

0 1 .0 .0 - 1.5123 

2 .0 .0 16.020 

3 .0 .0 - 167.11 

4 .0 .0 322.21 

2 1 .3855 1.5538 - .8838 

2 - 2.9947 - 15.100 26.338 

3 - 13.898 113.03 - 251.71 

4 21.017 - 176.15 545.15 

4 1 - .2833 1.6829 - 1.8025 

2 12.466 - 21.900 59.566 

3 - 95.331 191.57 - 483.17 

4 81.774 - 366.58 977.32 

Table VIII 

j n в
( / ) 

«n 

1 1 1.5963 

2 - 11.190 

3 24.306 

4 40.974 

3 1 1.1061 

2 1.6442 

3 - 32.155 

4 82.371 

5 1 .2237 

2 24.746 

3 - 133.78 

4 156.88 

Tab. VII and VIII give the channel coefficients. The channel potentials vW (5.8) and VJJ-I, 
th Vj,i+i (5.9) are for a given/ written in the form 

в «-i=-г2 в " , , _ i > ' etc. (5.16) 

The corresponding xl = 1-62 and the errors of the coeffiencients an

4) and bn

i] are such 
that the condition (4.33) is satisfied. They give pNc = .29 and q = .72. 

The reproduction of the two-nucleon data in the triplet odd state is good. It can be 
seen from the Fig. 14-19 where the phase shifts djj-u djj+i and the mixing parameter 
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Fig. 14-19. The triplet odd calculated phase shifts — solid lines. The Livermore phase shifts obtain
ed from the energy dependent analysis — dashed lines. The crosses and the dots represent the 
experimental points used in the present work, k — A 553 ]/E(MeV), where E is the energy of the 

incident particle in the laboratory system. The phase shifts are given in radians 

.5 + 

-0.5 

JS* 
3 k 

Fig. 14 

3 k 

Fig. 15 

£j (in the Stapp representation) in the coupled and the phase shifts dj in the uncoupled 
triplet state are plotted and compared with the results of the Livermore energy dependent 
phase shift analysis (dashed line). There are no deviations for the 3Pi state and they are 
negligible or small for the other states. The differences occur in the transition — quasirela-
tivistic region — and at places where the number of experimental data is small. Some of 
the deviations may be attributed to correlations among the phase shifts for different 
angular momenta. 
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Fig. 16 

3 k 

-o.ol 

" ^ i з 

Fig. 17 
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Here again we can say that the JINR and Livermore energy independent and 
energy dependent phase shift analysis give coincident results. 

The behaviour of the triplet odd potential differs now from the potential found 
earlier [30]. In reference [30] the potential was obtained for individual channels, the 

0.15 1 

0.05 1 

Fig. 18 

quadratic spin-orbit term was not excluded neither was the J2 dependence of the spin-
orbit term. In the present study the simultaneous use of the phase shift data enabled us to 
construct a much simpler potential and the quality of the fit to the data shows that it is un
necessary to include more complicated terms in the analytic expression for the two-
nucleon potential. The ratio of the coefficients an and bn in potentials V2 and V3 also shows 
that a linear approximation of the J2 dependence (3.2) is acceptable. 

The potential satisfies also the condition (4.2) which proves that the singularity of 
the potential at the origin is not larger than l/x. The corresponding quantity a has the 
absoluted value 

|a| < 552 (5.17) 
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for the channel potentials in the triplet odd state. If we look at the individual potentials 
terms we see that they are relatively weak. In Fig. 20 the central potentials vc is drawn in 
xhef(z) representation for different angular momenta/ The function/(#) is defined in 

-0.02 

-0 .031 

Fig. 19 

100 f 

*(«) 

1.0 0.8 0.6 0.4 0.0 s 

Fig. 20. The/(s) representation (see caption to Fig. 5) of the triplet odd central potential. The curves 
denoted by 0,1, 2,... 5 correspond to the potential acting in j = 0,1,2, . . . 5 orbital states 
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full analogy to the former cases 

(5.18) 

The central potential is "repulsive". On the contrary, the spin-orbit and the tensor 
potentials are "attractive" as can be seen from Fig. 21 and 22, where the corresponding 
f(z) are drawn. These qualitative features are similar to those found in the special cases 
(J = 0,1,2) in reference [5]. 

