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The authors consider (from the reactor physicist viewpoint) some useful relations between 
right and left eigenvectors of nonselfadjoint generalized matrix eigenvalue problems via their 
equivalence to properly constructed ordinary eigenvalue problems., and their use for the de
termination of the perturbed dominant eigenvalue. 

ABTOpbl 3aHHMaK)TCH3 C TO*IKH 3peHHH (})H3HKH peaKTOpOB, HCKOTOpblMH âCTO HCTIOJIb3ye-
MblMH COOTHOmeHHHMH MCH<Ay npaBblMH H JieBblMH C06CTBCHHbIMH BeKTOpaMH B HecaMOCO-
npH>KeHHbix o6o6ureHHbix MaTpHHHbix sa^anax Ha co6cTBeHHbie 3HaneHHH c noMomio HX 3KBHBa-
jieHTHOCTH c HaAJiewamHM oSpasoM nocTpoeHbiMH o6biKHOBeHHbiMH 3â aHaMH Ha coScTBeHUbie 
3HaneHHH H HX Hcnojib30BaHHeM ÍIJIH BbiHHCJieHHH B03Mym;eHHoro jjoMHHaHTHoro co6cTBeHHoro 
3HaneHHH. 

Autoři studují, s hlediska reaktorové fyziky, některé užitečné vztahy mezi pravými a levými 
vlastními vektory zobecněného nesamoadjungovaného maticového problému vlastních hodnot 
pomocí vhodně sestrojeného ekvivalentního obyčejného problému vlastních hodnot, a jejich užití 
při výpočtu porušeného dominantního vlastního čísla. 

Introduction 

In this note, there are summarized and discussed in detail the problems con
cerning the equivalence question of the generalized nonselfadjoint eigenvalue 
problem Px -= XQx for the right eigenvector and also of the corresponding eigen
value problem y*P = Xy*Q for the left eigenvector in the EN space. There 
is accepted a reactor physicist's notation and point of view, i.e., the matrix Q is 
assumed to be nonsingular and the matrix M = Q~1P e S#(EN) of Perron -
Frobenius type i.e., with A as positive dominant eigenvalue and x, z* resp. as the 
corresponding positive neutron flux vector or neutron importance vector resp. [1]). 
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There are also discussed the relations between these eigenvectors and their use 
for the determination of the perturbed dominant eigenvalue., needed in some 
reactor criticality calculations [2]. 

I. Equivalence problems for matrix pencils 

Let EN be a real jY-dimensional Euclidean space with <x, j!>, x, y e EN as 
scalar product. Let <V?(EN) denote the algebra of linear endomorphisms on EN 
with the involution A*+A*, A, A* es/(EN), A* transposed. Let A be the 
neutron absorbtion matrix, P the neutron production matrix (both in the sense 
of the heterogeneous method of reactor physics) and let I be the identity matrix 
in EN. Further, let us suppose that the matrix 

(1.1) Q = I + Aes/(EN) 

is nonsingular, i.e. 

(Via) Qr1es/(EN) 

It is well known [2] that the matrices P and A> and therefore also Q = I + A 
are nonselfadjoint, i.e. 

(1.2) P*P\ Q^ Q; Q1 # (Q"1)* = (p.*)-1 

so that we have in general 

(1.3) M = QrxP -£ AT, N = PQr1 i=. N* 

and the matrix N is similar to the matrix M 

(1.3a) QMQ1 = Q(Qr1P)Qr1 - PQ"1 = N 

Now, let us make following Assumption I for have a reactor criticality mathe
matical model in EN (N denoting the number of fuel, safety and control rods 
in the reactor core): 
(I) The matrix M = Q_1P is of Perron - Frobenius type, with X as dominant 
simple positive eigenvalue. 
Clearly, X is also a dominant simple positive eigenvalue of N, N being similar 
to M in virtue of (1.3a). 

