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Remarks on Tensor Products and their Applications
in Quantum Theory — 1. Spectral Properties

JIRI BLANK, PAVEL EXNER
Nuclear center, Faculty of Mathematics and Physics, Charles University, Prague*)

Recetved 17 December 1975

The study of tensor product formalism is continued by examining the spectral properties of
tensor product operators. The paper is completed by a discussion of several typical quantum —
theoretical applications. .

O TeH30pHBIX MPOU3BEACHUAX U UX NMPUMEHEHUSIX B KBaHToBOi Teopuu. 1I. CriexTpassHbie
cBoiicTBa. — PafoTa sIBIAETCS NPOJOJDKEHHMEM H3ydeHHs (opmannsma TeH3OPHBIX IPou3Beje-
Huif. PaccMOTpEHBI CIIEKTpasibHbIE CBOHCTBA OIEPAaTOPOB TEH30PHOIO IIPOU3BEACHHUSA M OOCYIK-
JieHbI HEKOTOpbIE TUINYHbIE IIPUMEHEHUST pa3BUTOro Gopmaau3Ma B KBAHTOBOIl TEOPUH.

Poznamky k tensorovym soudintim a jejich pouziti v kvantové teorii. II. Spektralni vlastnosti.
— Zkoumadni formalismu tensorovych soudint pokraduje v této Casti prace rozborem spektralnich
vlastnosti tensorovych soudind operatori. Price je zavrSena diskusi nékolika typickych kvantové-
-teoretickych aplikaci.

Introduction

This paper is a direct continuation of the first part (Acta Univ. Carolinae
17 (1976), 75—98) referred hereafter as I, where the basic notions are defined and
discussed. The notation introduced in I is used and the numeration of sections;
theorems, references etc. is continued.

In Section 5 a fundamental theorem concerning the tensor product of self-
-adjoint operators is proved and basic spectral properties are investigated ; attention
is paid mainly to self-adjoint or essentially self-adjoint operators and to one-para-
meter groups of unitary operators.

The quantum-theoretical applications in Section 6 concern the description of
observables, states and time evolution of a joint quantum system in terms of its
subsystems. Some other applications (second quantization, symmetries etc.) are
also briefly discussed.

*) Myslikova 7, 110 00 Praha 1



5. Spectral properties of tensor product operators

In this section we shall discuss how spectral charateristics of a tensor product
operator are connected to those of its constituent operators. We are interested
mainly in self-adjoint operators. Theorem 4 states that the tensor product of self-
-adjoint operators is symmetric. We shall now prove that it is, moreover, essentially
self-adjoint (e.s.a.), i.e. its closure is self-adjoint. For this purpose we shall need
several auxialiary statements. }

First of all we make two remarks concerning notation.

1. Let M, be asubset of #, (r = 1,2) and let 5#, @ be a realization of #; ® 2 ; then

(M1oMz)p = @(M1 X M2),
(M1 ® M2)p = (M1 X Ma);.

Thus (M;o0 M)y is a linear manifold in 5 and (M1 ® M2)p a subspace of .
The subscript ¢ will be omitted unless an ambiguity can arise.

2. By (M, p> a measure space will be denoted, i.e. the symbol (M, u) involves
a space (set) M together with a o — algebra I of subsets of M and a mapping
¢ : M—[0, + oo) with the following properties:

M) =05 u(JA)= 5 uA)

for any system of mutually disjoint sets A; € M. For definitions of such notions as
4 — measurable functions, integral on (M, u) etc. see refs. (3], [4].

Lemma 5.1: Let (M, u> be a measure space, u(M) << co. Further let f be
a real-valued, x4 — measurable function on M, which is finite almost everywhere with
respect to u. Define operator Ay on L2 (M, du) with domain
D(A4y) = {x | (f*)(r) € LAM, du)} by (Asx)(t) = f(©)x(z). Then
(a) Ay is self-adjoint;
(b) a real number 4 is in spectrum of Ay if and only if

(5.1) ureM | [f0) — 4] <&} >0
for any ¢ > 0.

Proof: (a) For n = 1, 2, ... consider the sequence of sets M, ={teM | | f(2) | < n}
and denote by x» the characteristic function of My. Then

xn(t) = xn(2) x(¢) e D(Ay) for any x € L¥M, du). By means of the dominated
convergence (Lebesgue) theorem one easily finds

J len(t) — %(2)[? du — O

i.e. D(4y) = L%M, du). Clearly (Asx,y) = (x,Ary) for any x,y € D(4y), so that Ay
is symmetric. Its self-adjointness can be proved in the same way as in the case of Q
(operator of multiplication by ¢ on L2(R)), the only difference consisting in replacing
the characteristic functions of intervals [—n,n] by xx (see e.g. [2]).
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(b) Denote by o (Ay) the spectrum of Ay and remind the Weyl's criterion
(refs. [2], [3]), according to which 4 € o (4y) if and only if there is a sequence of
unit vectors x, € D(A4y) such that (4 — 4 I)xsll — 0. Let 4 € o(Ay), i.e.

J 170 = 22 a2 d — 0

for some sequence of unit vectors x, € D(Ay) and denote for any ¢ > 0 : N(g,4) =
= {eeM]| [f) — A <e.
If there were & > 0 such that u(N(eo, 1)) = 0, then

[ 1) =22 lxa@2d = [ 170) — A2 |xa(0)|2 du > €}
™M M=N(eus%)

€0

which contradicts to the assumption 4 € 6(Ay). Thus (5.1) holds for each A € o (4y).

On the other hand, if (5.1) holds then u < N (-;ll— s /1)) = 0 for each natural n. The

= [“ (N (%’ 1))]% N (%3)

are clearly in D(A4y). Now

unit vectors

Ay = 2D [ = [170) = A2 [5a(Of2 dit <~z =0,
so that A€o (4y). I

Remark: If M = R, u is a Lebesgue-Stieltjes measure on R and f(t) = ¢, one
usually denotes Ay by Q,; especially for u = m, where m is the Lebesgue measure
on R, one has Q, = Q.

Let us remind that a linear manifold N is called core for a closed operator T
if N D(T)and T ™ N = T. Especially N is a core for a self-adjoint operator A4 if
and only ifAp Nisesa.

Lemma 5.2: Suppose the assumptions of Lemma 5.1 to be fulfilled. Moreover, let
feLr(M, du) for some p> 2 and let N be a dense set in LI(M, du), where
1/p + 1/q = 1/2. Then N is a core for Ay.

Proof: Take any x € L2 *) and set p' = p/2, ¢’ = ¢/2, so that 1/p’ + 1/¢' = 1.
The Hoélder inequality gives

llxlle < (Hlzllx2lg )2 = [[Hpllxllg < o0,

and similarly [|dsxlle <|fllpllxllg < oo,i.e. LT = D(A4y).

*) We shall write briefly L2 instead of L¢ (M, du) and denote by | .|lq the norm in L9;
especially | 1 ¢ = [#(M)]¥2 < oo since u is finite.



The Ay is self-adjoint and therefore closed; hence

(*) Arr Lic Ay
and also
() A;r N < 4yp La

In order to prove that equality holds in (x) and (xx) take any x € D(4y) and denote

x(r) if k()] < n}
0 .

xale) = £ x> n

Now |lxnllq < nlilllg, i.e. xn € L2 and further, using the dominated convergence
theorem, we find |xn — x|p — 0, ||[Afxn — Afxllo — 0. Thus x € D(.Zlf N L9) and
Ef N Lix = Agx,ie. Ay = A LA

Further for any y € L4 there is a sequence {y»} € N, such that [y, — y|lg — 0.
Since [lyn —llz < llyn —)llgllllls _and [[Asyn — Agllz < Ifllolyn —sllg one has
yeD(As> N)and gy = A4r > Ny. H

Lemma 5.3 (spectral theorem): Let A4 be a self-adjoint operator on a separable #
with domain D(A4). Then there is a measure space (M, u> with u(M) < oo,
a unitary operator U: # — L%(M, du) and a function f on M obeying the conditions
of Lemma 5.1, so that 4 is unitarily equivalent to Ay, i.e. D(45) = UD(A4) and
Ax = U-1A4;Ux for each x € D(4).

For a proof see [3], [5], [12].

Remark 1: A mapping which assigns to each Borel set M on R a projection E(M)
on S so that

(@) E(z) =0, ER)=1I
(b) E(M1 () M2) = E(M1)E(Ms)
(€) E(UMyp) = Z E(My) for each at most countable system {M,} of mutually disjoint

Borel sets

is called spectral or projection-valued measure on . An equivalent formulation
of the spectral theorem states that there is a one-to-one correspondence between
self-adjoint operators and spectral measures on . By means of the spectral measure
corresponding to a given self-adjoint 4 one can define operators ¢(4) for each
Borel function ¢; especially one has ¢(A4) = A4 for ¢(t) = ¢ and ym(4) = EM)
for each projection belonging to the spectral measure corresponding to 4. These
topics are discussed in more detail in refs. [3], [5], [12]. We shall hereafter use the
"functional expression’’ ym(A) of the spectral measure corresponding to 4.

