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Sheaves of Metric Lattices

J. PECHANEC-DRAHOS
Department of Mathematics, Charles University, Prague*)

Received 19 November 1981

The sheaf of sections of the bundle associated with a given presheaf of complete metric
lattices of suitable sort over a hereditarily paracompact base is isomorphic to the latter.

TlyukH MeTpHyecKMX pemieTok. IIy4yok pe3oB HakphIBAIOIErO IPOCTPAHCTBA JAHHOTO Ipen-
nydYKa IMOJIHBIX METPHYECKHX DPEIIETOK YAOOHOro copra Hal HAaCJIEACTBEHHO INapaKOMIIAKTHBIM
6a3ucoM M30MOpPGHBIN JaHHOMY IIPEATYYKY.

Svazek fezt bandlu pfisluiného danému predsvazku vhodnych metrickych svazi, dplnych
v dané metrice, nad dédi¢n€ parakompaktni bazi, je izomorfni pivodnimu predsvazku.

Introduction

In [1], K. H. Hofmann proved that the sheaf of sections of the bundle as-
sociated with a given sheaf of Banach C(X)-modules of a suitable sort over a here-
ditarily paracompact base X i isomorphic to the latter. It is only natural to try to
find out how much this result rests on the fact that it is a sheaf of Banach C(X)-
modules, and whether the developed machinery would work also in a more general
case. A possibility seems to be offered in the form of sheaves of metric spaces, but
since we cannot do without the fact that an isometry of a complete metric space onto
a dense subset of another one is an isometry onto the latter, we must keep the requir-
ement of completness. Also we need there to multiply elements by some suitable
functions to make an infinite family of elements be locally finite. Thus complete
metric linear spaces over C(X) should seemingly be what we want. But when trying
to generalise the results of [1] to this case, we meet some heavy hardships. While the
machinery works for Banach spaces as the norm behaves well towards the multi-
plication by the functions from C(X), it fails to work for the metric linear spaces
over C(X) because the metric behaves poorly towards the multiplication. We need
multiply the elements by locally finite partitions of unity, and if the elements have
small norm, the outcoming sum keeps it, while in the metric case the distance of it
from zero may become big. This poor behavior of metric towards multiplication
causes the theory to fail to work in the metric case.

*) 186 00 Praha 8, Sokolovska 83, Czechoslovakia.

37



But as the additive partitions of unity in [1] was in agreement with some sorts

of metrics — namely with norms — which behaved well towards the multiplication,
one may be led to taking the lattice — partition of unity and to trying to sort out
a class of metrics that are in agreement with multiplying the elements by this partition.
For this we need take the metric linear spaces with a new structure, namely with that
of upper semilattice, and then to sort out the metrics which are well behaved towards
it. We are thus lead to the notion of C(Y, P) — area, which is a “module’ over the
set of all continuous functions on a topological space Y with the values in P =
{—1,1). This may seem somewhat artificial, to assume that we have the multi-
plication only by the functions from C(Y, P) instead of by all continuous functions
on Y, but on the other hand, what we need is to multiply by partitions of unity, and
the functions which they consist of have values only in {0, 1), wherefore it perhaps
isn’t so great a sin to show what is necessary indeed and what is needlessly strong.

The purpose of this paper is to bring over the K. H. Hofmann’s results to a class
of sheaves of complete metric spaces, namely to the sheaves of C(Y, P) — areas. In
the first section we adopt the means, developed by K. H. Hofmann in [1] for sheaves
of Banach spaces, to the case of those of metric spaces. In the section two the notion
of C(Y, P) — area is introduced and its properties which are needed later found.
Then, following K. H. Hofmann’s line of [1], we develop some means that enable
us to prove in the spirit of [1] that the sheaf of sections of the bundle associated with
a given sheaf of complete C(Y, P) — areas of suitable sort over a hereditarily para-
compact base is isomorphic to the latter.

