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It is proved that the category of totally symmetric quasigroups is binding. 

B cгaтьe дoкaзывaeтcя, чтo вcя aя aлгeбpaичec aя кaтeгopия изoмopфнo вклaдывaeтcя 
в кaтeгopию впoлнe cиммeтpичecкиx квaзигpyгm. 

V článku se dokazuje, že každou kategorii algeber lze vnořit do kategorie totálně symetгických 
kvazigгup. 

1. We use the terminology of [1]. If G is a halfgroupoid then G' denotes the set of 
all triples <ai, a2, a£) of elements of G such that ap(\)ap(2) = ap(z) for some permutation 
p of {1,2,3}. A halfgroupoid G is called a TS-halfgroupoid if the following holds for 
all a,b,c,deG: 
If <a, b, c) e G' and <a, b, d} e G' then c = d. 

2. Groupoids satisfying the identities xy = yx and x. xy = y are quasigroups. 
Such quasigroups are called totally symmetric. Hence TS-groupoids are nothing else 
than totally symmetric quasigroups. The category of totally symmetric quasigroups will 
be denoted by T. 

3. Let L, G, Ay B be sets, F be a system of mappings from L into G and H be a 
system of mappings from A into B. We shall say that F is an extension of H if A ^ L, 
B c G , /1 A eH for every feF, and for every heH there is exactly one feF with 
f\A=h. 

4. Let G be a TS-halfgroupoid. Denote by L the set of all non-ordered pairs {a, b} 
of (not necessarily distinct) elements of G such that there is no c e G with <a, b> c)eG'. 
Further, denote by S(G) the disjoint union G (J L. Let a,beG. If there exists c eG 
with <a, b3 c) e G' then we define ab = ba = c, ac = ca = by be = cb = a. If such c 
does not exist, we put ab = {a, b}. Obviously, S(G) is a TS-halfroupoid. 
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5. Let G be a TS-halfgroupoid. Put Gi = G, Gn+i = 5(G„) and F(G) = (J Gw, 
n -=l 

with the operation defined in an obvious manner. 
6. Lemma. F(G) is a totally symmetric quasigroup and G is its generating subhalf-

groupoid. If H is an arbitrary totally symmetric quasigroup then every homomorphism 
of G into H can be extended in exactly one way to a homorphism of F(G) into H. 

Proof, is straightforward. 
7. Lemma. Let G be a TS-halfgroupoid. Then 

(i) if a e F(G) and there are m > n > 0 with a2m = a2n then aeG, 
(ii) if a, b, c e G and ab = c in F(G) then <a, b, c ) e G ' . 

Proof, is obvious. 
8. We denote by R the category of symmetric graphs without loops and with at 

least one edge. Let A = (A, r}eR and L be the set of all non-ordered pairs of (not 
necessarily different) elements of A. For every xeLy we fix twelve elements xi,...,xi2 
not belonging to A and define Lx = {xt \ i = 1,... , nx} where nx = 4 for x = {a, a}, 
nx = 3 for x = {a, b} with a r b and wx = 12 otherwise. Further, denote by M(A) the 

disjoint union A (J Jg^ Lx and define a partial binary operation on M(A) as follows: 

(i) for every x e l w e put xnx . xnx = xi and :xw = JC*+I, * = 1>...5w.r —1> 
(ii) if a,beA then we define ab = {a,b}i. 

9. Lemma. M(A) is a TS-halfgroupoid. 
Proof, is obvious. 
10. If A e R then put N(A) = F(M(A)). We get a mapping N of R into T. 
11. Theorem. If A, B e R then HomT(-V(-4), N(B)) is an extension of Homij(-4, B). 
Proof. Let A,BeR and / e H o m ^ i V ^ ) , iV(B)). We claim that f(A)^B-

For consider the following two situations: 
(i) Let a, b e A with / (a) e 5 , /(b) <£ £ . By 7., </(a),/(b),/(ab)> is contained in Af(-5)', 
and so f(ab) eB, which is impossible, since (ab)21i = ab. 
(iii) Let a, b e A be such that/(a),/(b) ^ 2? and a r b. Then, using 7 again, we get/(a)8 = 

= /(a), while/(a2) =/(a3 2) , hence/(a)2 = / (a) 4 , a contradiction. 
Thus we have proved our claim and the rest easily follows. 

12. Using some results from [2], we see that T is binding. 
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