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This note is concerned with the extremal points of the closed unit balls in the Banach 
spaces of abstract measures and in the spaces LX(S, u, X). 

V teto praci jsou vySetfeny extremalni body uzavfene jednotkove koule v Banachov^ch 
prostorech abstraktnlch mer a v prostoru LX(S, \x, X). 

B 3TOH 3aMeTxe HCCJieAyioTCH 3KCTpeMajn,Hbie TOHKH 3aMKHVToro ê HHHMHoro mapa B EaHa-
XOBLIX npocTpaHCTBax aocTpaKTHbix Mep H B npocTpaHCTBe L^S, u, X). 

1. Introduction 

This note is concerned with the extremal points of the closed unit balls in the 
Banach spaces of abstract measures defined on the cr-field of subsets of a set S; 
having values in a Banach space X, and in the spaces L^S, \i, X), where \i is either 
a complex measure or a positive measure defined on the a-field of subsets of set S. 
Our main results are following: 1) The measure \i belongs to the closed convex hull 
of the set of the extremal points of a unit closed ball in the space M(S, I, X), where X 
is a strictly convex Banach space, if and only if |i is a discrete meesure. 

2) The function feL^S, \i,X), where X is strictly convex Banach space (ji is 
either a complex measure or a positive measure) belongs to the closed convex hull 
of the set of all extremal points of the unit closed ball in L^S, \i, X) if and only if 
||f || g 1 and the set {s: s e S; f(s) 4= 0} is contained in the union of the countable 
family of the atoms for measure \i. 

Throughout this note, 5 denotes a fixed set;_T denotes a a-field of subsets of 
a set 5; and M(,S, I , X), where X is a Banach space, denotes the space of all vector 
measures defined on Z with values in X with bounded absolute variation; i.e. 
M(S, I , X) is a set of all a-additive set's functions \i defined on £ with values in X and 

||u| = |u|(S) = sup2 i||K£ i)|| < + o o , 

where the suppremum is taken over the set of all finite families {FJ of pairwise 
disjoint sets from S. 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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We recall some definitions from the theory of measures. The set £ e I is said 
to be an atom for the measure ^ if u(£) =j= 0 (and ^ £ ) < + co for positive measure \i), 
and for each F e I , F _ £ there is either ^F) = 0 or \x(E \ F) = 0. 

It follows immediately that the set £ is an atom for the measure ^ if and only if E 
is an atom for the positive measure | ^ . The measure ^ is said to be atomic if ||u|| = 1 
and if S is an atom for the \i. 

The following results are known (see, for instance [1]): 
1) If ^ is the measures defined on I with the values in the finite dimensional 

space X, then the range of ^ is compact. If ^ has no atom, then its range is also convex. 
2) If ^ is a vector measure or a a-finite positive measure, then S can be partioned 

into a countable family of atoms for ^ and atomless part (the set of atoms, or the 
atomless part may be empty). 

The measure ^ is sad to be a discrete, measure, if for each £ e I , 0 < Id (£) < 
< + oo there exists an atom A c £ for \i. Then it follows that if ^ is a vector measure 
or finite positive measure then ^ is a discrete measure, if and only if S can be pationed 
into a countable family of atoms for ^ and a u-null set. 

The point x is said to be an extremal point of the convex set A of the linear space X 
if x e A and if x = tx t + (1 — t) x2, where xl9 x2 e A, 0 < t < 1, then x = xt = x2. 
Denote by BM = {\i : n e M(S, X, X), \\\i\\ = 1}, Bx = {xeX : ||x|| = 1} the unit 
closed ball in M(5 ,1 , X) and Bx, respectively. 

2. Some results 

Lemma 1. Let BM be a closed unit ball if the space M(S, I , X). The measure 
^ e BM is an extremal point of the unit closed ball BM if and only if ^ is atomic 
and ^(S) is an extremal point of the unit closed ball Bx in the space X. 

Proof: 1) Let ^ be an extremal point of BM, then it is clear that |^|| = | ^ (S) = 1. 
Suppose that ^ is not atomic. There exists an A e 2: Such that ^ | (A) = t > 0 and 
1 _ t = |n| (5 \ A) > 0. 

We define 

,\(K) = r^\i(K0A) for Kel, 

v(K) = (1 - t ) " 1 u ( K f l ( S \ ^ ) ) for Kel. 