Remark 2: The measure space (M, > which occurs in the first formulation of the
spectral theorem is, in general, an abstract space with an abstract measure. However,
it appears that for an important class of self-adjoint operators, for the so-called
multiplicity-free operators, M is simply R, u is a Lebesgue-Stieltjes measure on R
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and moreover f(¢) = ¢. The corresponding definition reads: a self-adjoint operator
A on a separable S is multiplicity free, if there is a vector y(4) (generating
vector for A) such that the linear envelope of {y(4)y4| | - intervals on R} is
dense in 2. If dim # < oothen the class of multiplicity-free operators is identical
with that of Hermitian operators having a simple spectrum (no repeated eigen-
values). The spectral theorem for multiplicity-free operators can be formulated as
follows: Each multiplicity-free operator A is unitarily equivalent to Q, on
L2(R, du), the measure u being given by

#(M) = (zm(A)y ), yt),

where M is any Borel set on R.

The inverse of this statement is also true:
If a self-adjoint operator 4 on a separable #  is unitarily equivalent to Q,, i.e.
A = U-1Q,U, then A4 is multiplicity free; if y@ is a generating vector for Q,
then U-ly(@ is a generating vector for 4.

For details see [3], [5], [12].

The following statement makes use of the fact that the measure space in the
spectral theorem is not uniquely determined by A, and shows that (M, u> can
always be chosen so that Lemma 5.2 is applicable.

Lemma 5.4: Let 4 be a self-adjoint operator on a separable #. Then for each
p > 1 a measure space (M, x> can be found such that 4 is unitarily equivalent to
Ay where f € LP(M, du).

Proof: We shall consider only multiplicity-free operators A. According to the
spectral theorem there is a measure uo on R such that 4 is unitarily equivalent to
Ouy + A = Ug* Qu,Uo where U, is a unitary operator from 5 onto L%(R, duo).
By means of uo and of the positive continuous function ¢(z) = e~ one obtains
the following function of intervals on R:

() = [ e~ duo.

The Lebesgue extension of this function is a measure on R and it holds then for
any Borel function g on R

() [ gdu= [ g duo
R R
(see e.g. [14], [12]).
Consider linear mapping V': L%(R, duo) — L%(R, du) given by
(Vx)(r) = exp(22/2)x(z). From (x) we find that x € L%(R, duo) implies
|x|2 exp (¢2) € L(R, du), i.e. x(z) exp(t2/2) € L%R, du) and thus V is defined for
all x € L2(R, duo). One easily verifies that I preserves norm and is surjective; this
means that V is a unitary operator. It is further not difficult to check that D(Qu) =

= VD(Qu,) and Qu = VQy, V1



Then A = (VUo)Qu(VU,) and VU, is a unitary operator from # onto
L?(R, dy). Finally, since tPexp(—:2) is in L(R, duo) for any p > 1, one gets from (x)
t? € L(R, dy), i.e. t € LR, du).

Thus A is unitarily equivalent to 4y = Q, and f(t) = ¢ € L?(R, du). |l

The next auxiliary statement concerns one special dense set in LP(Rn, du).
It could be formulated for L?(M, du), where (M, u)> is a general measure space,
as well. However such a formulation would require some prerequisites from abstract
measure theory which cannot be presented here (see e.g. [4]).

Consider the system of all intervals |, € R®, Each linear combination of
N, for mutually disjoint 1) is called step function on R#. Thus each step
function s can be written as

k
§ =2 oyy,H
is1

where oy €C, 0 7 0and 1) ) 1" = g ifj # j'. Clearly s € L?(R", dy) for any
p = 1 and any measure u satisfying u(R") < co. Making use of simple properties
of intervals in R” *) one easily verifies that the set S, of step functions on R” is
a linear manifold in L?(R", du). Moreover it holds:

Lemma 5.5: Let x4 be a measure on R” such that u(R”) < co and let p > 1.
Then the set S, of step functions on R?” is a dense linear manifold in L?(R?, du).
For a proof see ref. [12].

The last of the auxiliary statements we shall need is closely related to Theorem 4.

Lemma 5.6: Let 7, (r = 1, 2) be a closed, densely defined operator on 5#,. Then
it holds for Ty = T1 + T2 with domain Dy = D(73) o D(T3)

(a) Ty is densely defined and closable

(b) if the T,'s are symmetric so is Ty.

Proof: (a) Clearly Dy = # (see Lemma 2.2) so that T3 exists. If we prove that
T3 is densely defined then Ty is closable. Theorem 4 gives
T o TF ® Iy, ie.
D(T{) = D(T{ ® I2) = D(Ty") o #2 > D(T5") o D(T3")
and similarly D(TS) > D(Tj") o D(Ty). Since the T;'s are closed, D(T}") = #’r and
thus D(T}") o D(75) = #. Now
D(T#) > D(T{ + TJ) = D(T{) N D(T3) = D(TY) o D(T3)

so that Ty is closable.
*) In fact one needs these two statements (see [14]):
1. If lf,“, I,(,g) are intervals in R?” so is their intersection;

2. If 1, and J,(,l), J}?’, e Jf,k) are intervals then the difference of 1, and of the union of )f,') can
be expressed as a finite disjoint union of intervals.
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(b) If the T,'s are symmetric so are the T,'s and hence T;" > T,. Then
T o Tf 4+ T o Ti + To, ie. Ts is symmetric. JJ}

After these preliminaries we can pass to the following theorem which is of
basic importance for studying spectral properties of tensor product of self-adjoint
operators.

Theorem 7: Let Ay (r = 1,2) be a self-adjoint operator with domain D, on a
separable 'y, and let S, @ be a realization of S#1 & 5#s. Then operators A1 Q) A
and A; 4 Az, which are both defined on D1 o Do, are essentially self-adjoint.

Proof: We shall again restrict ourselves to the case when the 4,'s are multiplicity
free (a general proof is sketched in [3]). According to Lemma 5.3 there is a unitary
operator V, which maps 5, onto L%(R, du,) in such a way that

(5.2) D(Qu,) =.ViDr, Ar = V710, V.
Let y be the multiplicative mapping introduced in Example 2.1; then
(LY(R, du) @ LA(R, duz))y = L2(RZ, dus),
where w2 is the product measure on R2 that is obtained by the Lebesgue extension
from the additive function of intervals I» in R2 defined by
mz(le) = paa(l X 1) = pua(h) pa(1f).

Using unitarity of the V,'s one easily checks that the mapping V{3’ from
(10 H#2)p to (LA(R, dus) o LAR, duz))y:

V9 x = 3 ciy p(Vax(?, Vox{?) if x = 3 ¢y p(x{", x§")

1y ]

is surjective, linear and preserves norm. Since
(#10H2)y = H, (LAR, dur) 0 LA(R, duz))y = L*(R?, duo)

there is a unique extension of V{3 to a unitary operator V12 from # onto L2 (R2, dui»).
For any y € V12(D1 0 D2)g,

y= Vi X cy e’ x), x{’ €Dy, x{ €D,
hi

one gets with the help of (5.2)
(5.3) Vie(Ar ® 42) Viz vy = 2 ciy p(Vids x{, Vodax{) =

£Y)

= 2 cij Y(Qu, Vix{?, Qu, Vax{’) = Amys
i,
and similarly

V12(A1 -+ Az)VIgly = Asy.
Here A,, and A; are the self-adjoint operators on L2(R2, di2) that are obtained,
according to Lemma 5.1, for

(5.4) Fltr, £) o= 1t



and

(5.4) [t ) =0+t

respectively. Now V; and u, can be chosen in such a way that

(5.5) fr(tr) = tr € LARR, dur)

which implies

(5.5" St 2) € LAR?, duyz) ,  fs(t1, 22) € LAR2, dus).

From now on we shall consider only A; & Az2; in view of Lemma 5.6 each
step of what follows can immediately be applied for A; + Az as well.
Consider a restriction Ajz = (A1 ® A2) M D12, where Di2 < (D10 Dg)g. In

view of (5.3) it holds
Vi2AeVi = Ap | VieDie.

Suppose that there be a restriction A2 with the following additional properties:

(® Vi2D12 < L4(R?, dui2) )
(i)  Vi2Dis is a core for Ay, ie. Ay [ VieDie = VAV = Ay,

Bearing in mind that Viz is unitary, Ajs closable and A, self-adjoint, we conclude
that Az = V3AnVi2 is self-adjoint*). Futher 4; ® A2 is symmetric so that

it must hold Az = A1 ® As. Thus A, ® Az is self-adjoint, i.e. 41 ® Az is e.s.a.

Hence the proof will be finished if we find a restriction which has the above
properties. To this purpose we use Lemma 5.5: the set S; of step functions on R
is dense in LYR, du;) (r = 1,2) and Sg is dense in L4R2, duiz). It follows from
(5.5) that LY(R, dur) = D(Qur) (see proof of Lemma 5.2 for p = ¢ = 4) and thus
S1 = D (Qu). Then (5.2) yields D? = V;1S$; < D,. Denote D{) = (D{¥ o D{"),
and consider the restriction A{Q = (A4; ® A2) | D{. Clearly

VisD{ = (S10 S1)y = (LA(R, dus) o LAR, duz))y = LAR?, duss),

so that (i) is satisfied. Further one has for any interval Iz « R%, b =1} x I]:

0. (15 12) = 1, (1) 20,(22).
Consequently, each step function on R2 is in (S1 0 Sy)y, i.€.