1. Presheaves of metric spaces with contractions

1.1. Notation. A map of a metric space (X, d,) into another one (X,, d,) is
called contraction if d,(f(x), f(¥)) < dy(x, y) for all x, y € X .

The category of all metric (complete metric) spaces with contractions as mor-
phisms is denoted by MM(MCE).

A category Ris called inductive if for every presheaf ¥ = {X, Iga,,' {A<)} from
it there is lim & = I [{&,| x € 4} in . (here &, : X, > I are the natural R-mor-
phisms). We shall often write lim & = I, for short.

The following lemma was proven by K. H. Hofmann [1, Lemma 1.6—1.9]
for the category of Banach spaces with contractions. Our proof follows the line of
that of Hofmann’s.

1.2. Lemma. Both MM and MC are inductive. Let & = {(X,, d,) |0.5| <A=D}
be a presheaf from MG, let {(I°, D) | {&,| a € A}> be its inductive limit in M, and
let (I, D) be the completion of (I°, D). Then {(I, D)| {&, | x € 4}) is inductive limit
of & in ME. Moreover, the following holds:

A. Ifa, fe A, a e X,, b e X;, then a, b represent the same element of I° (meaning
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that &,(a) = £(b)) iff there is y = «, B such that for @’ = g,,(a), b’ = g;,(b) we have,
setting A(y) = {6 e A |6 2 y}:

lim {dy(e,(a"), 0,s(6)) | 6 € AW)} = 0.

B. If p, g €I such that there are representatives a, b of p, ¢ in an X, (in which
case p, g €I°) then

() D(p, q) = lim {dj(0.5(a), 0.4(b)) | B € A(x)} = inf {the same set} .

Proof. Given a presheaf & = {(X,, d,) |0.5| <A< )} from M(ME), we can make
the inductive limit (L|{n,| a € 4}) of &' = {X, ,g,,,] {AZ>} in the category of sets.
If p, q € L then there are their representatives a, b € X, for an « € A, meaning that
n{a) = p, n4(b) = g. As the g,’s are contractions, the function f,(8) =
= dg(0.5(a), 0.5(b)) is nonincreasing on A(x) = {f € A| B = a}; there thus is

(**)  D(p, q) = lim {dy(0.4(a), 0.4(b)) | B € A(x)} = inf {the same set} .

It is easy to check that, as f,,, is nonincreasing on A(oc), the number D, ,(p, q)
does not depend on the choice of « and of the representatives a, b € X, of p, q. We
may thus write D’ instead of D,,. So we get a function D' on L x L which is easy
to be seen to fulfil the triangle inequality. It may happen that D’(p, g) = 0 notwith-
standing that p + q; from this reason we denote by I° the set of all equivalence
classes of Lby “p, g€ L, p ~ qiff D’(p, g) = 0”, and by ¢: L — I° the map sending
p € Lonto its equivalence class ¢(p). Now, clearly the function D defined on I° x I°
as D(¢(p), ¢(9)) = D'(p, q) is a metric on I°, and (x*) readily yields that the &, =
= ¢n, : (X,, d,) > (I°, D) are contractions. We shall show that {(I°, D)| {¢, |oxe
€ A}) is the inductive limit of & in 9. For this end we take a fan of contractions
{fo:(Xp d,) > (X, d) | x€ A} between & and a metric space (X, d), meaning that
f30p = fo forall o, Be A, « < B. As (L| {n, | e e A} = lim &’ in the category of
sets, there is a unique f’ : L - X with f'n, = f,forallae A. If p,qe Land if a, b e
€ X, are their representatives then from d(f'(p), f'(q)) = d(f4(2«s(a)), f5(2up(b))) =
< dp(0.p(a), 0up(b)) for all B = a, and from (+x) we get d(f'(p),f(q)) <
< lim {dy(0.5(a), 2.4(b)) | B = a} = D'(p, q), thus f(p’) = f(q) whenever D'(p, q) =
= 0, hence f' yields a map f:1° — X with f ¢(s) = f'(s) for all se L. Further,
d(f ¢(p). f ¢(9)) = d(f'(p). /() < D'(p, a) = D((p), #(9)) so f: (I°, D) » (X, d)
is a contraction and f&¢, = fon, = f'n, = f, for all « € A. We have shown that there
is a contraction f:(I°, D) - (X, d) with f&, = f, for all ae A. Let g : (I°, D) -
— (X, d) be another contraction with g&, = gon, = f, for all a € A. Then g = f’
as f': L— X is the unique map with f'n, = f, for all xe A. As ¢(L) = I°, we get
from go = fo = f’ that g = f which proves our lemma for 9.