Then we obtain two measures / \ , ve M(S, X, X) and 

||i|| = |x|(s) = r1 |H(A)=i ; 
| v | | = | v | ( 5 ) = (l-t)-1|uj(SxA)=l 

X =j= v. It is easily to see that ^ = tX, + (1 — t) v. But it is a contradiction with the 
assumption that ^ is an extremal point of BM. That means, ^ is atomic. 
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Suppose now that x0 = u(5) is not an extremal point of Bx. Then there exist two 
points x-, x2 e Bx; xt 4= x2 and t : 0 < t < 1 such that x0 = txx + (1 — t) x2. 

We define 

X(K) = X l ; v(K) = x2 for K e 2 and u(K) = x0 , 

X(K) = 0 ; v(K) = 0 for K e 2 and u(K) = 0 . 

Then X, v are atomic from M(5, 2, X) and ||A,|| = ||v|| = ||xi|| = 1. It is clear ^ = 
= tX + (1 — t)v. This again contradicts the assumption that ^ is an extremal 
point of BM. 

That means that ^ is atomic and u(5) is an extremal point of Bx. 

2) Let ^ be atomic and u(5) be an extremal point of Bx. Then of course |^|| = 
= |u(5)|| = 1. We suppose LI = tX. + (1 - t) v, where 0 < t < 1 and X, v e BM. 
For each A e 2 either u(A) = 0 or u(A) = u(5), as ^ is atomic. If u(A) = u(5), 
then \i(A) = tX(A) + (1 - t) v(A) and \\X(A)\\ = | |X . | | = 1; ||v(A)|| = ||vj| = 1, 
hence X(A) e Bx, v(A) e Bx. Then it follows that u(A) = X(A) = v(A) because 
u(A) is an extremal point of Bx. 

If u(A) = 0, then u(5 \ A) = ^(5); and we see that X(S \ A) = v(5 \ A) = u(5 \ A). 

Hence | | M S x ^ ) | | = | | V ( S N ^ ) | | = I | U ( S N ^ ) I I = 1 = INI = llvl|- T h i s s h o w s t h a t 

X(A) = v(A) = u(A) = 0 and we obtain X = v = \i. This shows that ^ is an extremal 
point of BM. This completes the proof. 

Coro l la ry 1. Let X be a strictly convex Banach space. Then ^ is an extremal 
point of BM if and only if ^ is atomic. 

Theorem 1. Let X be a strictly convex Banach space, î e M(S, I , I ) . Then ^ 
belongs to the closed convex hull of the set of extremal points of BM (i.e. 
^ e conv (Ext BM)) if and only if ^ is a discrete measure and ||ii|| _ 1. 

Proof. First of all we prove that, the set of all extremal points of the unit closed 
ball in M(S, 2, X) is not empty, i.e. Ext BM -# O. Let s be a fixed point of 5 and x 
be a fixed point in X such that ||x|| = 1. We define u(A) = 0 for A e 2 and s £ A; 
and ^ A ) = x for all A e 2 and s e A. Then ^ is atomic and by the Corollary 1, LI is 
an extremal point of BM. 

1) Let ^ibe a discrete measure, then there exists a countable family of disjont 

atoms and a null set N such that S = U ^ n U -V. We shall prove that ^ e conv . 
n 

. (Ext BM). Without loss of generality, one can suppose | ^ | = 1; as 0 e conv (Ext BM). 
Let 8 > 0 be an arbitrary positive number. We set tj = |^(-4i)|| = | ^ (Aj) for all 
i = 1, 2, ... . Then 

M = IIIK*)II «£' . = -• 
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We define ^(K) = tf1 \i(K n A.) and ^(K) = - t f 1 \i(K n AJ for i = 1, 2, ... . 
By Lemma 1 we obtain a sequence of atomic measures \ii9 fii and \ii9 \x{ e Ext BM. 
Let n0 be a positive integer such that 

00 

t = X t , < 6 . 
i = n 0 + l 

If we put 
n« i j n0 

^ = Z tfi|xs + - uno + 1 + - jino + 1 = V hVi , 
i = i 2 2 i = i 

then X e conv (Ext PM) and for all K e I we have: 

oo oo 

(li-\)(K) = (li-\)(Kn U A,) = u(Kn U ,4,), 
i = n 0 + l i = n 0 + l 

||M - xfl = |n - x| (s) = |n| ( U ^ ) = £ HAO < Є . 