We shall consider both the following eigenvalue problems for the nonself
ad joint matrix pencil P — XQ e S#(EN) and its adjoint pencil P* — XQ* e S&(EN) : 

(1.4) Px = XQx 

(1.5) P'y = lQ'y 

Clearly, in virtue of the assumption (1.1a)., the generalized eigenvalue problem 
(1.4) is equivalent to the following non-selfadjoint matrix eigenvalue problem for 
the matrix M = QrxP 

(1.6) Mx^Xx 
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and the corresponding adjoint matrix eigenvalue problem (1.5) is equivalent to the 
following nonselfadjoint matrix eigenvalue problem for the matrix 

N' = [PQ-iy = (Q-iyp- = (Q'yip-

(17) N'y = ly 

Because the matrices M, N e S/(EN) are in general nonselfadjoint, i.e., 
M jz M* = P*(Q~1)* = P\Q*)-\ N** = N = PQr1 ^ N\ we have, for using 
the perturbation theory, to solve both the adjoint eigenvalue problems for (1.6) 

(1.6a) M*z = Xz 

and for (1.7) 

(1.7a) Nw = Xw 

Using the well known relations [3] 

(1.8) (Q-iY = (Q')- i , QQ-i = Q-iQ = I, Q\Q')-^ = {Q'Y^Q' = I 

we obtain from (1.6a) and (1.5) the following useful relation between the left eigen
vectors z,y resp. of M, N E^(EN) resp.: 

(1.9) AQ'KQT 1 *] = P'KQ'yM => OC0 = Q'y 

Similarly, from (1.7a) and (1.4) using (1.8), there follows the following useful 
relation between the right eigenvectors x, w resp. of Af, N e S/(EN) resp.: 

(1.10) XQlQ^w] = P[Q-%] => pro = Qx 

Remark 1.1: a, /3 ^ 0 resp. in (1.9), (V10) resp. are suitable real numbers 
(norming constants). 

2.Biorthogonality relations, perturbed dominant eigenvalue 

It is well known [3], that, if assuming both the matrices Af, N* e S#(EN)> 
with eigenvalues jui e a(M) <-- C, v* e a(N*) <-= C resp., i = 1, 2, . . . , N have 
the complete (i.e. forming a base in EN) system of normalized eigenvectors 
Xi = x(fit) 7^ 0, yi = y(v*) 9-= 0, \\xi\\ = \\yt\\ = 1, then the vectors zu Wi of the 
corresponding biorthogonal (with respect to the usual scalar product <(x,y} in 
EN) bases 

/ 0, i 4= j 
(2.1) Zi = z(ii*) e EN, (ZU *j} = <% = \ 

\ 1,1 =j 
(v*, [A* resp. denotes the complex conjugate to 

Pi e a(M) <-= C, vte a(N) c C resp., i,j = 1, 2, . . . , AT) 

(2.2) «a< = w(v<) 6 IJN, <^ , w;> = dij = <̂  
\ 1 , 1 = 7 
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are just the normalized eigenvectors of the adjoint matrices M*, N e,tf(EN) resp., 
i.e., they fulfil the relations (1.6a), (1.7a) resp. 

Using this fact, we obtain by help of the usual perturbation theory [4] the 
following explicite expressions for the perturbations A MX, A NX of the simple 
positive dominant eigenvalue X of AT, jV, dues to the perturbation zJAf, 
AN e s/(EN) resp. of Af, N e s/(EN) resp.: 

(2.3) AMX = <AMx>*> ( = <AMx, zy if ||x|| = \\z\\ = 1) 
<*5 z; 

(2.4) ANX = <ANw>y> ( = <ZJA7^3;> if ||W|| = M = 1) 
<&>, jy > 

Theorem 2.1: Let P, P0 e *o/(EN). 
Let Q = (I + A) e <tf(EN) and Q0 = (I + AQ) e s/(EN) be nonsingular. 
Let X > 0 be a simple dominant eigenvalue of MQ = Q^-Po* jY0 = 

= PoQj1 e <&(EN)3 with the corresponding right eigenvectors x, MQX = Xx, w, 
NQW = Xw and left eigenvectors zy M^z = Xz, y, N$y = Xy resp. 

Let M = Q--P, jV = PQ1. 
Then for the first order perturbations AMX,ANX resp. of A, dues to the 

perturbations AM = M — jM0, AN = N—NQ resp. of Af, jY resp. the following 
relation is valid: 

(2.5) AKX = AMX + «M*-Q-11W>*>*>. 
{xyzy 

where AMX,ANX resp. are given by (2.3), (2.4) resp. 