S2 < ViD{Y < LY(R2, dui).
Then
Se = Vi2D[ = LY(R?, du1z);

taking into account (5.5") and applying Lemma 5.2 for p = ¢ = 4, we conclude
that V12D{J is a core for Anm. I}

*) Let us remind that for each unitary operator ¥ the following holds:
(a) if A is self-adjoint so is VAV-1;
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Corollary: Let A (r = 1,2) be an e.s.a. operator on an a separable J#, with
domain D{?. Then A{® ® A and AP 4 A{, which are both defined on
D{ o D{?, are e.s.a.

Proof: Let us denote

) 4r=A4Y , Dr= D).

By Theorem 7 operator 41 & Az with domain D; o Ds is e.s.a. Clearly s
A QA < A1 ® As. It is thus sufficient to prove that A1 ® A2 « A ® AP.
Because of (x) there is for each x, € Dy a sequence {x{"} < D{* such that »/" — x,
and APx — Ayx,. Now  ¢(x1, x2) € D1 o De, {p(x{™, x§")} is a sequence in
D{? o D{?, and using the same reasoning as in the proof of Lemma 2.2, we get

lp(xn, x2) — @(xf™, x§)| — 0
(Ar ® A2)p(x1, x2) — (Af? @ A7) @ (2, x| =
= |lp(Arx1, daxa) — @(A{7%™, A{7x{)]| — 0.
Hence
¢(x1, x2) € D(A[" ® 4§)

(A1 @ A2) @ (x15 x2) = (A" @ AL) @ (x1, x2)s
and, in view of linearity of A1 ® A2 and AT”’ ® A, we have
A, ® A2 « AD ® AP. The same procedure can be applied for proving that
A9 4 AP ises.a. ||}

Remark 1: Theorem 7 can be generalized in an obvious way for general real
operator polynomials formed from

A=LRL®...rh 1A RI1®...RQI,
(r=1,2,..,n) (see [3)]).

Remark 2: Notice that L2(R?, dui) is a realization of /1 X s, the corresponding
mapping being given by

C(xl, xz) = 1/)( Vixi, szz).

In this sense the choice of a suitable realization is essential in the above proof.

Let us now examine how the spectral properties of a tensor-product operator
are related to those of its component operators. We shall see that, though the relations
between spectra are not so simple as is usually supposed in textbooks on quantum
theory, they nevertheless confirm the intuitive understanding of tensor-product
operators. In addition to operators 71 ) T2, which will be shortly denoted by T,
we shall consider operators Tz = T1 + T2 as well.

Let A, be an eigenvalue of a densely defined and closable operator T, on
Hr (r =1, 2); we denote by N(4) the linear manifold spanned by all the eigen-
vectors of T which belong to A» (N5 (4,) has the same meaning for 7,),and by 2(7})
the set of all eigenvalues of 7. Clearly Z(T,) <« Z(T,) and Ny(4) = Ny(4,) for

1



eﬁashmlre 2(Ty). Moreover N;(4,) is closed, i.e. a subspace in .#,*) and thus
N(4r) = N7 (4;). For tensor-product operators T;; and Ty we introduce analogously
Nz (%), Njz(2), Nx(4), Nx(4) and again

(5.6) Nu(4) = Na(4), Nx(Z) = Nz(2).

It is further obvious that 4, € 2(7%) implies hide € 2(Tyr) and 4 + Az € D(Ts);
for the corresponding sets Ny (A142) and Nx(41 -+ 22) we get

Ni(A122) ,
G.7) Nx(4 + Ag2) } = Na®) 0 Naf(Z2)
and, according to (5.6) .
N7 (412)
(5.8) Nz(h -+ ) } < Ni(h) ® No(42).

If one considers Hermitian operators A, (r = 1, 2) on finite-dimensional spaces
#’r, one easily verifies, with the help of orthonormal bases formed from the eigen-
vectors of the A4,'s, that each eigenvalue 4 of operators Ay (Ay) can be expressed as
A== AAe (A = 21 + A2) where A € Z(A4,). If we make use of functions fp and fs
(see (5.4), (5.4")) we can write

D(An) = fu( 2(A1) X 2(As))
D(Ax) = f(2(A1) X D(Az)).

We shall now examine how these statements must be modified when considering
arbitrary self-adjoint operators A, on infinite-dimensional separable J#, and the
tensor-product operators Ay and Ay formed from them. We shall start with self-
-adjoint operators A, having pure point spectra**) because of their importance in
quantum theory and of the fact that their properties are very similar to those of
Hermitian operators on a finite-dimensional .

Theorem 8: Let A, (r = 1, 2) be a self-adjoint operator with a pure pomt spectrum
on a separable #',: Then the self-adjoint operators A = A, &) Az and Ay =
= Ay -+ Ag also have pure point spectra and it holds:

(5.9a) Z(An) = D(An) = fu(D(A1) X Y(A2)),
(5.9b) Z(As) = D(As) = f( 2(A1) X D(A)).
For each 4 € Z(An)

(5.10a) Niz(4) = ]z + Ni(A1) ® Na(42),
where P(A) == l[ll, )w] EQ(Al) X .](Az) l A= }1].2}

*) This subspace is often called eigenspace belonging to eigenvalue 4.
**) Let us remind that a self-adjoint operator A on a separable J# is said to have pure point
spectrum if the eigenvectors of 4 form an orthonormal basis in 5# ; it holds then for the spectrum
of A: a(A) = @ (A) (see [2], [15]).
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For each A € Z(As)

(5.10b) Nz(A) = 3 4 Ni(A) ® No(42),
[A152:1E€5(4)
where S(A) = ([, A2] € D(A1) X Z(A2) | A = A + Ao} Further
(5.11a) o(An) = fu(o(A1) X o(d2)) *),
(5.11a) o(Ax) = f(o(A) X o(42)) *).

Proof: Denote by e!? (i = 1,2, .., dim ;) the eigenvectors of A4,, so that
&y = {ei"’}?i‘{‘” r is an orthonormal basis in ;. Then each vector e;; =
= g(e{”, ef") in the orthonormal basis @(&1 X &2) in (#1 ® H2)#,p is an
eigenvector of both operators Ay, Ay and belongs to eigenvalues A{"A{" and
MO - M0, respectively. Thus the Ay and Ay have pure point spectra. Take any
x € D(Ezj and denote &;; = (x, e;5). Clearly

(Anx, eij) = (x, Anei) = APAPE;
so that

(*) Apx = 3 MM Ee;.

i
Let A€ 9(Apn), i.e. Agx = Ax for some x % 0. Then (x) implies &; = 0 if
MO =£ 25 thus 4 € fr( D(A1) X 2(A42)) and
(xx) x = > ijeij.
{7 | 4] eP@))
Hence 9(7\;) < fm(2(A1) X 2(A2)) and, since the opposite inclusion
fm(2(A41) X D(A2) < D(An) = Z(An),

is obvious, we get (5.9a). Further (xx) implies Ni(1) = N(P(2))**). On the other
hand, (5.8) yields Ni(4) > Ni(41) ® Na(42) for each [A1, A2] € P(A), which further
implies Nz(4) © N(P(%)), so that (5.10a) is proved.
As o(Ap) is pure point, we get with the help of (5.9a)

o(An) = Z(An) = fu(2(A1) X D(42)) < fu(o(Ar) X o(Az)).

For proving the opposite inclusion we use the Weyl's criterion (see proof of Lemma
5.1). Let 4r € 0(A4,) and let {x{™} be a sequence of unit vectors satisfying the Weyl’s
condition for Ar, 4. Now {@(x{", x{”)} < D(41) o D(42) = D(An),

lp(x{™, x§™)]| = 1 and

(A — Aol ® In) @(x{™, x| = [I(AL ® Az — Aeds @ I +
+ A1 ® Iz — MAshh @ I2) p(x(™, x§")|| <

1A |li(Ae — Ael2)x{Plle + |A2] I(A1 — Aada)x{™|1.

*) This is true for arbitrary self-adjoint A,'s (see Theorem 9). Notice also that fi(c (A1) X
X o0 (Az)) and fs (6 (A1) x o (A2)) need not be closed though the ¢ (A4,)’s are (Example 5.1).
**) We write briefly N(P(2)) instead of the right-hand side of (5.10a).
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Further [|41x{"|; -> |A1| and hence

[(Arr — Jadely @) L) (x{”, x$)| = O
i.e. fu(a(A1) X 0(A2) = o(An). Now o(Ay) is closed and so we get (5.11a).
) T'he same reasoning can be used for proving the statements concerning operator
A-. R
Remark: Notice that we have not made use of the assumption that the A,’s have
pure point spectra when proving fu(o(41) % ‘o(A42)) = o(Ar), so that this relation,
together with the analogous relation for Ay, holds for each pair of self-adjoint A,'s.

Example 5.1: Consider the following two operators:

(a) #on L¥0,27x), (#x) (1) = i (dx/dr), whose domain consists of all the absolutely
continuous functions on (0,27) which obey x(0) = x(27) and dx/dt € L%(0,2n).
Operator 7 is self-adjoint (see [2], [S]) and each vector of the trigonometric basis
Sp o {ex}z_., in L%0,27) is an eigenvector of 7 : Pey = ker, so that # has
a pure point spectrum.