If we are in MME, we — having already made (I°, D) — make the completion
1°, D) of (I°, D) and denote it by (I, D) as D is just an extension of D. If now (X, d)
is complete and if {f,:(X, d,) > (X,d)|«e A4} is a fan of contractions then,
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by what we have just proven, there is a unique contraction f : (I°, D) > (X, d)
with f&, = f, for all x € A. There is a unique extension f : (I, D) - (X, d) of f to the
whole of I which is a contraction thanks the density of I° in I. Any other contraction
g : (I, D) - (X, d) such that g¢, = f must be equal to f on I° and hence equal to f
on I as I° is dense in I. We are done.

It should be noticed that, by 1.2A, a € X,, b € X, represent the same element
in I not only when g,,(a) = g,,y(b) foray = a, B, as it is in the usual categories.

1.3. Notation. Let & = {(Xy, dy) [evy| X} be a presheaf from M (ME) over
a topological space X.

A. ForxeX let B(x) = {U c X [ U open, x € U}, let < be the partial order
in %(x) defined as “U < Viff ¥ < U”, and let &, = {(Xu, dv) |evv| <B(x) < }.
By 1.2, there is lim &, = {(EY, D,) | {¢v. | U e B(x)}> in M(lim &, = {(E,, D,) |
| {€ux| U € B(x)}> in ME). The metric space (E, D) ((Es» Dy)) is called the stalk
of & over x; it is thus a metric (complete metric) space with a metric D,. If & is
from IMMC then (E,, D,) is just a completion of (EJ, D,). If r, s € E, such that there
is U € #(x) and some representatives a, b € X, of r, s (in which case r, s € E?), then

(*) D,(r, s) = lim {dy(ouv(a), 0uy(b)) | Ve B(x), V = U} = inf {the same set} .

B. The set E° = U{EJ|xeX} (E=U{E.|xeX}) with the projection
p: E° - X (E - X) defined as p(r) = x for all r € EJ (r € E,) is called bundle of &.

C. If U = X is open, a € X, we denote by d the map d: U — E defined by
d(x) = &yy(a) for xe U, and set Ay = {4 | ae Xy}

D. Let U = X be open. Any map s : U — E such that ps = identity is called
section over U. We say that s is bounded if there is a € X, such that sup {D,(d(x),
s(x)) | x e U} is finite. The set of all bounded sections on U is denoted by F(U).
If s, te [(U), we set dy(s, ) = sup {D,(s(x), #(x)) | x € U}.

1.4. Lemma. Under the conditions of 1.3 we have

(a): deI(U) for each a € X, and if a, b € X, then dy(d, b) < dy(a, b);
(b): The function dy defined on I[(U) x I(U) is a metric;

thus by (a), the map py : (Xy, dy) = (F(U), dy) which sends any a € X, onto de
€ [(U) is a contraction.

Proof. (a): The boundedness of 4 readily follows from the definition of [(U);
since for each xe U we have D,(d(x), b(x)) < dy(a, b) — see the definition of
d(x) in 1.3.C and () in 1.3.A, (a) follows. (b): Clearly dy is a metric if it is finite;
so we prove the finiteness. If s, t € [(U) then dy(s, ) < o0, dy(t, b) < oo for some
a,beXy hence dy(s, 1) < dy(s, d) + dy(d, b) + dy(t, b) < dy(s, 4) + dy(a, b) +
+ dy(t, b) < 0. We are done.
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Also the next lemma and its proof follow and extend those of K. H. Hofmann’s
[1, Prop. 3.13] from the category of Banach spaces with contractions to M.