Proof: 
Clearly, we have, in virtue of the relations (1.9), (1.10) 

(2.6) j8 0 , j ! > = <Qx,j!> = <*, Q*yy = oc<x, zy 

so that the denominators in both the expressions (2.3), (2.4) resp. for AMX, ANX 
resp. are proportional. For the numerator in (2.4), we have obviously 

(2.7) -£ <ANw, yy = <(jV - jY0) w, (Q"1)* s> = 
= <Q-KPQ'1-PoQ^)Qx,zy 
= <(M-Q-iN0Q)x,zy 
= (AMx, zy + (MQ-Q^NQQ) x, zy 

Q.E.D. 
Corollary 2.1: 

If Q = l2o> i-e., -4 -= ylo> (no change in neutron absorbtion during the reactor 
perturbation), then we have A NX = A MX . 

Proof: For Q = Qo we have Q-WoQ -= QfrKPoQtf) Qo = QQXPQ = AT0, 
Q.E.D. 

Remark 2.1: Physical interpretation of the relations between the eigenvector 
pairs x, z and w, y is the following: Because the matrix Af = Q~XP is assumed 
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to be of Frobenius type with X e a(M) as dominant simple positive eigenvalue, 
M* is also of Frobenius type and both the corresponding left and right eigen
vectors x = x(X) and z = z(X) of M are positive. Therefore, x has the physical 
meaning of neutron flux vector (giving the neutron fluxes on the rods in the reactor 
core) and (2.3) implies, that the positive left eigenvector z of M is the weighting 
vector for the neutron flux vector x, giving the importance of the individual 
components of x with respect to the perturbation A MX of X. Therefore, x is 
called the neutron importance vector. Clearly, the physical interpretation of the 
equivalence between the equations (1.4) and (1.6) is the following: The neutron 
absorbtion A is so little, i.e. \\A\\ <^ 1, that P' = Q~lP & (I—A) P can again 
be interpreted as production matrix, to which there corresponds in (1.6) a zero 
absorbtion matrix A' = 0. 

The matrix jY, being similar to M, need not be of Perron - Frobenius type, 
so that the right and left eigenvectors w = w(X) and y = y(X), corresponding to 
the dominant simple positive eigenvalue X e a(N) of N have in general no direct 
physical interpretation in reactor physics. But if jY is also of the Perron - Frobenius 
type, the same physical interpretation of w,y can be applied. 

If Q is a matrix with positive entries, then Q* has the same property, so 
that both Q and Q* in this case leave invariant the cone of positive vectors in HN. 
But, Q being nonsingular, (Q*)_1 = (Q -1)* needs not leave the cone of the 
positive vectors in EN invariant. Therefore, if M = Q_1P is of Perron - Fro
benius type, and both the matrices Q, (Q~1)*P(Q~1)* leave invariant the cone of 
positive vectors in EN, then the right and left eigenvectors (with a > 0, ($ > 0) 

w(X) = p~1Qx(X) and y(X) = ~ ( Q T ^ X Q T 1 ^ ) of jY, corresponding to its 
X 

dominant simple positive eigenvalue X e a(N), are both positive and therefore 
can again be interpreted as the neutron flux w and neutron importance y in 
a reactor with production matrix P" = PQr1 ^ P(I—A) and absorbtion matrix 
A" = 0. 

Now, we shall generalize the biorthogonality property [3] to the nonselfadjoint 
matrix pencil P — XQe S#(EN) : 

Theorem 2.2 
Let P —XQe S4(EN) be a given matrix pencil, with Q e S4(EN) nonsingular, 

Q-1 e S&(EN). Let (x, y) be the (complex type) scalar product of x, y e EN <=• UN . 
Let the set {xk}, (P — XkQ) xk = 0, xk 4= 0, k = 1, 2, . . . , jY of right eigenvectors 
xk = x(Xk) of the matrix pencil P —- XQ, corresponding to its eigenvalues Xk, 
span EN • 
Let {zi}, i = 1, 2, . . . , jY be the basis of EN biorthonormal to {xk} with respect 
to the scalar product <z, x}, z, x e EN ^ UN > [3], i.e., 

, 0 if i =t= k 
(2.8) <zu xky = dik=<f 

\ 1 if i = k 
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Then 

(2.9) yi=yW) = (Q-rzi 
are left eigenvectors of the matrix pencil A — AI, corresponding to its eigenvalues 
A*, i.e., we have for V i' = 1, 2, . . . , jY 

