Acta Universitatis Carolinae. Mathematica et Physica

Ladislav Beran

Note on a normality relation in lattices

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 16 (1975), No. 1, 59--62
Persistent URL: http://dml.cz/dmlcz/142360

Terms of use:

© Univerzita Karlova v Praze, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Note on a Normality Relation in Lattices

L. BERAN

Department of Algebra, Charles University, Prague
Received 8 November 1973

In this paper, we define and study a normality relation based in a natural way on a lattice generalization of inner automorphisms.

I. Preliminaries

The ingenious system of axioms proposed by Zassenhaus [4] for a normality relation \triangleleft defined on a lattice \mathscr{L} can be restated in a slightly modified form as the system of the following postulates:
(ZO) $c \triangleleft d \Rightarrow c \leqq d$;
(Z1) $a \triangleleft a \cup c \Rightarrow(\forall x \in[c, a \cup c] \quad c \cup(a \cap x)=x$ $\mathrm{ET} \forall y \in[a \cap c, a] \quad a \cap(c \cup y)=y) ;$
(Z2) $\forall c \in L \quad c \triangleleft c$;
(Z3) $\forall a, b, c \in L \quad c \triangleleft b \Rightarrow a \cap c \triangleleft a \cap b$;
(Z4) $(c \triangleleft a \cup c \mathrm{ET} y \triangleleft a) \Rightarrow c \cup y \triangleleft a \cup c$.
A remarkable approach to this question was made in the papers [1], [3] by Dean and Kruse. The corresponding system of axioms is formulated in the following set of six conditions:
(DKO) $\forall a \in L \quad a \triangleleft a$;
(DK1) $a \triangleleft b \Rightarrow a \leqq b$;
(DK2) $(a \triangleleft b$ ET $c \triangleleft d) \Rightarrow a \cap c \triangleleft b \cap d$;
(DK3) $(a \triangleleft b \mathrm{ET} a \triangleleft c) \Rightarrow a \triangleleft b \cup c$;
(DK4) $(a \triangleleft b \mathrm{ET} c \triangleleft d) \Rightarrow a \cup c \triangleleft a \cup c \cup(b \cap d)$;
(DK5) $[a \leqq b \mathrm{ET}(a \triangleleft a \cup c \mathrm{VEL} c \triangleleft a \cup c)] \Rightarrow a \cup(b \cap c)=b \cap(a \cup c)$.
For the sake of brevity we shall call a normality relation in the sense of Zassenhaus (resp. in the sense of Dean and Kruse) a Z-normality relation (resp. a DK-normality relation). It is well known that every DK-normality relation is a Z-normality relation.

Various results in appropriate systems of conditions imposed for a normality relation were obtained by Noronha Galvão and Almeida Costa [2].

2. A-normality relation

Let D be a subset of $L, D=D(\mathscr{L})=\left\{d_{\lambda}\right\}_{\lambda \epsilon \Lambda}$, such that every element $k \in L$ is a join of the elements belonging to a subset of $D(\mathscr{L})$. Suppose next there exists a mapping ϑ from $D(\mathscr{L})$ to the set of all automorphisms of the lattice $\mathscr{L}=\langle L ; \cap, \cup\rangle$, $\vartheta: d_{\lambda} \mid \rightarrow \delta_{\lambda}$. The set $\operatorname{Im} \vartheta$ will be denoted by $\Delta(\mathscr{L})$. We write also $D(x)=\mathscr{L} \cap(x]$. Let further \triangleleft be the relation defined on L by $a \triangleleft b$ iff $a \leqq b$ and $\delta_{\lambda}: a \mid \rightarrow a$ for all $\delta_{\lambda} \in \Delta(b)=\left\{\delta_{\lambda} \in \Delta(\mathscr{L}) \mid d_{\nu} \leqq b\right\}$. The relation \triangleleft is called an A-normality relation (determined by $D(\mathscr{L})$ and ϑ) iff it satisfies the following conditions:
(n) ($\delta_{\lambda}: c \mid \rightarrow c$ whenever $d_{\lambda} \in D(\mathscr{L})$ and $c \in L$ are comparable elements;
(nn) $(a \triangleleft a \cup c \geqq x \geqq a \mathrm{ET} d \in D(x)) \Rightarrow \exists d_{1} \in D(a \cap(c \cup d))$