(b) C on a separable .#' defined as follows: let .# = {f,}s>, be an orthonormal
basis in .#’. Then for any x € #,, x = &1fi + Eofo 4 ... :

Cx = §1 (é"n/n)fw

It is clear that C is Hermitian and that each f, is an eigenvector of C;thus the
spectrum of C is pure point.

Consider now operator # x) C on L*(0,27); #,) which is a realization of
L2(0,2n) A (see (2.13)). According to Theorems 7 and 8, this operator is
self-adjoint and has a pure point spectrum; we see that 4 is in fu(a(Z) X ¢(C))
if and only if 2 is a rational number. Then

o7 ® C) = fu(a(#) X o(C)) = R.

‘This shows that in general f,,(0(41) X 0(Az2)) < o(Ar) while equality need not hold.
A similar example can be constructed for Ay.

Theorem 9: Let A, be a self-adjoint operator on a separable 5#,(r = 1,2). Then
the spectra of operators

Ay = A1 ® Az, A=A + A,
satisfy o(An) = fm(o(A1) X o(Aa)),
o(As) = fs(o(A1) X o(Az)) .

Proof: We only have to prove that o(An) c fm(o(A1) X o(ds)) (see Remark to
Theorem 8) *). To this purpose we shall apply the spectral theorem (Lemma 5.3)

*) Again only operator A is considered; everything of what follows can be applied for l‘;
as well.
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and use the same notation and restrictions as in the proof of Thcorem 7. Operator
Aj; is unitarily equivalent to the self-adjoint operator A,, — multiplication by
(1, 12) == tiza on L*(R2, duiz) — and consequently o(Ay) = o(A,) (see [5], [12]).
Similarly
) o(Ar) ~ o(Ou,)-
Letle a(A?f); then, according to Lemma 5.1, ui2(N (e, 2)) 4 0 where
Nanle, }r) = {{f], 1] € R2| | fulta, t2) — ;1] < e

and ¢ is any positive number. Now, f,, is a continuous mapping from R? to R,
so that N (e, 2) is an open set in R? and can be therefore expressed as a countable
union of bounded open intervals in R?:

(%%) Non(e, A) = Cj 1§,
k=1

Each of these intervals is a Cartesian product of bounded open intervals I{"",NI]”"‘
in R. Suppose
(3%%) Nou(20, D) (6(Ah) < 0(A2)) = 7,

e 1M () o(d) = ¢ or M N o(de) = & fork=1,2,....
Condition Iy ) 0(4y) = ¢ implies, together with Lemma 5.1 and (x), that for
each ¢ €ly there is an open interval Uy = (¢ — &, ¢ -+ &) such that u(U;) = 0.

The system {U; | ¢ € i} is a cover of each F and, since F is compact, a finite subset

{U¢,, U, ...5 Uy} exists such that F < (J Ugy. Then u(F) < 3 ui(Uy) = 0,
E=1 EZ1

which implies p(li) = 0. Consequently, asumption (xxx) together with (xx) yields

Num(eo, A) = 9. Hence Ny(e, 1) () (6(A41) X o(A42)) # 0 for each ¢ > 0; since

Fm(Nw(e, 2)) = (A —&, A + &) = Ug4), we conclude that each neigborhood Ug(2)

Remark: The generalization mentioned in Remark 1 to Theorem 7 refers to this
theorem as well: if P(z1, to, .., tx) is a real polynomial function of # variables, then
the spectrum op of polynomial tensor-product operator PTAIE,#TA?) is related
to the spectra of the A,'s by

(5.11¢) op = P(0(A1) X 0(A42) X .. X o(An)).

Concluding this section, we show how the fundamental Theorem 7 can be
applied when studying tensor products of strongly continuous one-parameter
unitary groups (SCOPUG). Let us remind that a SCOPUG on & is an operator-
-valued function U : R — & (&#)*) satisfying the following conditions:

*) @ () is the Banach space of bounded operators on -

15



(a) Each U(¢) is a unitary operator, U(t)U(s) = U(t+-s), U(0) = I.
(b) U(.) is a strongly continiuous function, i.e.

lim [I(U(r) — U(to))x|| = 0 for each x €5# and t, € R.
-1,
The well-known Stone’s theorem (see [3], [12], [15]) states that for each
SCOPUG U(.) on .# there is just one self-adjoint operator A on 5# (the generator
of U(.)) such that

(5.12) U(t) = exp (14e).
for all z € R*),

I 1

(5.13) lim | -g(’)l —I

t—0

x —1Ax

for all x € D(A4), and conversely, if

yew) = e =L,

in
is a strongly convergent sequence for any {tx} < R, 5 — 0, then
(5.13b) x€D(A4) , ¥(ta) — iAx.
Lemma 5.7: Let U,(.) be a SCOPUG on #; (r = 1, 2) and let #, ¢ be a realiza-
tion of #1 ® #’s. Then U(.) = Ui(.) ® Uz(.) is a SCOPUG on .

Proof: Using Lemmas 4.1 and 4.4 one finds that U(.) satisfies condition (a).
Further it is not difficult to verify

(%) lim [J(UG) — U@o))x|| = 0 if x e#) 0 Ha.

>ty
Now s o #’; is dense in J7, ||U(t)[|9(9f) = 1, and hence (x) holds for any x € . |}

Let A be the generator of Ui(.) ® Us(.). Is there a relation between A and
generators A, of the constituent SCOPUG's Uy(.) ?

Theorem 10: Let Ux(.) be a SCOPUG on a separable #(r = 1, 2), let A4, be the
generator of Uy(.) and let #, ¢ be a realization of #1 &) #’2. Then the generator A
of the SCOPUG Ui(.) ® Us(.) on S satisfies A = Ay = A; + A, i.e. it holds

(5.14) exp (1A41t) & exp (1A4st) = exp (i(A1 + Aq)r)
for all t e R.

Proof: Take some x = ¢(x1, x2), xr € D(4r) and let {r,} = R be an arbitrary
sequence converging to zero. Taking into account that x{® — x.(r = 1,2) implies
@(x{™, x§M) — @(x1, x2), we obtain

*) See Remark 1 to Lemma 5.3 for an explication of the symbol exp (G41).
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- [(Ulin) © Uslea)) x —x) =
n

;l- [((Un(tn) — 1) @ Us(ta)) x + (I @ (Us(rn) — I2))x] =

1 | 1 .
"4 (T [Ul([n) — Il]xls L’z(fn>x2) - (xl) T' [UZZ([H)"— Iz]xz) >
n n
@(idrx, x2) -+ @(x1, 1Aaxe) = 1Axx.

This further implies that

@ Us(ty) — L 6 I»
Y(tn) = _y,l,(,.[_"l@y%[”) RIRCRE .
n

is a strongly convergent sequence for any x € D(Ax) = D(A1) o D(42), its limit
being 1Azx. According to (5.13b) we conclude that Ay = A. Since A is self-adjoint,
it is closed and thus Ay = A. Now, Ay is self-adjoint and therefore it has no sym-
metric extensions; hence Ay — A. [l

6. Applications in quantum theory

In the beginning of this section we shall remind some important points con-
cerning the general description of quantum systems in terms of Hilbert spaces.
This description is based on the assumption that an ,,appropriate’ separable Hilbert
space is assigned to each quantum system S. This Hilbert space is called the srate
Hilbert space of S. The relation of S to its state Hilbert space . is established by
several postulates (see e.g. [(16]), one of which asserts that each observable (measur-
able quantity) is represented by a self-adjoint operator on .77’

We shall restrict ourselves for simplicity to such syétems for which every
Hermitian operator represents an observable. Denote by - the set of all Hermitian
opetators on .# and by /' the commutant of ¥, i.e. &' == {Be Q(#) [B, 4] =0
for each 4 €.}. Since & is an irreducible symmetric set in {(#), the Schur's
lemma implies that %" contains only multiples of the identity operator (see [12],
[13]). In other words, the above restriction means that there are no superselection
rules*) in the system; such a system (and also its state Hilbert space) is called
coherent**).

The definition of the commutant implies further .¥"" = g(#). The same
reasoning can be repeated for each irreducible subset %" of ./’ so that again %" =

*) Let us remind that presence of a superselection rule in the system may be equivalently
expressed as follows: there exists a bounded operator B on . which commutes with every Her-
mitian operator (representing an observable), but is not a multiple of the identity opcrator (cf.
e.g. [13].

**) The state Hilbert space of any system can be expressed as an orthogonal sum of cohcrent
subspaces [17] so that the restriction to coherent systems is not substantial.
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= Q(#). Now %" is the von Neumann algebra generated by % and thus each
bounded operator (i.e. also each operator representing an observable with a bounded
spectrum) is the weak operator topology limit of a sequence of operators belonging
to the minimal symmetric algebra generated by % ([12], [13], [18]).
One says that a szate of S is given if a non-ncgative number p(E) is assigned
to each projection E on .#" so that p(I) = | and p(3 Ei) == 3 p(E)) for every at
3 %

most countable set {E;} of mutually orthogonal projections. In other words, states
are positive g-additive functionals on the set of all projections on -# . The funda-
mental Gleason’s theorem (sce e.g. [13]) asserts that for each such functional p(.)
there is just one statistical operator W on .7 satisfying

p(E) — Tr WE.