(2.9a) (P* - A * Q * ) y > - 0 , yi ^ 0 

Proof: We have clearly, using the definition (2.9) of yu and the relation 

(Q-1)* = (QT1 

(2,9b) Zi = Q*yi 

Let us compute, using the definition (2.8) of zi and the relation (2.9b) between 
Zi and yu the scalar product 

<P* v*, **> = <y*> Pxk) = <-y<3 foQxky = A* <Q*3/«, x&> = 
= A*. <#$, x#> = A J O M = A*<5a = 

= *7 <Q*yu **> = <m*yi> **> 

Thus, we have, for V Xk e {xk}, 

(2.10) <(P* -tiQ*)yi,xk> = Q 

anf therefore, in virtue of the assumption span {xk} = I}N , we have 

(2.10a) P*yi = m*yi 

where 

(2.10b) y* = (Q*)"1^ = (Q"1)*^ * 0 for V i = 1, 2, . . . , jY 

because we have, by (2.8), 

(,10c) <si, **> = a** => s« ?-= 0 for V i = 1, 2, . . . , N Q.E.D. 

Corollary 2.2 
Let the adjoint matrix pencil P* — A*Q* ES^(EN) with nonsingular 

Q* E^(NN, (Q*)"1 = (Q -1)* EJ^(EN) have a complete system of right eigen
vectors 3!* = y(A*) ^ 0, (P* — A*Q*)j!A; = 0, so that we have 

(2.11) span {yk}Li = EN 

Let {wi}, i = 1, 2. . . . , be the basis of EN, biorthonormal to {yk} with 
respect to the scalar product <«;, j;>, w, y e EN, i.e. 

x 0 if i * k 

(2.12) <«*<->>.*> = <5** = : 

1 if i = k 
Then 

(2.13) x* = *(A«) = Qriwi 

are the left eigenvectors of the adjoint matrix pencil P* —X*Q*, corresponding 
to its eigenvalues* A*, i.e., we have for V i• = 1> 2, . . . , jY 

(2.13a) (P - XiQ) xt = 0 , *i 4= 0 
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Proof. Because the adjoint matrix pencil P* — A*Q* fulfills in this case all 
assumptions of Theorem 2.2., we obtain both the assertions (2.13), (2.13a) by 
applying this theorem and the involutory properties of the involution operation * 
in s/(EN). Q.E.D. 

There is another possible way of reducing the generalized eigenvalue problems 
(1.4), (1.5) resp. to equivalent ordinary eigenvalue problems: via inverse eigenvalue 
problems instead inverting Q = I + A. We can consider X, X* resp. in (1.4), 
(1.5) as a physical parameter (the so called criticality parameter) instead as a mathe
matical eigenvalue of the matrix pencils P = AQ, P* —-A*2* resp. and introduce 
formally a new eigenvalue // = //(A), v = V(Q) resp., setting 

(2.14) A # 0, A* = Q * 0 

and 

(2.14a) R(X) x = jux , where R(X) = ( y P — A\ (neutron balance condition) 

(2.14b) fji = ju (A) = 1 (criticality condition) 

instead (1.4), as an inverse eigenvalue problem for the corresponding right eigen
vector x > 0 of P(A), 

(2.15) S(Q)y = vy, where S(Q) = I — P* — A* J (neutron balance condition) 
\ Q i 

(2.15a) v — V(Q) = 1 (criticality condition) 

instead (1.5), as an inverse eigenvalue problem for the corresponding right eigen
vector y}0 of S(Q). 

Let us assume that, for A e <Amin, Amax>, Q e <omin5 omax>5 the operators R(X) 
and S(Q) are of Perron-Frobenius type, and both the dominant eigenvalue func
tions /u(X), v (Q) are monotone, with 1 — ei < ft(X)9 V(Q) < 1 + e^ £i> £2 > 0. 
We denote Acrit.> Ocrit. resp. the critical values of the criticality parameters A, O, 
for which the criticality conditions (2.14b), (2.15a) resp. are just fulfilled for the 
dominant eigenvalues, i.e., 

(2.16) /ia = MAcrit.) = 1 > 

(2.17) Va = KDcrit.) = 1 

where jUd, Vd resp. denote the simple positive dominant eigenvalue of Iv(ACrit)> 
S(QCTU.) resp. By xd = *(ACrit.)> yd = y(^crit.)5 \\xa\\ = WyaW = 1 let us denote the 
corresponding normalized positive eigenvectors. 