This means that ^ e conv (Ext PM). 
2) Suppose that ^ is not discrete measure. There exists Pe I such that r = |n|(P) > 

> 0 and the measure \iP defined by \iP(K) = \x(K n P) has no atom. We shall prove 
that |||i — .X,|| > r/2 for all X e conv (Ext BM) and this will complete our proof. Let 
Xe conv (Ext BM), then there exist atomic measures m i = 1, 2,..., n and t{ = 0 
n n 

£ ti = 1 such that X = Y t^{. 
i = l i=1 

From 1) it easily follows that, P can be devided into 2n disjoint sets P{ e Z 
2n 

such that \\xp\ (Pi) = ^ | (Pi) = r/2n and P = 'J Pil because ^p has not atom. 
i 

We set I = (i; 1 ^ i = 2n; ^(Pj) = 0 for all j = 1, 2, ..., n}. The set I has at 
least n elements, since \x} (j = 1, 2, ..., n) is atomic. For K e I we have: 

|li - X\ (K) = ||i - X\ (K n U Pt) = ||i| (Kn(j P , ) . 
ie/ i 

Then ||ii - X\\ = \\i\(\J Pj) = £ |^| (Pi) = X r/2n = r/2; which concludes the 
ie/ ie/ ie/ 

proof. 
In the remainder the measure ^ is assumed to be either a complex measure or 

positive measure. 
LX(S, \x, X) will denot the space of all ^integrable functions of S into a Banach 

space X (X is a complex space if ^ is a complex measure; X is real, if ^ is real) with 
norm: 

llf|. = jì|f(s)|| d|ц| (s). (See [2]). 

18 



If f and g are measurable functions, then f = u g denotes that, f = g p>almost every 

where. 

Lemma 2. If f e LX(S, p, X) and A is an atom for p then there exists an atom A' 

for p and A' _= A and f is a constant on A'. 

Proof. Since f e LX(S, p, X), there exists a sequence of simple integrable functions, 

(ne Lt(S, \x,X) and fn converges p-a.e. to f, priori %Afn converges a.e. to %Af. Let: 

XA = t xjx^- , where A] e I ; A? s A 
j = i 

x" e K; A" n A" = 0 for j #= i. For each n, there exists a unique set A]n, 1 = j n ^ kn 

such that |i(̂ 4j"n) = n(-4); M^") = 0 for all j =# j n , since A is an atom for p. Set J5 = 

= f) "̂n» then p(B) = p(A) and fn is a constant on B for each n. It implies that there 
n 

exists a null set N = B such that f is constant on A' = B \ N. Our lemma is proved. 
We know (see [2]) that, there exists an isometric map of Li(5, p, X) into 

M(S, Z, X) : f -> p f, where p f is defined by 

ц f(£) = í f(s) dц(s) foг all £ e S 

and 

|цf| (£) = jj|f(s)| d|ц| (s). 

Lemma 3. If f e LX(S,\L,X), then the following three conditions are equivalent: 

1) / is an extremal point of the unit closed ball BL in LX(S, p, X); 

2) |i f is an extremal point of BM; 

3) there exists an atom A el, for \i such that / = 0 p-a.e. on S\At f(s) = 

= (p(A))" 1 x, where x is an extremal point of Bx. 

Proof. 1) implies 2) and 3). If we prove that p f is atomic and jaf(S) is an extremal 
point of Bx, then by Lemma 1; p is an extremal point of BM. 

Suppose that p f is not atomic. Then there exists a set E e I such that 

t = |цf| (£) = f(s) | |d |ц |(s)>0, 

1 - t | ц f | ( S x£)= Г f(s) d|ц| (s) > 0 . 
Js\£ 

19 



We define 
g ( s ) = t - 1

X £ ( s ) f ( s ) , 

h(s) = ( l - t ) - 1 X s x E ( s ) f ( s ) , 

where %E is a characteristic function of the set E. It is easy to see g, h e Lt(S, u, X) and 

Wi-Niand 
f = t g + (l - t ) h , g 4 = , h . 