Fig. 21. Thef(2) representation (see caption to Fig. 5) of the spin-orbit potential, which is indepen
dent on y2

y for the triplet odd state 

1.0 0.8 0.6 0.4 0.2 0.0 » 

Fig. 22. ThefOs) representation (see caption to Fig. 5) of the triplet odd tensor potential. The curves 
denoted by 0 ,1, 2,... 5 belong to the potential acting inj = 0 ,1, 2,... 5 orbital states 
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e) The tr ip let even nucleon-nucleon potential 

The triplet even nucleon-nucleon state significantly differs from the previous cases 
by the existence of the bound state, which — as it follows from the generalised Levinson 
theorem — leads to the non zero value of the phase shift of,/ -1, / = 1, for k = 0 (see 
(3.10), (3.13)). Because there is only one bound state then 

dM-i(P)=n j = \ (5.19) 

The deuteron data should be added to the scattering data, to obtain a solution of the 
inverse problem. In this case the quality of the scattering data is poorer than for the triplet 
odd state. Therefore, it is now more important than in the preceding cases to solve the 
inverse problem simultaneously for all available data in the non-relativistic region. 

The same form of the potential as in the triplet odd state has been used although 
some other forms have also been investigated. The final potential is written (compare with 
(5.8)) for the uncoupled triplet (even) state as 

VU) = v2 + v3 j = 2, 4. (5.20) 

and for the coupled triplet (even) state (compare (5.9), (5.13)) 

• , V2 

VJJ-I =m+ 2 . + 1 +*>3 

„ = 1 |Z+2L„ 8 ,= lj3>5 (521) 

V2 
Vj,j+1 = — U+ -) *>1 — 2 - + j + *>3 

where every term vu i = 1, 2, 3 is given as a superposition 

" = T 2 W * + W + 1 ) 1 ' = 1 '2 '3 (5.22) 
*il) = o 

The quadratic spin-orbit term has been again excluded and the J2 dependence of the spin-
orbit term suppressed. 

The optimum number Nc of the potential coefficients has been found to be about 15. 
The simplest possibility has been chosen 

a</> = bn
() =0 n>3 (5.22a) 

The values of the coefficients an
i] and bn

i] defined in (5.22) have been obtained by 
minimisation of #2. The results are presented in Tab. IX. 

The next Table (Tab. X) contains the coefficients of the central — c, spin-orbit — 
SL, and tensor — T terms for the same potential (see (5.7)). 

Table XI and XII give the channel coefficients for the corresponding channel 
potentials defined in (5.20) and (5.21) (see also (5.16)). 
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Table IX 

n л <!> 
an 

A ( 1 > 

ьn 

„<2> an 

. ( 2 ) 

ьn 

„<3> an 

i,(3) 
->n 

1 - .2660 .0 - 6.0336 .2189 4.7811 - .2172 

2 4.8104 .0 24.536 - 3.0393 - 62.887 3.0507 

3 - 18.914 .0 - 97.074 9 .0636 143.26 - 4.6193 

Table X 

n an

c) bn

c) (SL) 
an 

A ( S L ) 
*n 

íT) 
an 

Һ(T) 
°n 

1 

2 

3 

2.5039 
- 49.898 

91.987 

- .1442 
2.0376 

- 1.5981 

~ .2660 
4.8104 

- 18.914 

.0 

.0 

.0 

- 2.0112 
8.1786 

- 32.358 

.0730 
- 1.0131 

3.0212 

Table XI 

i n в í / 'M ) 
n an 

1 1 2.2155 - 5.2757 6.7440 

2 - 45.822 17.401 - 72.558 
3 88.791 - 74.431 198.16 

3 1 0.8901 - 3.3719 3.7255 
2 - 13.553 - 11.8134 - 43.815 
3 32.756 11.569 161.81 

5 1 - 3.0161 .5309 - 0.1871 
2 46.626 - 66.367 5.8291 
3 - 73.994 174.11 102.27 

Table XII 

j n a n

У ) 

2 1 - 1.2422 

2 - 38.282 

3 72.851 

4 1 - 1.2184 
2 - 38.124 
3 135.07 
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The potentials are generally weaker than in the triplet odd state so that the condition 
(4.2) is better satisfied. The central, spin-orbit and tensor potentials are drawn in xhef(z) 
representation (5.18) in Fig. 23 and 24. The central potential is repulsive near the origin 
and slightly attractive at larger distances. The attractive part is most pronounced in the 