Clearly, we have, denoting f* the complex conjugate of £ e C , and by R* 
the adjoint operator to R e J/(EN) 

(2.18) [R(X)r =-^P* -A* = S(Ji*) 

In general, we shall have obviously 

(2.19) A*rit. = [A?r i t.']• * Q 
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so that, despite the validity of the relation (2.18), the positive normalized eigen-

vectors x, y shall not be, in general, elements of biorthonormal bases of right and 

left ЄІgЄПVЄCtOГS Of jR(Яcrit.) in EN . 

But if, in a special case, the relation 

(2.20) Я*rit. = [Acrit.]* = ^crit. 

shall be valid, and if the matrix K(ЯCГit.) = -= P — A shall have a complete 
system of normalized right eigenvectors 

{xk Ф 0}£LX, Я(A)crit. xk = fikXki span {xk} = EN , 

then the vectors yi, ì = 1, 2, . . . , jY, <-yг-, Xk) = Ь%k of the corresponding bi-

orthonormal base in EN shall be normalized left eigenvectors of -R(ЯCГit.), i-e., 

we shall have [iv(ЯCГit.)]* УІ = lAyь У% Ф 0, i = 1, 2, ... , jY, џ*d = 1. 

3. An illustrating numerical example 

For numerical illustration of the above mentioned results in the Euclidean 

space Lз y let us take [5] 

/ 2,2 1 1,8 \ 

(3.1) P= 1,1 2 0,9 

\ 1,1 1 1,8 / 

as the neutron production matrix, and 

(3.1) 

as the neutron absorbtion matrix, so that the matrix Q = I + A is nonsingular 

(det( Q) = 3 ф 0) and has positive entries. 

The matrices P and A were chosen so, that the matrix M = Q - 1 P is 

symmetric with nonnegative entries and has three simple real eigenvalues 0,9, 

1 and 1,1, with Xd = 1,1 as simple positive dominant eigenvalue, and Xd = Zd = 

-= (1, 0, 0) as the corresponding nonnegative right and left eigenvectors, so that M 

is of Perron-Frobenius type. 

The matrix N = PQ'1 is a nonsymmetric one. Because AГ is similar to .M, 

its eigenvalues shall be the same as for Лí, i.e., also real and simple, again with 
Xd = 1,1 as simple positive dominant eigenvalue, to which there correspond in 

this case the right eigenvector Wd = (b-y>- (r-) and the left eigencvetor yd -= 

_ / l M 
— lӯӯj 0, — ïӯӯl 5 so that Л7 is not of Peггon-Frobenius type. 
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We have clearly 
(3.3) 

/2,2 1,1 1,1\ 12 1 2\ 
P' = 1 2 1 , Q = 1 2 1 , Q' 

\l,8 0,9 1,8/ \ l 1 2 / 

so that 

(3.4 M = Q-ip 
'1,1 0 0 \ 

0 1 0 
. 0 0 0,9/ 

38 2 -12 
4 3 1 - 6 
5 2 21 

(3.5) N = PQ-i = ± j 

and 

(3.6) Qxd = (2 1 1), Pxd = (2,2 1,1 1,1) = 1,1 Qxd 

(3.7) <2><* = / - I , 0, o) , P>* = / M , 0, o) = 1,1 Qmyd 

so that xd,yd resp. are the right (left) eigenvector resp. of the matrix pencil 
P—^Q> corresponding to its dominant eigenvalue ld = 1,1. Verifying the 
relations (1.9) and (1.10), we compute 

(3.8) Q ^ = - 1 ( 1 , 0 , 0 ) = - 1 ^ 

and 

(3.9) Qxd = (2 1 1) = 2 ( l , l , l ) =2w* 

We see that, using the relations (1.9) and (1.10), we need not compute zd 

and wd from the homogeneous systems (Af * — Xd) zd = 0, (N — Xd) wd = 0, 
the norming constants for zd and wd being arbitrary. 
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