$$
\exists d_{2} \in D(c \cap x) \quad d \leqq d_{1} \cup d_{2} ;
$$

(nnn) $\left(\left\{d_{\varkappa}\right\}_{\varkappa \in K} \subset D(\mathscr{L})\right.$ ET $\left.D(\mathscr{L}) \ni d_{\mu} \leqq \underset{x \in K}{\cup} d_{x}\right) \Rightarrow\left(\exists \varkappa_{1}, \varkappa_{2}, \ldots, \varkappa_{n} \in K\right.$ such that with $\delta_{\mu}=\delta_{x_{1}}^{\varepsilon} \circ \delta_{x_{2}}^{\varphi} \circ \ldots \circ \delta_{x_{n}}^{\psi}$ with $\left.\varepsilon, \varphi, \ldots, \psi= \pm 1\right)$.

The following proposition makes the used terminology legitimate.
Proposition 1. The system $\left\{\mathscr{D}_{\lambda}\right\}_{\lambda \in \Lambda}$ of all cyclic subgroups of a group \mathscr{G} with distinguished generators $g_{\lambda} \in D_{\lambda}$ and the mapping $\vartheta: \mathscr{D}_{\lambda} \mid \rightarrow \delta_{\lambda}$ (where δ_{λ} is the inner automorphism determined by $\left.g_{\lambda}, \delta_{\lambda}: \mathscr{H} \mid \rightarrow\left\langle H^{g_{\lambda}} ;.\right\rangle\right)$ define an A-normality in the lattice $\mathscr{L}(\mathscr{G})$ of all subgroups of the group \mathscr{G}.

Proposition 2. Let $\mathscr{L}=\langle L ; \leqq$ be a modular lattice, $\mathscr{D}(\mathscr{L})=L$ nad let for all $\lambda \in \Lambda \quad \delta_{\lambda}: k \mid \rightarrow k$ be the identity automorphism on L. Then the relation \leqq is an A-normality relation.

Proof. Let $d \leqq x$ and $a \leqq x \leqq a \cup c$. Denoting $d_{1}=a \cap(c \cup d), d_{2}=c \cap x$, we have $d_{1} \cup d_{2}=[a \cup(c \cap x)] \cap(c \cup d)=(a \cup c) \cap(a \cup x) \cap(c \cup d)=(a \cup x) \cap$ $\cap(c \cup d) \geqq d$ by modularity of \mathscr{L}.

Theorem 3. Every A-normality relation is a $D K$-normality relation.
Proof. The validity of (DK0) and (DK1) follows trivially. If $d_{\lambda} \leqq b \cap d, a \triangleleft b$, $c \triangleleft d$, then $d_{\lambda} \leqq b$ and since $a \triangleleft b$, we have $\delta_{\lambda}: a \mapsto a$ and, similarly, $\delta_{\lambda}: c \mapsto c$. But δ_{λ} is an automorphism and so $\delta_{\lambda}: a \cap c \mid \rightarrow a \cap c$ and we have proved the validity of (DK2). It is immediate that (nnn) implies the condition (DK3).