1.5. Lemma. Let & = {(Xy, dy) IQUVI X} be a presheaf from MG, E its bundle.
IfU c Xisopen,ae Xy, e > 0,let O(U, a,8) = {reE | x = p(r) e U, D,(r, d(x)) <
< ¢}. Then

(a): o(x) = D,(d(x), b(x)) is upper semicontinuous on U for any a, b € Xy;
(b): 2 ={0(U,a,&)| U = X is open, a e Xy, & > 0} is a base of a topology ¢
in E which yields in the stalks E, the same topology ¢, as D,.

Proof. (a): Let a,beXy, xeU, £¢> 0. As D,(d(x), b(x)) = lim {dy(0uv(a),
euv(b))| V open, x € V = U}, there is an open ¥ = U with x € V such that dy(ouy(a),
ouv(b)) < Dy(d(x), b(x)) + e. Since for ¢ = gyy(a), d = oyy(b) we have &(z) = d(z),
d(z) = b(z) for all z € V, we may assume U = V. Then D,(d(y), b(y)) < dy(a, b) <
< D(d(x), b(x)) + ¢ for all ye U which means the upper semicontinuity of ¢(y)
at x.

(b): Given re E — we set p(r) = x — and its metric nbd N, = {q € E,]|
D(r,q) <&} in E,, then the D, — density of E2 = U{{u(Xy)|U = X open,
x € U} in the stalk p~!(x) = E, yields that there is an open nbd ¥V < U of x and an
aeX, with d(x) = ¢y(a)eN,,. Then re O(V,a,e[2) nE, = N, so t, is finer
than D,. On the other hand, if re O(U, a, &) N E, then D,(r, d(x)) <&, & =& —
— D,(r, d(x)) > 0 and N,, = O(U, a, ¢) n E, so t, is metrisable by D,. We have
also proven that any r € E is in a set from £. All what remains to prove is that if
O(U, a,&) n O(V, b, 8) + @ then it contains a O(W, c,n). So let re O(U, a,¢) N
N OV, b,8), let p(r) =x. Set n =4min(e — D(d(x), ), 6 — D,(b(x), r)). The
density of E2 in E, yields that there is an open W’ with xe W <« U NV and a
c € Xy such that D (&(x), r) < n. As D,(é(x), 4(x)) < D.(d(x), r) + D(r, &(x)) <
< n + Dd(x), r) < ¥(e — D(d(x), r)) + D(4(x),7) = ¥(e + Dy(d(x), r)), and as
¢(y) = D,(&(y), d(v)) is upper semicontinuous, there is an open nbd W, of x,
W, « W' with ¢(y) < 4(¢ + D,(d(x), r)) on W, Likewise on an open W, = W’
with xe W, we have for y(y) = D,(&(y), b(y)): ¥(y) < (6 + D(b(x), r)). For
W= W, W, we have O(W,c,n) < O(U,a,ce)n O(V,b,d); indeed, for ge
€ O(W,c,n) we have — putting y = p(q)e W: D(d(y), q) < D,(d(y), &(y)) +
+ D,((0) 0) < 4 + D(d(x), 1) + 71 5 3e + D(a(), ) + He — Dfd(x) ) =
= ¢50 g€ O(U, a, ¢). Likewise g € O(V, b, 5) which proves (b).

1.6. Notation. Let & = {(Xy, dy) Iguyl X} be a presheaf from ME, let U =« X
be open, let E be the bundle of &. If ¢ is the topology defined in E by the set &
from the foregoing lemma, we denote by I (U) the set of all continuous bounded
sections on U.
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1.7. Lemma. Under the conditions of 1.6 we have

(a): de I'(U) for each a € Xy; thus the map py from 1.4b sends X, into I'(U)
wherefore 4, = I'(U).