It contradicts the assumption, that f is an extremal point of BL. This implies |if 

is atomic. We claim that the set B = {s e 5; f(s) + 0} is an atom for \i. Suppose that, 
it is not true, then there exists a set £ e I , such that £ £ B \\i\ (£) > 0 and 
| u | ( £ \ £ ) > 0 and then |u,| (£) = J£ ||f(s)|| d|u| (s) > 0 and | ^ | ( B \ £ ) = 
= j B X E ||f(s)|| d\[i\ (s) > 0. But it is impossible, for \it is atomic. By the Lemma 2, 
there exists an atom A = £ such that f is constant x0 on A and f = 0 ^almost every 
where on S \ A. To prove 2) and 3) it is sufficient to prove that x = \if(S) = x0 \i(A) 
is an extremal point of Bx. Suppose that, this is not true. Then there exist zi9 z2 

from Bx and 10 < t < 1 such that x = tzx + (1 - t) z2. We define g(s) = (\i(A))'l zv 

for s e A; g(s) = 0 for s £ A; h(s) = (\L(A))~l z2 for s e A; h(s) = 0 for s £ A. Then 
g, h e L^S, \i, X) and 

kll = l|g||t = hll = i , 
W H N i - N l ^ i . 

g * , h and f =M tg + (1 - t) h . 

It contradicts the assumption, that f is an extremal point of BL. 
3) => 2) It is obvious. 
2) => 1). Suppose, f is not an extremal point of BL, then there exist g and h; 

g #=Mh and t 0 < t < 1 such that f =M tg + (1 - t) h. 
Then ug 4= \ih and \x( = tjig + (1 - t) uh. 
It is an contradiction with the assumption, that \xr is an extremal point of BM, 

which finishes the proof. 

Theorem 2. LetX be a strictly convex Banach space and ^ be either a complex 
measure or positive measure, which has at least one atom. Then fe LX{S, \L,X); 

llfl g 1 belongs to the closed convex hull of the set of all extremal points of BL 

if and only if there exists a countable family of disjoint atoms {AJ for ^ such 
thatf= 0 a.e. on S\\JAi. 

i 

Proof. It easy to see that Ext BL = <\>; 0 e conv Ext BL. Let f e L ^ S , \i, X), 
then Q = {s e S; f (s) #= 0} is a a-finite set, and by 2) there exists a countable family 
of atoms for ^ contained in Q such that Q \ f]An has no atom. 
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1) Let feLt(S,\i,X) and | n | ( Q \ U ^ n ) > 0, then for each g e conv (Ext B
L
) 

n 

g = 0 a.e. on P = Q \ (JAn and 

l |f-g| |. Цf(s)-g(s)||dИ(s) = Jj|f(s)||dИ(s) = r > 0 , 

which means that f £ conv (Ext BL). 
2) Let f e LX(S, \x9 X); ||f || _ 1 and \\i\ (P) = 0. By Lemma 2, one can suppose 

that f is constant on An for all r. Let 

f (s) = xn for all s є An . 

ľf(s)dц(s)= f x „ и Ю , 

f II, = ľ ||f(s)|| d|ц| (s) = I |W| И (An) = I ||xn|| |цK)| < 
J n n 

*n (ц(-4 n) x n ) 

1 . 

We define 

f n ( s ) _ ||xn | | |KAn)| (||xn | | |KAn)|)KAn) 

0 , for s $ An . 

Then fn and — fn are extremal points of BL for all n, since 

K^n) xn 

, for s є An 

and X is trictly convex space. Let e > 0 be an arbitrary positive number and let n0 

be a positive integer such that: 

I Wl W$ <«• 
n c + l 

We set t, =- ||x,| |n(Aj)| for i = 1, 2,..., n0, 

n G 

t = i - X t i = o , 
i = i 

g = f t,f, + t/2fno+1 + t/2(-fn o + 1) — _ t,f, • 
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Then g e conv (Ext BL) and 

!|f-g|U = I N W I « . 
n 0 + l 

This means that f e conv (Ext BL). Theorem is proved. 

Coro l la ry 2. Let X be a strictly convex Banach space, fe L^S, \i, X). Then 
fe conv (ext BL) if and only if pf e conv (Ext BM). 

Proof. 1) Let f e conv (Ext BL) then for e > 0 there exist g1? ..., gn e Ext BL 
n n 

such that ||f — X^Silli < £ f° r s o m e t t , ..., tn > 0 £ ti = 1. By Lemma 3, it 
i = l 

implies \igi e Ext BM and 

l*-Et ln i I | | = | | f- it i g í | | . <£, 

which implies that pf e conv (Ext BM). 

2) Let f £ conv (Ext BL), then there exists an E e I such that f (s) 4= 0 for all 

s e £ ; ||a| (£) > 0 and E has no atom for p. It is easy to verify that uf is not a discrete 

measure and that is, pf £ conv (Ext BM). 

Coro l l a ry 3. LetX be a strictly convex Banach space, then BL -= conv (Ext BL) 
if and only if \i is a discrete measure. 
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