To prove the condition (DK4), suppose that $a \triangleleft b$ and $c \triangleleft d$. Since $a \cup c \cup$ $\cup(b \cap d)=\mathbf{U} d_{\tau}$ where d_{τ} ranges over all the elements of $D(a \cup c) \mathbf{U} \mathbf{D}(b \cap d)$ there exist $\varkappa_{1}, \varkappa_{2}, \ldots, x_{n} \in \Lambda$ such that $\delta_{\lambda}=\delta_{x_{1}}^{+1} \circ \delta_{x_{2}}^{+1} \circ \ldots \circ \delta_{x_{n}}^{+1}$ where $d_{x_{i}} \in D(a \cup c) \mathbf{U}$ $\mathbf{U} D(b \cap d)$. If $d_{x_{i}} \in D(a \cup c), \delta_{x_{i}}: a \cup c \mid \rightarrow a \cup c$ by (n); if $d_{x j} \in D(b \cap d)$, $d_{\varkappa_{j}}: a \cup c \mapsto \delta_{\varkappa_{j}}(a) \cup \delta_{\varkappa_{j}}(c)=a \cup c$ because of $d_{\varkappa_{j}} \leqq b \cap d \leqq b$ and $a \triangleleft b$ (resp. $d_{\varkappa_{j}} \leqq d$ and $c \triangleleft d$).

The proof is completed by proving that also the condition (DK5) holds: Here we shall distinguish two cases.

Case I. $a \leqq b$ and $a \triangleleft a \cup c$. We shall show that $d_{\lambda} \leqq b \cap(a \cup c)$ implies $d_{\lambda} \leqq a \cup(b \cap c)$. Setting $x=b \cap(a \cup c)$ in (nn), we get $d_{\lambda} \leqq d_{1} \cup d_{2}$ where $d_{1} \leqq a \cap\left(c \cup d_{\lambda}\right) \leqq a, d_{2} \leqq c \cap b \cap(a \cup c)=b \cap c$. Thus $b \cap(a \cup c)=a \cup(b \cap c)$, since every element of \mathscr{L} is a join of some elements d_{λ}.

Case II. $a \leqq b$ and $c \triangleleft a \cup c$. If $d_{\lambda} \leqq b \cap(a \cup c)$, then $d_{\lambda} \leqq b$ and $d_{\lambda} \leqq a \cup c$, hence, by ($\mathbf{n n}$), there exist d_{1}, d_{2} such that $d_{\lambda} \leqq d_{1} \cup d_{2}, d_{1} \leqq c \cap\left(a \cup d_{\lambda}\right) \leqq c \cap b$, $d_{2} \leqq a \cap(a \cup c)=a$ and so $d_{\lambda} \leqq a \cup(b \cap c)$.

Proposition 4. Let \mathscr{L} be a lattice satisfying the condition

$$
\begin{aligned}
& (\underline{\mathbf{H})} \forall u, v \in L \quad u \lessdot u \cup v \Rightarrow u \cap v \lessdot v \\
& (u \cup v \text { covers } u \text { implies that } v \text { covers } u \cap v) .
\end{aligned}
$$

Let further $D(\mathscr{L})=L$ and let for all $\lambda \in \Delta \quad \delta_{\lambda}: k \mapsto k$ be the identity automorphism on L.

Then the relation \triangleleft defined on L by $a \triangleleft b$ iff $a=b$ VEL $a \lessdot b$ is an A-normality relation.

Proof. Suppose that $a \triangleleft a \cup c \geqq x \geqq a, d \leqq x$. In the case $a=a \cup c$ we can put $d_{1}=c \cup d, d_{2}=c$. If (i) $a \lessdot a \cup c$ and $x=a$, then $d_{1}=a \cap(c \cup d)$, $d_{2}=c \cap a$ are such that $d_{1} \cup d_{2} \geqq a \cap d=d$. If (ii) $a \lessdot a \cup c$ and $x=a \cup c$, then $a \cap(c \cup d) \triangleleft(a \cup c) \cap(c \cup d)=c \cup d$ by (H) and so either $a \cap(c \cup d)=c \cup d$ or $a \cap(c \cup d) \lessdot c \cup d$. In the former case we can use the argument of (i). In the latter case, note that $a \cap(c \cup d) \leqq c \cup(a \cap(c \cup d)) \leqq c \cup d$. If $a \cap(c \cup d)=$ $=c \cup(a \cap(c \cup d))$, then $a \geqq c$, a contradiction. Hence, putting $d_{1}=a \cap(c \cup d)$, $d_{2}=c$, we get $d_{1} \cup d_{2}=c \cup(a \cap(c \cup d))=c \cup d \geqq d$. This completes the proof.