(b): If r, s e I'(U) then ¢(x) = D,(r(x), s(x)) is upper semicontinuous on U.

Proof. (a): The continuity of 4 follows from the definition of the topology in E;
By 1.4a, 4 is bounded.

(b): If xe U, &> 0 then there are a, be Xy with 4 = D,(4(x), r(x)) < ¢/4,
B = D,(b(x), s(x)) < ¢/4. By 1.5a, y(y) = D,(d(»), b(y)) is upper semicontinuous
on U so from Y(x) < ¢(x) + 4 + B < ¢(x) + ¢/2 it follows Y(y) < o(x) + /2
onan open nbd Ve U of x. As M = {zeE l p(z) e V, D,(d(p(2)), z) < ¢[4} resp.
N ={zeE|p(z)eV, D.(b(p(z)), z) < ¢/4} are nbds of r(x) resp. s(x), there is an
open W < V with x € Wsuch that r(z) e M, s(z) e N for z € W as r, s are continuous.
Then for ye W we have o(y) < ¥(y) + D,(4(v), r(y)) + Dy(b(y), s(»)) < o(x) +
+ &2 + g4 + &[4 = o(x) + &

Extending K. H. Hofmann’s proof from the category of Banach spaces with
contractions [1, Prop. 3.22] to MC we get

1.8. Lemma. Let & = {(Xy, dy) |ouv| X} be from ME. TFAE:

(1): If U < X is opena, be Xyand if ¥ is an open cover of U then dy(a, b) =
= sup {dV(QUV(a)’ qu(b)) Ve V};
(2): Given an open U < X, a, b € X, an open cover ¥~ of U and ¢ > 0, then
there is Ve ¥ such that d,(oyy(a), ouv(b)) > dy(a, b) — &;
(3): The natural map py : (Xy, dy) = (I'(U), dy) is an isometry into I'(U) for
any open U < X (see 1.7a).

Proof. (1) = (2) is clear. Let a, be Xy and let (2) hold. By 1.4a, dy(d, b) <
< dy(a, b). If < held, then there would be dy(d, b) < ¢ < dy(a, b); it means
D.(d(x), b(x)) < ¢ for any xe U. By () in 1.3, for every x € U there is an open
nbd Vx = U of x such that dy(uv<(a) Quv«(b)) < c. Then ¥ = {Vx|xe U} is
an open cover of U and sup {dy(ouy(a), uy(b))| V€ ¥} < ¢ which contradicts
to (2) whereby (2) = (3) is proven. Let (3) hold; given a, b € Xy and an open cover ¥
of U, we have — setting a, = oyy(a), by = ouw(b) : dy(a, b) = dy(4, b) =
= sup {D,(d(x), b(x)) | x € U} = sup {sup {D,(dy(x), by(x)) |xeV}|Vver} =
= sup {d,(dy, b,) | Ve ¥} < sup {dy(ay, by)| Ve ¥} < dy(a, b) so dy(a, b) =
= sup {d,(ay, by) | Ve ¥}, hence (1) holds.

Following K. H. Hofmann we define

1.9. Definition. & is called monopresheaf if it fulfils any of the conditions
1—3 of 1.8. Thus we have
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1.10. Theorem. Let & = {(Xy, dy) |QU,,] X} be a monopresheaf from MGC.
Then for any open U < X the natural map Py : (Xy, dy) — (I(U), dy) is an isometry
into I'(U).

1.11. Definition. A presheaf & = {(Xy, dy) IQUVI X} from M is called sheaf
if it fulfils the following for any open U < X:

COND 1: If a, be Xy and if for an open cover ¥" of U we have ¢yy(a) =
= gyy(b) for all Ve ¥ then a = b.