It is not difficult to check the converse statement: if I is a statistical operator then
p : E— Tr WEis a positive g-additive functional. Hence there is a one-to-one
correspondence between states and statistical operators.

We shall therefore in the following identify states with statistical operators;
similarly each observable will be identified with the corresponding self-adjoint
operator. The state is pure if W is a projection of rank one; a pure state can be
represented by any unit vector from the one-dimensional space W#'. Using the
fact that I} is a positive operator with a pure point spectrum one easily proves that
W2 . Wand that Wis purc if and only if W?2 = W. The states which are not
pure are called mixed; thus W is mixed if and only if W2 -4 W.

Let A be an observable and M a Borel set on R. One postulates that for each
projection ym(A4) belonging to the spectral measure of A4 (see Remark to Lemma
5.3) the non-negative number

POm(AD)) T Wim(A)

is the probability that a measurement of A4 in the state W gives the value within M.
The mapping z(w,.(.) from the system of Borel sets on R to [0, ov) defined by

(6.1 pows (M) = Tr Wym(A)
is a Lebesgue-Stieltjes measure on R. Expressing the trace on the r.h.s. of (6.1) in
the orthonormal basis {¢;} formed by the eigenvectors of W we get

wewsay (M) = 2 ua(M)

where j;(M) - wi(ym(A)eis ei) and We; = we;.
If A4 is Hermitian so that its spectrum is bounded, it further holds (see [14])

(6.2) f r d,u.(w,;l) = z ' 4 d,u,: = Ew;(Ae(, Cj) = Tr WA.
a(A) 1 a(A) 7

Owing to the physical meaning of uw,. it is clear that Tr WA has to be inter-
preted as the expectation value of observable A in the state W.
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Observables 4, A’ are comparible (simultancously measurable) if 4 commutes
with A'. Let {AM, A@, .., AM} be a set of compatible observables with pure
point spectra and let Ej(:) ve the projection on the eigenspace of A® belonging to
the eigenvalue /j'b) The set {AM, 4@, ..., AN} is called completc set of commuting
operators (CSCO) if the rank of each projection

M2 0 B
EVET By

is unity or zero*). Then there is an orthonormal basis in .#" formed by the unit vectors
(1 . ) . . p o
¢, v €EY .. EX# which are common eigenvectors of operators A1), 4,
...» A belonging to eigenvalues A5, ...., A% (only such N-tuples (ji, ..., J~)
are considered for which the corresponding subspace is one-dimensional). Each
state E}})... E,(S') is clearly pure and uniquely determined by /'lf-,l), L AN T
follows from the properties of the spectral measure
( H A0 -
Qi) (N) (1 if A E M‘
Tr(ym(AOYE; ... Ejy)) = DR
(XM( ) J1 IN ) 10 it A’](-,:) eM J

One further finds with the use of the basis {¢;,. v}
s - (1 ~ {
Ir(AGEY . ER) — 2.

Finishing this infroduction we mention the quantum theoretical description of
the time evolution of a quantum system S. Let H be the energy operator, i.e. the
Hamiltonian of S. We shall consider only conservative systems, i.e. systems whose
Hamiltonians are time-independent. The fundamental dynamical postulate of the
quantum theory states that the time evolution of a given system S is described by
the strongly continuous one-parameter unitary group (SCOPUG) U(r) whose
generater is — 1/h H:

(6.3) U(r) — exp ( }21 HI) 5

\ /

the time evolution of states is then given by

(6.3a) W(t) = Ut — to) W(to) U1t — t9).
Especially if W is a pure state and v is a unit vector in W.# **) then
(6.3b) y(1) == Ut — to)y(to).

After these preliminaries let us examine how the tensor-product formalism can

*) There is a more general definition of CSCO: a set.%” of mutually commuting self-adjoint
operators is CSCO if any B € .%' is a function of operators from %’ ([12], [13]). For example the
self-adjoint operator Q on L2(R), which has a pure continuous spectrum, forms itsclf a CSCO.
Both the definitions are of course equivalent if all the operators in .% have pure point spectra.

**) One could prove easily that if W(z¢)is pure then W(z)is pure for all ¢ (sec c.g. section 6.3).
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be applied in quanturﬁ theory. Let S be a quantum system whose state Hilbert
space serves as a realization space of some tensor product 57 & 5£*). Such a
system is called joint system. Again only coherent joint systems will be considered.
If A; is a Hermitian operator on 5#; then

(%) AA=41 R

is a Hermitian operator on & and therefore it is an observable of S. One can thus
regard those observables of S which are of the form (x) (and more generally of the
form 41 ® I» where A is a self-adjoint operator on #7) as observables of a system
S1 whose state Hilbert space is 5#;. This system will be called subsystem of S. In
the same way one obtains the subsystem So. The generalization for a joint system
with the state Hilbert space (#1 ® #2 X ... ® # n)#sp is straightforward. It is
further obvious that each subsystem of a coherent joint system is again coherent.

Notice that subsystems can, but need not correspond to systems really separable
from the joint system. Consider e.g. the system S, consisting of one electron. Its
state Hilbert space can be expressed as L2(R3) & C2 (cf. Example 2.2). Thus S, is
a joint system and both its subsystems are ,,fictitious” — they describe the orbital
and the spin part of degrees of freedom respectively. On the contrary, the system
S2e, consisting of two electrons, with the state Hilbert space L2(R3; C2) ) L2%(R3;C?)
is a joint system composed from ,,real” subsystems Se, Se.

On the other hand, many pairs 51, 2 could generally exist to given .#,
namely if /# is infinitedimensional. In fact, we call S joint system and speak about
its subsystems only if we have a reasonable physical interpretation for 7, #%. It
is further clear from the discussion that the notions of subsystem and joint system
are relative: the same system, which is a subsystem of a ,,greater” joint system, can
simultaneously be a joint system with respect to some ,,smaller” subsystems.

6.1 OBSERVABLES

Let S be a joint system with subsystems Si, S2. We know that each observable
Ar of S; (r = 1, 2) is an observable of S represented by A,, the operators A, and A,
having the same spectra**). However, the observables of the form A;, As do not
exhaust the set of all observables of S. If 4;, As are Hermitian then A4; ® Aq is
Hermitian and hence it is an observable of S. The same holds for A; -+ A2 so that
neither A1 ® Ao can be regarded as a general form of observables of S. Nevertheless,
the set of observables of the form A; @ A is ,large enough” in the following
sense:

*) We are not interested in the trivial case: 2 ® U; and U; ® J#, Ui being the one-
dimensional space, are always realized in J#. Also other tensor products J#i ® 2 realized in J#
could appear as physically non-interesting (see below).

**) Cf. Theorem 9. This fact is understood physically as follows: a quantity a referring to
Ay and A, is measured by the same apparatus on Sr and S, respectively.
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Theorem 11: If ., (r = 1,2) is a set of self-adjoint operators on J#’; generating
the von Neumann algebra of all bounded operators on J#,*) (so that &, = Q(#)),
then the set & = {41 @ A2 | Ar € ¥} generates the von Neumann algebra of
all bounded operators on .

For a proof see [1].

The next theorem is of great importance for describing a joint system S in
terms of its subsystems:

Theorem 12: Let %1 = {A{", A{®,...., A{™} be a CSCO on #), €=
= {A4A", AP, ..., A’} a CSCO on #’2. Then the set € = {A(", AP, ..., A{™,
AV, AR, ..., AiM} is a CSCO on the realization space # of #1 Q) #».

Proof: We shall consider only the case when every 4" has a pure point spectrum**).
According to Theorem 8 the A{"’s have also pure point spectra, Z(A?") = Z(AM),
and the eigenspace of A{”(A{") belonging to an eigenvalue A{” (u") is

(%) Ni(A4) @ A2 (#1 @ Na(uf™).

Denote by P{? and QJ” the projections on eigenspaces Ni(4{?) and Na(u?),
respectively. It follows from Lemma 4.4 that P{"= P{) ® I, and Q’ =
I; ® Qf" are projections on eigenspaces (x). Now each P commutes with each Q
and since %, is a CSCO, the projections P{?, P{" (Of", Q¥") commute with
each other. Hence for each (k1, k2, ..., km), (I, b, ..., In) the set {Pg), Pﬁ), e
Pi”,'z, lel), Q}f), ey Qg:',)} is a set of mutually commuting projections and thus
is a set of mutually commuting self-adjoint operators***). Consider projections
Eki ko ...y k) = PP .. P and F(l, by ..., In) = QPO ... Of. Due to
the starting assumption it holds dim E(&1, k2, ..., km) < 1, dim F(h, ba, ..., In) < 1.
Using the relation

(x%) PO .. PQY ... Q1 = Ekiy ..., km) ® F(h, ..., In)

and (4.10), we conclude that the rank of each projection (xx) is less or equal to unity. JJj

Example 6.1: Consider firstly a one-electron system S.. Its state Hilbert space
L2(R3; C?) serves for a realization of L2(R) ® L%R) ® L2(R) ® C2. A CSCO on
L2(R) is formed e.g. by the operator Q; further the operator s representing one
component of spin has a simple pure point spectrum and thus s is a CSCO on C2.