We make the observation that the preceding proposition fails to hold for lattices satisfying the condition

$$
(\overline{\mathbf{H}}) \quad u \cap v \lessdot v \Rightarrow u \lessdot u \cup v .
$$

A counterexample can be constructed as follows. To the lattice 2×3 we join a new element ξ satisfying the relations $\langle 0 ; 1\rangle\langle\xi\langle\langle 2 ; 1\rangle \in 2 \times 3, \xi \neq\langle 1 ; 1\rangle$. The relation \triangleleft defined on the lattice \mathscr{L}_{7} (obtained by this construction) in the same way as in the proposition 4 is such that $\xi \triangleleft\langle 2 ; 1\rangle,\langle 2 ; 0\rangle \triangleleft\langle 2 ; 1\rangle$. Suppose \triangleleft is an A-normality relation. By Theorem 3, every A-normality relation satisfies (DK2) and so we get $\langle 0 ; 0\rangle=\xi \cap\langle 2 ; 0\rangle \triangleleft\langle 2 ; 1\rangle$, a contradiction.

Suppose now that \triangleleft is an \mathbf{A}-normality relation defined on a lattice \mathscr{L}. Since \triangleleft is also a Z-normality relation, every two maximal chains $t=c_{0} \lessdot c_{1} \lessdot \ldots \lessdot c_{m}=$ $=u, t=d_{0} \lessdot d_{1} \lessdot \ldots \lessdot d_{n}=u$ have the same length $m=n$. We shall denote it by [$u: t$]. If $1 \in L \in s$ and if there are $s_{0}=s_{,} s_{1}, \ldots, s_{k}$ such that $s_{0} \triangleleft s_{1} \triangleleft \ldots \triangleleft s_{k}=1$, the element s is said to be subnormal and we write in this case $s \triangleleft \triangleleft 1$. If $0=s_{0} \triangleleft s_{1} \triangleleft$ $\triangleleft \ldots \triangleleft s_{k}=1$ and if $s_{i-1} \lessdot s_{i}$ for each integer $i \leqq k$, the series $\left\{s_{i}\right\}_{i=0}^{k}$ is called a composition series of the lattice \mathscr{L}.

Theorem 5. If \triangleleft is an A-normality relation defined on a lattice \mathscr{L} having a composition series and if the relation \triangleleft satisfies the condition

$$
a<b \Rightarrow \forall \lambda \in \Lambda \quad \delta_{\lambda}(a) \triangleleft \delta_{\lambda}(b),
$$

then

$$
(m \triangleleft \triangleleft 1 \mathrm{ET} n \triangleleft \triangleleft 1) \Rightarrow m \cup n \triangleleft \triangleleft 1 .
$$

Proof. The assertion holds whenever $[1: m]$ or $[1: n]$ or $[1: 0]$ equals to 0 . Suppose that $q=[1: n] \geqq 1, s=[1: m] \geqq 1, r=[1: 0] \geqq 1$ and that the assertion holds for all the elements $\omega \triangleleft \triangleleft \mu \triangleleft \triangleleft \iota, \omega \triangleleft \triangleleft \nu \triangleleft \triangleleft \iota$ of the lattice \mathscr{L} which are such that either $[1: \mu]<p$ or $[1: \nu]<q$ or $[\iota: \omega]<r$. Let $\left\{h_{i}\right\}$ and $\left\{k_{j}\right\}$ be maximal chains,

$$
m=h_{0} \triangleleft h_{1} \triangleleft \ldots \triangleleft h_{p}=1, \quad n=k_{0} \triangleleft k_{1} \triangleleft \ldots \triangleleft k_{q}=1
$$

Since [$1: h_{1}$] $=p-1, h_{1} \cup k_{0} \triangleleft \triangleleft 1$ by our inductive hypothesis. If $h_{1} \cup k_{0}<1$, then $\left[h_{1} \cup k_{0}: 0\right]<r$. Now $\mu=m \triangleleft \triangleleft h_{1} \cup k_{0}, v=n \triangleleft \triangleleft h_{1} \cup k_{0}$ and so $m \cup n \triangleleft \triangleleft h_{1} \cup k_{0} \triangleleft \triangleleft 1$ from which $m \cup n \triangleleft \triangleleft 1$ follows at once. Hence we may assume that $h_{1} \cup k_{0}=1$ and that $k_{1} \cup h_{0}=1$.