COND 2: a) Given an open cover ¥ of U and a family #,. = {a, e X,/ | Ve ¥}
such that gyyw(ay) = owv.w(aw) whenever Vo W+ 0 — we call such a family
smooth — then there is an a € Xy, with gy(a) = ay for all Ve ¥;

b) If ¥y = {by € X, | Ve ¥} is another smooth family and b € X, such that
ouv(b) = by for all Ve ¥ then dy(a, b) = sup {dy(ay, by) | Ve ¥}

1.12. Remark. It readily follows from COND 2,b that every sheaf is a mono-
presheaf. Further, it is easy to see that COND 1 is equivalent to the 1-1 ness of the
map py : Xy = I'(U). Also the element a € X;; determined by %, in COND 2a is
unique because of COND 1.

2. C(Y, P) — K — areas

2.1. Definition. Let us recall that a semigroup is a pair (S, v) where S is a set
and v : S x S — S is a map such that for all a, b,ce S we have (a v b) v ¢ =
=a v (b v ¢); it is called commutative if a v b = b v a; it is called an upper
semilattice if it is commutative and a v a = a.

Let © be a commutative semigroup operation in the set R of real numbers such
that

(a) ® :R x R —> R is continuous,

) xO0yzxQy ifx=x,y=y,

(c)0oo0=0.

A metric ® — faithful semigroup (upper semilattice) is defined to be a triple
(S,d, v), where S is a set, d is a metric on S and v is a commutative semigroup
(upper semilattice) operation on S, such that for any a, b, x,ye S

(d) d(a v b,x v y) £ d(a, x) © d(b, y).
The usual addition in the reals shall be denoted by +, the usual upper semilattice

operation by v meaning x vy y = x iff y < x.

2.2. Example. A. Let (X, d) be a metric linear space with a translation —
invariant metric d, let 4+ be the addition in X. Then (X, d, -;-) is a metric + —
faithful semigroup.

43



B. Let (X, d) be a metric space ordered by <. Then X becomes an upper
semilattice with the operation v definedas*“x, ye Xthenx =x v yiffy < x.” It is
easy to check that if < fulfils the condition C: “If x,y,ze X, x < y < z then
d(x, y) vrd(y, z) < d(x, z)”, then (X, d, v) is an v g — faithful upper semilattice.

2.3. Definition. A group upper semilattice is a commutative group (G, +)
which is an upper semilattice with the operation v such that for any x, y,ze G

(*) xvy)+z=Ex+2)v(y+2).

It shall be denoted by (G, +, v ). We shall often write + instead of 4 where it cannot
lead to a misunderstanding.

2.4. Lemma. Given a group upper semilattice (G, +, v ) then we have for any
x, y € G (denoting by 0 the neutral element of G and by —a the inverse element of
aeG):x+y=xvy-—((—=x) v (—y)) hencesettingx* =x v 0,x~ =(—x) v
v 0, we have x = x* — x~.

Proof. From (x) we get x vy —((=x) v(=y)=x+0v (y — x) —
- ((—J’) +(y—x)v 0) = x + y as v is commutative.

2.5. Definition. The set of all continuous functions on a topological space Y
with values in the interval P = (—1, 1) (@ = <0, 1))is denoted by C(Y, P) (C(Y, Q)).
The set of all constant functions from C(Y, P) (C(Y, Q)) is denoted by P(Q).

A C(Y, P) — areaisastructure (X, d, +, v, o) where X is a set, d is a metric
on X, + is a commutative group operation on X, Vv is an upper semilattice operation
on X, and - : C(Y, P) x X —» X is a map such that

A: (X, d, v)is a vy — faithful upper semilattice, i.e.

(1) d(x v y, u v v) < d(x,u) vgd(y,v) for any x, y, u, ve X.

B: (X, d, +) is a metric group meaning

(2) d(x + y, u + v) £ d(x, u) + d(y, v) for any x, y, u, ve X.
C: (X, +, v) is a group upper semilattice, i.e.
B)(xvy)+z=(x+2z)v (y+z) forany x, y,z.