*) The commutant of a set %’ which may contain unbounded self-adjoint operators and the
von Neumann algebra generated by % are defined in [12].

**) Hint for a proof in the general case is given in [1].
***) Two self-adjoint operators A, A’ commute if and only if [(—o0,6)(A)s Y(—o0,t")(A)] = 0

for any z, ¢’ e R. If 4 has a pure point spectrum, then y(—oo,)(4) = 3  Pr where Py
{E|Ax<t}

is the projection on the eigenspace belonging to eigenvalue Ax of A. Then the necessary and

sufficient condition that 4 and A’ with pure point spectra commute becomes: [Pk, Px'] = 0 for all

k, k' (see [12]).
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Let I, and I¢ be the identity operators on L2(R) and C2, respectively, and denote

Qi=0®I,®IL®Ic (similarly Qs, Q3 — see (4.1a))
s = IL®1[,®IL @S

Then {Qi, Q2, Q3, s} is a CSCO on L%(R3; C?). Passing to a two-electron system
Sge, we denote by I the identity operator on L%(R3; C2) and introduce AV = 4; ® I,
A® =T ® A; for each operator A; on L2%R3; C?). Then {Q{", Qy’, Qf, s?
| r = 1,2} is a CSCO on the state Hilbert space L%(R3; C?) ® L3(R3; C2) of Sq.

One can obtain the von Neumann algebra 2(L2(R3; C2)) by means of operators of
the form A; X A2 where 41 and 42 belong toirreducible sets of self-adjoint operators
on L2(R3) and C?2, respectively. Let us consider for simplicity only the ,,one-
-dimensional” case, i.e. let the state Hilbert space of S, be L2%R) ® C2. The
operators Q and P form an irreducible set ¥z, on L%(R) (see [12], [13]); it follows
further from the commutation relations of the spin components that any two of
them, say s and s’, form an irreducible set -¥¢ on C2. Then, by Theorem 11, the
set = {AD ®AC | AP €S, A©€ S} generates the von Neumann
algebra  (L2(R; C2))*). Generalizations for the three-dimensional case and for
two-electron systems are obvious.

6.2 STATES

Let S be a joint system with a state Hilbert space 5 and let /', be state Hilbert
spaces of subsystems S, (r = 1, 2) of S such that #; Q #s is realized in 5. Let
further W be a state of S. Take any projection E; on 2, and consider the functional
p : p(Ey) = Tr WE,. If one expresses the trace by means of the orthonormal basis
formed by the eigenvectors of W one easily verifies that p satisfies the conditions
of the Gleason theorem; hence there is a unique statistical operator ¥ (W) on ¢,
such that p(E,) = Tr# (W) E,, i.e.

(6.4) Tr WE, = Tr #" (W) E;

for every projection E, on 5,. We have thus obtained a mapping # ,(.) from the
set of all states of S to the set of states of S,. It is quite natural to interpret % (W)
as follows**): if W is a state of S then the subsystem S; is in the state #"(W). The
W (W)'s are called reduced (component) states. Thus the reduced states # (W)
are uniquely determined by W.

Let A, be a Hermitian operator on S#,. Taking into account that the spectral
measure ym(Ar) of the Hermitian operator A, satisfies for each Borel set M:

(A = ym(Ar) @ I, ym(A2) = It @ ym(A2)

*) In practice one usually expresses electron observables with the use of a ,,greater’” irreducible
set on C2, especially that consisting of all three spin components.
**) The physical relevance of this interpretation is expressed in the most illustrative way by
the formula (6.5).

22



where ym(Ar) is the spectral measure of A4, (see [12]), and using (6.1), (6.4), we
obtain

tw.an(M) = Tr Wyn(Ay) = Te ot {(W)ym(Ar) = sy yowy,a)(M).
Further o(4;) = o(A,) = o (see Theorem 9) and then (6.2) implies
(643) Tr WAr = J‘I d,u(w,Ar) = jl d/l(»y/"r(w)"]r) = Tr "//,(W)Ar

Thus the component states W, = # (W) of S, corresponding to the state W of
S have to obey the relations

(6.5) Tr WyA, = Tr WA, r=1,2,

for any Hermitian operator A, on . Validity of the relations (6.5) represents
itself a natural physical requirement. On the other hand, the relations (6.5) in the
particular case give (6.4); it shows that the above choice of the functional p was
physically reasonable.

Let # (W) =% (W'), r = 1, 2; do these relations imply W = W’'? In view
of relations (6.5) we can formulate the problem as follows: is there for a given pair
W1, W2 only one W which ,,solves” the relations (6.5) ? It is clear that W = Wi QWs
is always a solution. The next example shows that in general this solution
is not unique.

Example 6.2: Consider a joint system S whose state Hilbert space J# is a realization
of C2 ® C2:# = (C2 ® C2)y; e.g. let S represent the spin degrees of freedom
of a two-electron system. Let & = {e,, e. } be the orthonormal basis in C? in which
the spin components s; of an electron are represented by 4o; (o; are the Pauli
matrices). Introduce projections

) Ey = (I + o9),

so that E, C? are one-dimensional subspaces spanned by e,. The ,,coupled” ortho-
normal basis {fi;} in # is obtained from the ,,uncoupled” basis (& X &) by standard
formulae

fio = [gless e) + gles e)]

J2
fu = gleyey)
(6.6) f1=gles e)

foo = LL'z‘ [pless ) — ples €] -

The first three of these vectors span the triplet subspace H#'s, the last one spans the

singlet subspace S s in . Further Jf ¢ and & s are eigenspaces of 2 ¢ ® oy (this

operator will be briefly written as G ® a) belonging to elgenvalues 1 and —3,
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respectively, and the corresponding projections are

Mto®ao

Et = 4 5
6.7a - -
(6.72) ises

Y R

Using (x) one obtains for the projection E(® on the eigenspace of s{"’ ® I + I &) s{*’
belonging to eigenvalue zero: N

(6.7b) EW:I—EmjmeL®E_=%U—quM)

It can be easily checked that E;E©® = EOE,; and E;E(®) = EOE; = E;, and con-
sequently projections on the one-dimensional subspaces spanned by fi; are
(6.8) Eio=EEO®,Eyy =E, QEy, E1-1 = E- ® E_, Ego = Es*).
1
2

Such a density matrix could describe e.g. a totally unpolarized electron. For each
Hermitian operator 4 on C2 one has

Consider the one-electron spin state W = — I; clearly Tr(Ws;) = 0 fori = 1,2, 3.

Tr WA = %[(AeJr, ey) + (de_, e)] = % TrA.
Calculation of Tr E;A,, Tr EsA, in the basis (6.6) yields

Tr EA, = —;— [(Aes, et) + Ae-,e )] = 3Tr WA,
Tr E;A, = Tr WA.
Hence for any non-negative o, 8, obeying 3a 4+ # = 1, the statistical operator
Wia,p = «E; + BE;
satisfies relations (6.5) if W1 = Wz = 1/21. Especially

1
Was,1/4) = -Z' = W1 ® We.

The knowledge of states of both subsystems S;, Sg is therefore in general not
sufficient for determining uniquely a state of the joint system S. This result is
closely connected with the existence of observables of S which cannot be expressed
as A,. However, the following statement holds:

(i) If at least one of the states W1, W3 is pure then relations (6.5) are satisfied only
by W = W1 ® W: (for a proof see Appendix).

*) Of course Ejo + Ein + Ei,_1 = E;, what can be checked by a simple calculation.
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Consequently, if both W) and W are pure (i.e. projections of rank one) then the
state of S determined (uniquely) by them is pure. Conversely, consider a pure state
W of S which has the form W1 ® Ws. Taking into account that the W,’s are positive,
one obtains from the condition W2 = W and from Lemma 4.1 that W2 = W/, i.e.
that the W,’s are pure. According to (4.17) the W,'s obey relations (6.5) and therefore
W (W1 ® Wa) = W,. We have thus obtained the following results:

(ii) Any pair of pure states W1, W of subsystems S;, S uniquely determines a pure
state W = W; ® W2 of S such that the corresponding reduced states # (W) are
just Wy, r =1, 2.

(ii1) If W is a pure state of S having the form Wi & W2 then both reduced states
W, are pure.

Let W be a mixed state. According to (ii), at least one of the reduced states # (W)
must be mixed. In order to study the structure of # (W) in more detail we express
firstly W by means of the projections E® on the one-dimensional eigenspaces of W
corresponding to eigenvalues z;:

(693) W = Z ﬂ’iE“)
i=1

and

) Sw=1%),

Expressing the trace in the basis formed by the eigenvectors e of W one has
Tr WA, = 2 wi(Are®), e@) = .§1 w; Tr (EDA,).