Fig. 23. The/G-0 representation (see caption to the Fig. 5) of the triplet even central potential acting 
inj = 1, 2, 3, 4, 5 orbital states. The corresponding solid lines are denoted by the value ofj. The 

dashed line is the f(z) representation of the spin-orbit potential for the triplet even state 

0.2 0.0 

Fig. 24. The/(-j) representation (see caption to the Fig. 5) of the triplet even tensor potential for the 
j = 1, 2, 3, 4, 5 orbital states. The corresponding lines are denoted by the value of/ 

/ = 1 state, which gives the bound state of the deuteron. The spin-orbit term as well as the 
tensor potential is attractive for/ = 1,2 and 3. Fory = 1 the potentials found here share 
the same qualitative features as the Reid potentials, [5] which were computed for this 
channel. They differ from the potentials obtained in our earlier studies [31], partly because 
of their modified structure. The corresponding x2 divided by the number of degrees of 
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freedom i.e. the quantity Xn ( tne experimental and calculated scattering data and the 
quadrupole and magnetic moments are compared) gives 1.62. The calculated errors of the 
coefficients give pNc = .14 and q = .30 (see (4.33)). 

Fig. 25 

Fig. 25-29. The triplet even calculated phase shifts — solid lines. The phase shifts resulting from the 
Livermore energy dependent (experimental) solution — dashed lines. The crosses and dots denote 
the experimental points used in the derivation of the potential, k = .1553 |/E(MeV), where E is 
energy of the incident particle in the laboratory system. The phase shifts are given in radians 

The directly calculated triplet scattering length and the effective range parameters 
derived from the phase shifts and calculated at the energies k = A and k = .3 are con
tained in the Tab. I. The phase shift curves are plotted — with the exception of the mix
ing parameter ei (see Sec. V.f) — in Fig. 25-29, where they are compared with the results 
of the Livermore energy dependent phase shift analysis (dashed line). In this case, the 
differences are larger as would be expected but with the exception of the mixing parameter 
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6i, the calculated phase shifts are very close to the curves from the Livermore energy 
dependent analysis (to the so called experimental solution). Deviations are found in the 
transition region to relativistic energies and at the places where either the number of 
experimental data is small or their errors are large. 

As described in Sec. III.c. the deuteron binding energy was fixed during the calcula
tion of the potential coefficients a^ and b{*\ Its value in the dimensionless units and in 
MeV reads 

x = .32756 £bind = 2.2247 MeV (5.23) 

The quadrupole moment and the deviation of the deuteron magnetic moment from the 
sum of the proton and neutron magnetic momenta have been calculated. Their values 

Qtheor = .1433 (dimensionless) i.e. Qtheor = .2861 f2 

Qexp = (.279 ± .014)/2 (5.24) 

-4Aftheor = .02234 (nuclear magneton) Afexp = (.02231 ± .00012) 

agree with the experimental results. 

0.6 + 

0.4 1 

0.2 4 

Fig. 30. The normalized deuteron wave function. Its first component — u, the second — w; x = jur, 
u = .707/_1,r is the internucleon distance 

The corresponding normalized deuteron wave function is plotted in Fig. 30 and 
tabulated in Tab. XIII. 

The constant K (4.23), which defines the asymptotic ratio of the S and D states in 
deuteron is equal to .027350, and the D state probability PD = .047. 

f) The ei-mixing parameter problem 

The triplet even potential (Table IX-XII) gives the mixing parameter drawn in 
Figure 31 (solid line). Its shape is not quite as expected. The a is compared in this figure 
with the results of the Livermore energy dependent analysis [15]. There are two Liver-
more solutions, the first, called experimental is obtained without any particular assumption 
about the form of ei (dashed line 1), the second, called constraint (dashed line 2) is a result 
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Tab. XIII. The components u and w of the normalized deuteron wave function are given as function 
of the parameter x = /nr where a = .707/-1 is the pion mass and r is the internucleon distance. 