If there exists a λ such that $d_{\lambda} \leqq n, d_{\lambda} \in D(\mathscr{L})$ with $\delta_{\lambda}(m) \neq m$, then the assumption $m \cup \delta_{\lambda}(m)=m$ implies $m \geqq \delta_{\lambda}(m)$. But $m \triangleleft \triangleleft 1$ implies (by hypothesis on \triangleleft) that in this case $\delta_{\lambda}(m) \triangleleft \triangleleft 1$. Since $[1: m]=\left[1: \delta_{\lambda}(m)\right]=[1: m]+\left[m: \delta_{\lambda}(m)\right]$, we have $\left[m: \delta_{\lambda}(m)\right]=0$, hence $m=\delta_{\lambda}(m)$, a contradiction. Thus $m<m \cup \delta_{\lambda}(m)$ and $m \triangleleft \triangleleft h_{p-1}=\iota, \delta_{\lambda}(m) \triangleleft \triangleleft h_{p-1}=\iota,[\iota: 0]<r$ and by hypothesis $m \cup \delta_{\lambda}(m) \triangleleft \triangleleft h_{p-1} \triangleleft 1$. Therefore [1:m]>[1:mט $\delta_{\lambda}(m)$] and using again the inductive hypothesis we obtain $m \cup \delta_{\lambda}(m) \cup n \triangleleft \triangleleft 1$. Because of $d_{\lambda} \leqq n \leqq m \cup n$, we have $\delta_{\lambda}(m) \leqq \delta_{\lambda}(m \cup n)=m \cup n$ which yields $m \cup n \triangleleft \triangleleft 1$.

By what we have just seen, we may assume that $\delta_{\lambda}(m)=m$ and $\delta_{\mu}(n)=n$ for all $d_{\lambda} \leqq n, d_{\mu} \leqq m$.

If $d_{\chi} \leqq h_{1} \cup n$, then there exist $\varkappa_{1}, \varkappa_{2}, \ldots, \varkappa_{k}$ such that $\delta_{\varkappa}=\delta_{x_{1}}^{ \pm 1} \circ \delta_{x_{1}}^{ \pm 1} \circ \ldots$ $\ldots \circ \delta_{x_{k}}^{ \pm 1}$ and $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{k}^{\prime}\right\} \mathbf{U}\left\{x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, \ldots, x_{k}^{\prime \prime}\right\}$ where for each \varkappa^{\prime} we have $d_{\chi^{\prime}} \leqq h_{1}$ and for each $\varkappa^{\prime \prime}$ we have $d_{\varkappa^{\prime}} \leqq n$. Since $\delta_{\chi^{\prime}}(m)=m$ and since $m \triangleleft h_{1}, d_{x^{\prime}} \leqq h_{1}$ implies that $\delta_{x^{\prime}}(m)=m$, we get $\delta(m)=m$. Hence $m \triangleleft h_{1} \cup n=1$ and, similarly, $n \triangleleft 1$. By (DK4) we conclude that $m \cup n \triangleleft 1$ and the theorem is prove proved.

References

[1] R. A. Dean, R. L. Kruse: A normality relation for lattices, J. Algebra 3, 277-290 (1966).
[2] M. a L. Noronha GalvÃo, A. Almeida Costa: Sur les relations d'invariance dans les treillis, Rev. Fac. Ci. (Lisboa), 2A ser. 14,1 ${ }^{\circ}$, 45-59 (1971-72).
[3] R. L. Kruse: On the join of subnormal elements in a lattice, Pacific J. Math. 28, 571-574 (1969).
[4] H. Zassenhaus: The theory of groups. Chelsea, New York (1958).