Denote W = % (E®); then (6.4a) gives

(%) Tr WA, = é i Tr (WS Ay).

n
The operators S{" = '21 w;W are positive and S+ > S, Using (x) and
iz

the inequality W < I, one finds that S < I, and hence there is a positive
operator Wy < I, such that S”x — Wyx for each x € #,. One easily checks that
W, is a statistical operator and

Tr W,By = 5 w; Te(WB,)
i=1

for each By € (5¢r). Then (xx) can be rewritten
Tr WAf = Tr WfAr,

*) We assume dim W3 = oo; otherwise the following considerations are trivial.
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which implies
(6.9b) W (W)=W,= > oW = 3 w W (ED).
i=1 i=1

Comparing (6.9a) to (6.9b) we see that it is sufficient to study the dependence of
the reduced states #",(W) on W for pure states W only.

In view of (iii) we shall suppose that W is a pure state but not of the form
W1 @ We. Thus W is a projection and dim W.# = 1. Let v € W#, take any
orthonormal bases & = {el}:i:“l“%) "in 1 and F= { f]}}d}’;‘ 7+ in A’ and express
by means of the basis ¢(& X.%):

v =2 ayplesf), 2 logl®=1
] 7
We denote W, = # (W) and use (6.4a) for expressing the action of W; and W>
on the vectors of bases & and# by means of the o;’s:
Tr WA, = (Arp, p) = 3 3 agia(Aues, exhdp =

isJ ksl

= % 2, wittri(Aress ex)1.*)

]

On the other hand,
Tr WA1 = Tr Wl/h = z (Alei, W1ei)1.

Introduce Cri = Z ordy for 4, k= 1,2,...,dim 5. Since
J

Dolewil?= 2 | 2 omgllyy |2 < 2 2 Jog]? 3 o2 =1
k i,k J i,k j J

15

we can define a Hilbert-Schmidt operator W; by
Wwi = g Cki€r.

For any x €1, x = 3 &e;, one has
R

(Whx, )1 = % > cnibiby = kZ“kﬂ?kO‘Cij& =212 @ki?=0,
1 5] J i
i.e. W is positive. Further
2 (Waes, e = 2 e = 2 |ougl> =1
1 1 ]
so that W is a statistical operator. Finally
Tr Wid; = Z (Ares, Wiedh =

1

and hence Wi = Wi. Thus we get

Cri(Aies, ex)1 = 2 agjirj(Aies, ex)1 = Tr Widy
~ 2

Ry ]

dims#1 dimsFe
(6.102) Wie; = kZl Zl okslijer
2 L

*) Owing to the normalization condition, this series is absolutely convergent so that the
summation may be performed in any order.
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and similarly
dim#s dim.5#"1
(6.10b) Wefi= 2 2> bk s
=1 o1

these are so-called reduction formulae. Another form of them can be found in [I]
where a special realization of 5#1 (X % is used. The above derivation is realization-
-independent; (6.10a, b) hold for arbitrary bases & and #.

Let us now choose as & the basis & formed by the eigenvectors &; of W;; the
corresponding eigenvalues will be denoted as w{! and y becomes

v =2 Bup(éf-

L2y

Then (6.10a) yields
dim,}fz _
Zl BriBis = duxzo?

and, since the basis & is arbitrary, we see that the left-hand-side expression does
not depend on #.

Suppose w{! > 0 (for given 7) so that at least one of the Bi’s (j = 1,2, ...,
dim £2) is non-zero. Then the unit vector

(6.10c) fi= l/ T Zﬁuf]

satisfies

Wafi = V_‘T’ 2. BisWef; = V“ Z BupuBufe = wf:.

Thus each non-zero eigenvalue of W; is simultaneously an eigenvalue of Ws, and
consequently the number of non-zero eigenvalues of W) does not exceed dim #5.
If we interchange the roles of W7 and W2 we conclude that 2(W;) = 2(Ws) (by
2(W) the set of eigenvalues of W is denoted). These common eigenvalues will be
denoted as w;. Further the number » of mutually orthogonal eigenvectors belonging
to non-zero w;’s obeys

(6.11a) n < min (dim 51, dim 5#3)
and it holds
(6.11b) _Z w; =

The orthonormal set {f;}7_, can be completed to a basis # in #s. Denotmg by E;
and F; ( = 1, 2, ..., n) the projections on the one-dimensional subspaces spanned
by the vectors &; and f;, respectively, we can write

(6.11C) W = z wiE;, Ws = Z wiFy .
i=1

i=1
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Let us finally express the vector v in the basis g(& X.%) :

s 9@ 1)) = 3 Bisdir(fjs )2 = Ot Jaun

)
which gives

(6.11d) y = :Zl Vai s fi) -

Notice that nis greater than unity ; otherwise w; =‘1, w; =0for{ > 1and v = (&, fi),
ie. W= E; ® Fi, which contradicts to the starting assumption about W. Thus
n > 2, and consequently both the reduced states are mixed. Notice further that the
states (6.11c) provide another illustration of the possibility # (W) = # {W') for
W+ W,

The above discussion can be summarized as follows:

(iv) If W is a pure state of S which cannot be written in the form Wi ® Ws, then
there is a set of positive numbers {w;}?_,, where 2 < n < o0, orthonormal bases

¢ = {éi}?:i'{‘f L,F = {fi}3imH# and corresponding sets of projections {E;}&n#1
{Z j}f:"}’f 2 so that formulae (6.11a) — (6.11d), representing the normal form of
reduction, hold. Both the reduced states (6.11c) are mixed.

Example 6.3: Consider again the joint system from Example 6.2. The pure states
E;,+1 are of the form Wi & Ws and by (iii) they reduce to W, = E+. On the other
hand, the singlet state E; provides an example of a pure state which is not of the
form Wi ® Whs. This state can be represented by the vector foo whose components
with respect to the ,,uncoupled” basisare e = o — = Oy 00— = —o_4 = 1/]/2 .
Using (6.10a), we get for W =#"(E;):

1
W:s)ei = -2— ey

i.e. ey are eigenvectors of W{ and W{¥ = 1/21. Thus ay; = fij, w1 = wa = 1/2
and (6.10c) yields
fi=ers fa=—e.

Again Fy = E;, F» = E_ and W = 1/2 I . Finally

foo =Vl—§ [@(es» f1) + ple—s f2)] -

For E;o the same reduced states are obtained. Reduction of the mixed state W; =
= 1/3 E; can be then performed by means of (6.9a, b):

. 1 1 1

A summary of (i) —(iv) is given in the following table:
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1) W1, W2 are given and W is searched which satisfies # +(W) = W, r = 1,2.

a) Wi, Wa are both mixed W is not unique and can be either mixed or
pure

b) one of the W,’s is pure W is unique {equal to W1 ® W3) and mixed

c) Wi, W are both pure W is unique (equal to W; ® W3) and pure

2) W is given (the reduced states # " » (W) are denoted as Wy, r = 1,2).

a) W is mixed at least one of W)’s is mixed

b) Wis pure, W = ﬁ/l ® Wz W1, W2 are both pure, W, = Wr

c) W is pure but not of the form W1 @ Wa | Wi, W are both mixed; normal form of
reduction — formulae (6.11a-d)

6.3 TIME EVOLUTION

In the previous considerations no observable was of special importance. Now
we shall be interested in energy operators (Hamiltonians) of the considered systems;
they will be denoted as Hy, r = 1, 2, and H. The subsystems S;, Sz of S are non-
interacting if Hi 4+ H: = H and interacting in the opposite case. However,
usually the Hamiltonian of a joint system is expressed as

H = H; + Hz + Hint .

If Hine = 0 then H is e.s.a. (see Theorem 7) and therefore has a unique self-afjoint
extension. However, the presence of non-zero H;,: can cause serious troubles,
because often we neither know whether a common dense domain for H; +- H:
and Hin: exists. We can verify that Hy + Hs 4+ His is e.s.a. in special cases only.
If we are not able to perform such a verification we can assume that both H, and
H are bounded, i.e. that an energy cut-off exists.

Theorem 10 states that the evolution operator U(z) of the joint system S is
of the form
(6.12) U@) = (U1 ® Us) (¢)
(see Lemma 5.7) if and onfy if the subsystems Si, Sz are non-interacting. The relation
between time evolution of a system and time evolution of its subsystems is then
simple. On the other hand, in a lot of physically interesting cases the subsystems
interact. The general relation between the time evolution operators is then complica-
ted; however, we are not always interested in it*). One can, of course, to any

*) Suppose as an example that the systems Si, Sz are two interacting particles. If we shall
study the bound states of the joint system S, then the time evolution U(¢) of S is simple (as for
stationary states) and we are usually not interested in U(z). On the other hand, studying scattering
of S; on Sz we are ussually interested in both U{z) and U.(¢), however, in different time regions.
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state W(¢) = U(t) W(0) Ut(¢) determine the reduced states W,(z) = # (W(z)),
but even if we find an operator U,() such that W,(z) = U(0)W(0) U;(¢) for
all t, it may happen that

a) U,(t) depends on the state W,

b) U.(r) has not the group property,

c) U,(r) is not unitary.

Let a system, whose time evolution is described by U(z), be at ¢ =1 in a
mixed state  W(zp), so that W2(zo) == W(ro). It' follows from (6.3a) that the same
holds for W(z), i.e. that the mixed state of a system remains mixed during the time
evolution*). This statement s nor valid if one considers the time evelution of a
reduced state W,; if the subsystems interact then the time evolution of such a
reduced state is determined by the whole joint system and not only by the cor-
responding subsystem itself. The reduced mixed state can evolve (see c) above)
into a pure state and vice versa. Notice that in the case when the joint system is
in a pure state then both reduced states are mixed or pure simultaneously (see the
table); if both the reduced states become pure at ¢ = ¢ then W(7) = Wi(f) ® We(?).