X u w 

0.01 0.6351 - 0 3 0.6941 - 0 4 
0.02 0.1504 -02 0.2621 -03 

0.03 0.2611 -02 0.5699 - 0 3 
0.04 0.3959 -02 0.9904 -03 
0.05 0.5553 -02 0.1523 -02 
0.06 0.7397 -02 0.2168 -02 
0.07 0.9493 -02 0.2925 -02 
0.08 0.1184 -01 0.3795 - 0 2 
0.09 0.1444 -01 0.4778 -02 
0.10 0.1731 -01 0.5872 - 0 2 
0.11 0.2042 -01 0.7078-02 
0.12 0.2380 -01 0.8393 -02 
0.13 0.2742 -01 0.9816 -02 
0.14 0.3130 -01 0.1134 -01 
0.15 0.3542 - 0 1 0.1298 -01 
0.16 0.3978 -01 0.1471 -01 
0.17 0.4438 -01 0.1655 -01 
0.18 0.4921 -01 0.1847 -01 

0.19 0.5427 - 0 1 0.2049 -01 

0.20 0.5955 -01 0.2260 -01 
0.21 0.6504 - 0 1 0.2479 - 0 1 

0.22 0.7074 - 0 1 0.2706 -01 

0.23 0.7664 -01 0.2939 -01 

0.24 0.8272 - 0 1 0.3182 - 0 1 

0.25 0.8898 -01 0.3430 -01 
0.26 0,9542 -01 0.3683 -01 
0.27 0.1020 00 0.3941 - 0 1 
0.28 0.1087 00 0.4206 -01 

0.29 0.1156 00 0.4474 -01 

0.30 0.1227 00 0.4747 -01 

0.31 0.1298 00 0.5022 - 0 1 

0.32 0.1371 00 0.5300 -01 
0.33 0.1445 00 0.5576 - 0 1 
0.34 0.1520 00 0.5861 -01 
0.35 0.1596 00 0.6142 -01 
0.36 0.1673 00 0.6433 -01 
0.37 0.1750 00 0.6715 -01 
0.38 0.1828 00 0.6994 -01 
0.39 0.1907 00 0.7258 -01 
0.40 0.1986 00 0.7537 -01 

0.41 0.2066 00 0.7802 -01 

0.42 0.2146 00 0.8072 -01 

0.43 0.2226 00 0.8313 -01 

0.44 0.2305 00 0.8631 -01 

46 



Table XIII contd. 

X u w 

0.45 0.2384 00 0.8843 -01 

0.46 0.2463 00 0.9134 -01 

0.47 0.2543 00 0.9346 -01 

0.48 0.2623 00 0.9584 - 0 1 

0.49 0.2702 00 0.9717 -01 

0.50 0.2777 00 0.1000 00 

0.60 0.3554 00 0.1273 00 

0.70 0.4250 00 0.1475 00 

0.80 0.4837 00 0.1614 00 
0.90 0.5305 00 0.1695 00 
1.00 0.5657 00 0.1729 00 
1.10 0.5903 00 0.1725 00 
1.20 0.6059 00 0.1695 00 
1.30 0.6138 00 0.1646 00 

1.40 0.6156 00 0.1584 00 

1.50 0.6125 00 0.1516 00 
1.60 0.6056 00 0.1444 00 
1.70 0.5958 00 0.1371 00 
1.80 0.5840 00 0.1299 00 
1.90 0.5706 00 0.1228 00 
2.00 0.5563 00 0.1161 00 
2.10 0.5413 00 0.1096 00 
2.20 0.5260 00 0.1034 00 
2.30 0.5105 00 0.9759 -01 
2.40 0.4951 00 0.9206 -01 
2.50 0.4799 00 0.8685 -01 
2.60 0.4648 00 0.8193 -01 
2.70 0.4501 00 0.7731 -01 
2.80 0.4357 00 0.7296 - 0 1 
2.90 0.4217 00 0.6887 - 0 1 
3.00 0.4081 00 0.6502 -01 
3.10 0.3949 00 0.6141 - 0 1 
3.20 0.3820 00 0.5801 -01 
3.30 0.3696 00 0.5482 -01 
3.40 0.3576 00 0.5182 -01 
3.50 0.3459 00 0.4900 -01 
3.60 0.3347 00 0.4635 - 0 1 
3.70 0.3238 00 0.4386 - 0 1 
3.80 0.3133 00 0.4151 - 0 1 
3.90 0.3031 00 0.3931 -01 
4.00 0.2932 00 0.3724 -01 
4.10 0.2837 00 0.3528 -01 
4.20 0.2745 00 0.3344 - 0 1 
4.30 0.2656 00 0.3171 - 0 1 
4.40 0.2570 00 0.3008 -01 
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Table XIII contd. 

x u w 

4.50 0.2486 00 0.2855 -01 

4.60 0.2406 00 0.2710 -01 

4.70 0.2328 00 0.2573 -01 

4.80 0.2252 00 0.2445 -01 

4.90 0.2179 00 0.2323 -01 

5.00 0.2109 00 0.2208 -01 
5.10 0.2041 00 0.2100 -01 

5.20 0.1975 00 0.1998 -01 

5.30 0.1911 00 0.1901 -01 

5.40 0.1849 00 0.1810 -01 

5.50 0.1789 00 0.1723 -01 

5.60 0.1732 00 0.1642 -01 

5.70 0.1676 00 0.1564 -01 
5.80 0.1622 00 0.1491 -01 
5.90 0.1569 00 0.1422 -01 
6.00 0.1519 00 0.1356 -01 
6.10 0.1470 00 0.1294 -01 
6.20 0.1422 00 0.1235 -01 
6.30 0.1376 00 0.1178 -01 

6.40 0.1332 00 0.1125 -01 

6.50 0.1289 00 0.1075 -01 
6.60 0.1247 00 0.1027 -01 
6.70 0.1207 00 0.9817 -02 
6.80 0.1168 00 0.9384 -02 
6.90 0.1130 00 0.8973 -02 
7.00 0.1094 00 0.8581 -02 
7.10 0.1059 00 0.8209 -02 
7.20 0.1024 00 0.7855 -02 
7.30 0.9918 -01 0.7517 -02 

7.40 0.9599 -01 0.7196 -02 

7.50 0.9289 -01 0.6890 -02 
7.60 0.8990 -01 0.6599 -02 
7.70 0.8700 -01 0.6321 -02 
7.80 0.8419 -01 0.6056 -02 
7.90 0.8148 -01 0.5803 -02 
8.00 0.7885 -01 0.5562 -02 
8.10 0.7631 -01 0.5332 -02 

8.20 0.7385 -01 0.5112 -02 
8.30 0.7147 -01 0.4903 -02 

8.40 0.6916 -01 0.4703 -02 

8.50 0.6693 -01 0.4511 -02 

8.60 0.6478 -01 0.4329 -02 

8.70 0.6269 -01 0.4154 -02 

8.80 0.6067 -01 0.3987 -02 

j 8.90 0.5871 -01 0.3828 -02 
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Table XIII contd. 

X u w 

9.00 0.5682 -01 0.3675 -02 

9.10 0.5499 -01 0.3529 -02 

9.20 0.5321 - 0 1 0.3389 -02 

9.30 0.5150 -01 0.3256 -02 

9.40 0.4984 -01 0.3128 --02 

9.50 0.4823 - 0 1 0.3005 -02 

9.60 0.4668 -01 0.2888 -02 

9.70 0.4517 - 0 1 0.2776 -02 

9.80 0.4372 - 0 1 0.2668 -02 

9.90 0.4231 -01 0.2565 -02 

10.00 0.4094 - 0 1 0.2466 -02 

of including a special condition, which keeps e\ positive. The reason for this condition is 
hidden in an expected connection between the scattering and bound state characteristics 
of the two-nucleon system. For example, the positive value of the quadrupole moment is 
often related to the positive value of e\. It has already been pointed out that there is no 
theoretical relation, which connects the bound state and scattering properties other than 
the Levinson theorem (see Sec. III.c). Other connections may be looked for on a basis of 
special and limiting assumptions about the analytic properties of the 5 matrix. Moreover, 
it is easy to find a channel potential for the/ = 1 triplet even state, which describes quite 
well the scattering data and the bound state characteristics giving the quadrupole moment 
Qtheor = .152, i.e. a value, which is only slightly higher than the experimental (5.24). 
The 3S\ and 3Di phase shifts practically coincide with those plotted in the Fig. 25, the 
corresponding ei which is negative at low energies, is drawin in Fig. 31 (dotted line 1) 
and the corresponding channel coefficients are tabulated in Tab. XIV. 