Example 6.4: Consider the joint system of Examples 6.2, 6.3. Let H; = Hy =0
and H=¢2X, £ =1/2(02 ® 01 — 01 ® 02) .**) We shall firstly prove that
U(¢) = exp(—iHt) = EM 4 E® cos et — 1 T sin et ,
where EM =1 —EO® = [/2 (I + 03 & 03). One easily verifies that the relations
EWE® — 0, EOY =X EO =¥ ;
(%)
EOY =S ED =0, 32=E®O
hold. Clearly U(0) = I, U*(¢) = U(—z) for any ¢ € R, and further the relations
() imply
U(r) U(s) = EM 4 EO (cos et cos es — sin &z sin e5) —
—1 X (sin ez cos es -+ cos et sin &) =U(z -+ s)
for any r,s € R and
U'()) V(@) = U(—2) U@D) = U(©0) = I.
Continuity of U(z) is obvious. Thus U(¢) is a SCOPUG on # ; one obtains
with the use of (5.13) that its generator equals —¢ X = — H .
Consider now the states W&)(0) = 1/2 E©® + (E; — 1/2 E®) of S, i.e.
W&H(0) = E;, WO(0) = EO® —Eg = Ejg.

*) Also the quantity Tr W2(2) is conserved, which characterizes ,,how much the state W(z)
is mixed”’.

**) Such a Hamiltonian could be obtamed e.g. from Hiy = const H [s(U X 3(2)], where

s(f) are spin operators of the r-th electron and H is intensity of an external magnetic field, if this
field is homogenous and its intensity is paralel to the third axis. This interaction Hamiltonian is
not realistic, however, it is convenient for illustrating of the above statesments.
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We shall use the following relations

EWE, = E;EM) =0, EWE;) = EjoE® =0,

(3, E] = 2 (03 ©1 — 1@ o5) = [Exo, 3],

YE;X =Ey, XEo.X=E;,

which can be checked easily with the help of (6.7), (6.8), (x) and properties of the
Pauli matrices. Using these relations we obtain

W) = U(r) EsU(r) =
= Escos? er 4 Ejgsin2 er + %(03 ® I —1Q o3)sin 2et

and similarly for W&)(z) , which gives

WE) () = %E(‘)) -+ —;—(Es — Eq9) cos 2¢et + —‘11—(63 ® I — I o3) sin 2et .
It holds
(%) WO () = W (z + 5 (k + 1))
for every integer k& and any ¢ € R. Hence it is sufficient to find the reduced states

e.g. for W(z) . This state is pure and can be represented by the vector

F(@®) = U@) foo = foo cos et + fiosin ez,
whose components with respect to the ,,uncoupled” basis are o(t) = o (1) = 0,
() = (1/]/2 ) (cos et + sin er) and a4 () = (1]/2) (—cos et + sin e). The
formulae (6.10a, b) then give

1

Wit (@) = 5 (1 + sin 2er) E, + %(l —sin 2et) E—

and
WiH(t) = —12~(1 —sin2¢et) E4 + %(1 + sin 2et) E_.
With the help of (x) we obtain an analogous result for W)(z) so that we can write
W) = %(1 + sin 2et) E+ + %(1 F sin 2er) E- = W5 (—r).

We see that though the states W 4(t) of S are pure, the ,,purity” of the reduced
states W{*)(z) changes during the time evolution: they are simultaneously pure
at ¢ = (n/4¢) (2k + 1), k integer, otherwise they are mixed. For the ,,rate of purity”
we obtain

Tr [WED]2 — % (3 — cos der) ;
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at t = m/2¢ k, k integer, both W,'s are ,,maximally mixed”. Moreover, no
matrix U,(z) could be found such that W(r) = Ur(e) WP(0) U() — re-
member that W (0) = 1/21, .

6.4 SOME OTHER APPLICATIONS

Second quantization: To a system of » identical particles, each of them having
-a state Hilbert space #, we ascribe a realization space #* of the n-fold tensor
product # ®H# ® ... ®# . In fact, if these particles are bosons (fermions),
their states belong to Sy #"(A,#") — see Example 2.3. Let 4 be an observable
of a single particle, then the one-particle observable A™ is defined as

A = A+ Ay + ... + A,

(see 4.1a). The operator A™ is e.s.a. (see Remark 1 to Theorem 7) and so are the
restrictions A S, . AW~ 4,47, since A® commutes with Sp, A" .
Analogously one can define two-particle observables etc.

If we consider further a system of non-interacting particles, where the number
of particles is not conserved, we obtain a free quantum field. The state Hilbert space
of a boson (fermion) field is then the Fock space # () (F4(5#)). One can con-
struct again the one-particle observables

A= 3 Aw

n=1

with the domain consisting of all vectors such that:
(a) their ,,components” in #*¢ belong to D(A®),i=1,2,...,N,
(b) their ,,components” in H#' N+1, 7 N+2, _ are zero for some integer N.
It can be proved (see [3]) that such operator Ay is e.s.a., and that the same holds
for its restrictions to F (), F () . If for example H (on &) is a Hamiltonian
of a free boson, then Hy [ & (o) represents the Hamiltonian of the corresponding
free boson field.

One usually uses the occupation number representation of Fock-space vectors
and expresses the field operators by means of the creation and annihilation operators.
This second quantization method is commonly known; for its detailed discussion
see e.g. [1], [19].

Symmetries: Let G be a symmetry group of both systems S, i.e. let a unitary
representation U,(.) of G be realized on 5#,. Then G is a symmetry group
for the joint system S as well: (U1 ® Us) (.) forms the representation of G on
. This representation is in general reducible, even if the U,’s are irreducible.
Reduction of this representation is usually of special interest; let us remind the
well-known coupling of angular momenta or baryonic multiplets in the quark
model (see e.g. [20]).

Separation of variables: One usually tries to simplify solving of the Schrodinger
equation (and other equations as well) by separating the variables. This procedure
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can be described briefly as follows: we have the equation (H — Ay =0 on #
and we look for appropriate Hilbert spaces 5, r = 1,2, and operators H, on
H#r so that #) @ #» is realized in # and H = H; + Hy. Solving of the
equations (Hy — AIy)yr = 0 is often casier than that of the original one; then
the spectrum, eigenvectors and other characteristics of the operator H are simply
obtained with the help of the results of Section 5.

Appendix

Weshall give here a proof of statement (i) of Section 6.2. Let W, (r = 1, 2) be states
of subsystems Sy of a joint system S, whose state Hilbert space serves as a realization spa-
cefors#1 ®H#», and let at least one of these states, say Wa, be pure. Further,let Wbe a
state of S such that the corresponding reduced states # " W)are just W,. Denote by 6 =

= {et};'{“}f Land & = {j}}d:;"}f 2 orthonormal bases formed by the eigenvectors
of W1 and W3, respectively, by {E(i)}?i‘f%) ! and {F(f)}ji"{‘f 2the corresponding
sequences of rank-one projections and let Wsf; = d;1f1 so that We = FM. Using
(6.5) for Az = F» = I, ® F% we find

(A.1a) 0 = Tr WoF® = Tr WFY) =

= 'ZI (Wo(es, FOR), glei, f1) = 2 Wij, 1
where |
Wis, k1 = (We(er, f1), ples, f7)) -

Since W is positive, (A.la) implies

(A.2) Wi iy=0 for i=1,2,...,dim#1,j = 2,3, ..., dim#s
Similarly we obtain for A; = E{» = E® ® I :
(A.1b) > Wisi5 = Wi, i1 = Tr WHE® =y,

J

where the w;’s are eigenvalues of W1, and hence

Wi i = (W1 @ Wa)iss 45 -
Let As; and x5,5 = 1,2,...,dimJ#, be eigenvalues and corresponding eigen-
vectors of W so that {xs}?:{’*# is an orthonormal basis in 2. Denoting

(pleis f1); x5) = o7

and taking.into account that W is continuous, we get

Woler, fi) = 2 i Asxs s
ie. '
(A3) Wis = 3 @ ald As.
Now As; > 0; then (A.2) implies

a =0 if j+1 and 4; > 0.
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Substituting into (A.3) we have

(A4) Wi =0 if at least one of j, ! differs from unity.
With the help of (A.1b) and (A.4) we can write (6.5) for any A; as follows
(A.5) % (A)ki Wi1,i1 = 0.
ik
Since

kz_ [Wip,al2 = 3 |Wi,yl2 =N2(W)< 1,

kst g

it follows that the matrix (A4};;) = (Wi1,11) together with & defines a bounded
operator A’ on %1 such stat

A'x = %( > Ay E)ex
1
for every x €1, x = 3 &ie;; the norm of A’ satisfies 14"l < N(W). Further
H

A' is Hermitian, because W is so. Therefore we can set 4; = A’ in (A.5), which
yields

Wi, =0 forall i,k=1,2,...,dims#1, i + k.

These conditions, together with (A.1b) and (A.4), imply W = Wi ® W2 and
therefore only this W satisfies conditions (6.5).
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