Table XIV 

/ n д
<м--> 
-*n 

aЧ n л
<м+-> 

an 

1 1 

2 

3 

5.4485 

- 74.711 

139.89 

- 7.1870 

32.403 

- 97.675 

3.6047 

- 30.132 

97.349 

There is also a potential with nine coefficients giving the 3 5i and 3Di phase shifts 
very close to those from Fig. 25 and ei almost coinciding with the Livermore constrained 
solution. The corresponding xl = 1-8. It follows from these two examples and from other 
potentials describing the/ = 1 triplet even state of the two nucleon system that the experi
mental data in this channel would admit quite a large set of different potentials enabling 
them to be constructed in almost any desired form. 
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A simultaneous solution of the inverse problem significantly limits this ambiguity. If 
the potential for the triplet even state is derived using a solution of the inverse problem 
from the scattering data only but for all angular momenta j = 1 -f- 5 then it takes a form 
which is very close to the final shape obtained by considering the complete set of available 
non-relativistic data. This result shows the strong influence of the correlations between 
the phase-shifts and is quite independent on the actual method of solution. 

In Fig. 31 a direct fit to the JINR data for the £i is also plotted (the dotted line 2). 
This fit also takes into account the JINR measurements at higher energies up to 600 MeV. 
It seems that the computed mixing parameter e± shares in the low energy region certain 
common features with the Livermore constrained solution and that at higher energies it 
tends to its asymptotic form of the fit (given by dotted line 2). As a result the relative high 
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# 
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Fig. 31 . The calculated mixing parameter si (triplet evenj = 1 state) — solid line. The crosses are 
experimental points used in the computation of the two-nucleon potential. The dots represent the 
other available (Livermore) data [15], which were not used. The dashed line 1 — the Livermore 
experimental solution, the dashed line 2 — the Livermore constrained solution; the dotted line 1 — 
the mixing parameter ei for a channel potential for which e\ < 0 for small momenta k and the 
deuteron quadrupole moment is positive. The dotted line 2 — the direct fit of ei to the JINR data, 
the dotted line 3 — the mixing parameter ei for a channel potential, which gives unbounded phase 

shifts djj-i and SJJ+I (j = 1). k = .1553 j/E(MeV), the parameter ei is given in radians 
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experimental values of the mixing parameter ei at energies 300-400 MeV (k ~ 3) may 
perhaps not be correct. If they are, they may be connected with the discontinuity of the 
phase shifts fyj-i and djj+i described in Sec. IV.a. Although ei does not achieve the 
critical value rc/4, it is quite near to it at k ~ 3 and this fact — if it is true — may induce 
some irregularities in the behaviour of these two phase shifts at this energy. Again it is 
not difficult for this case to find a relatively good channel-potential (j = 1) [32], which 
gives ei as plotted in Fig. 31 (dotted line 3). The corresponding phase shifts djj-i and 
djj+i are discontinuous at k = 2.7. Such potential however as well as giving discontinui
ties seems to be excluded by the simultaneous solution of the inverse scattering problem. 

Conclusion 

1. By a simultaneous fit to the nucleon-nucleon scattering data in the energy region 
0-330 MeV and to the basic deuteron data a two-nucleon potential has been derived for 
the singlet even and odd and for the triplet odd and even states for all total angular 
momenta j < 5. The x2 t e s t gives %2

n < 1.62. The Livermore scattering data alone are 
also fairly well reproduced by this potential [34]. 
2. The potential is independent of the radial velocity but has central spin-orbit and ten
sor terms and is a linear function of the square of the total angular momentum J. It has 
not been found necessary to include the quadratic spin-orbit interaction or radial velocity 
dependence. 

The radial part of the potential is expressed as a sum of Yukawa terms, i.e. the 
singularity of the potential is small. 
3. The most recent JINR energy independent phase shift analysis data together with the 
corresponding new Livermore data have been used for the solution of the inverse problem 
and it has been shown that these two sets of data are in principle equivalent to the results 
of the Livermore energy dependent phase shift analysis. The only discrepancy in this one 
to one correspondence seems to occur in the description of the mixing parameter e\(j = 1) 
4. A simultaneous fit of the potential to the two nucleon data indicates quite strong cor
relations among the phase shifts for different angular momenta. The most pronounced 
correlation appears in the triplet even state. 
5. The zero energy data and the difference in the 1So p-p and n-p nuclear phase shift 
leads to slightly different potentials acting in the singlet even p-p and n-p states. 
6. The potentials have generally both attractive and repulsive parts and in some cases the 
repulsive part near the origin of the co-ordinate system can be interpreted as a soft core. 
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