D: The map - : C(Y, P) x X — X sending (f, x) e C(Y, P) x X onto f o x fulfils
the conditions below for every x, ye X, f,g € C(Y, P), and any constant functions
¢y, ¢ € C(Y, Q):

(4) 1ox = x,

(5) ¢y VrRe)ox =(cy0x) v (c;0x) for any xeX*, where X' =
={x"=x v 0|xeX} — see 24,

(6) (f + 9)ox =fox + gox whenever f + ge C(Y, P),

(M) d(fox, foy) < d(x,y)
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We shall often write fx instead of f - x, for short.
A map F:(X,dy, +1, Vi,01) = (X2, d3 +2, V3, 0,) between two C(Y, P) —
areas is called an A — homomorphism if for all x, y € X,, fe C(Y, P)

(1) F(x +,y) = F(x) +, F(y),
(2') F(x vy y) = F(x) v, F(y),
(3") F(f oy x) = f o3 F(x).

The category of all C(Y, P) — areas (metric — complete ones) with the contrac-
tive A — homomorphisms shall be denoted by ,I(A,INE). Where possible, the
index Y shall be left out.

If instead of (7) we assume only

(7') There is a constant K such that d(fx,fy) < Kd(x, y) for all x, yeX,
feC(Y, P), then (X, d, +, v, o) is called a C(Y, P) — K — area. The category of
all those — with a fixed K — is denoted by 2, M(K) (A, ME(K)).

2.6. Remark. A. Let (X, +) be a commutative group such that there is a map
of L= C(Y,P) x X » X sending (f, x)e L onto fx. Denoting by 0 the neutral
element of X and by —a the inverse element of a € X, then (1) < (3) = (2) = (4)
below, for any f, g € C(Y, P), x e X.

(1) (f — g)x = fx — gx whenever f — g e C(Y, P),
(2) (—9)x = =(9%),

(3) (f + 9) x = fx + gx whenever f + ge C(Y, P),
(4) 0x = 0.

B. Let a metric group (X, d, +) with the addition + be partially ordered by =<
meaning that for all x, y, z, u,ve X

A Nx+z=y+zifx=2y,
B': (2) d(x + y, u + v) < d(x,u) + d(y, v),

such that for any x, y € X there is their least upper bound x v y and such that this
upper semilattice operation v makes (X, d, v) into an vz — faithful upper semi-
lattice (by 2.2B, it is enough that < be an order, and that d, < fulfil the condition C
of 2.2B). Let Y be a topological space, let C(Y) be the set of all continuous bounded
functions on Y and let (X, d, +) be a C(Y) module meaning that

D’: There is a map o : C(Y) x X — X sending (f, x) e C(Y) x X onto fx such
that for every x, yeX, fe C(Y) and any constants ¢,,c, € Q, ¢; < ¢, we have

4) 1x = x,

(5”) eyx S epx if xe X,

(6) (f + 9)x = fx + gx,

(7) d(fx.fy) < d(x, y) if fe C(Y, P),
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then (3'), (5') below hold for any x, y, z€ X and any c;, ¢, € Q, ¢; < c,, wherefore
(X,d, +, v,o)is a C(Y, P) — area.
C.3)(xvy)+z=x+2z)v(y+2),

(5) (ey vrer)x = (c1%) v (%) if xe X*.

If instead of (7) wehave (7”): There is a constant K with d(fx, fy) < Kd(x, y) for
all x, ye X, fe C(Y, P), then (X, d, +, v, o) is a C(Y, P) — K area.

Addition. We have (5”) = (5”) <> (5") for (5”): For all x, ye X with x Xy
and any c¢,d e Q we have (a): cx X x if xe X*; (b): ex < cy; (¢): ¢(dx) = (cd) x.

Proof. A. Let (3) hold. Then Ox = (0 + 0) x = Ox + Ox hence Ox = 0 and (4)
holds. Further, setting g = —f in (3) we get by (4) 0 = Ox = fx + (—f) x hence
(2) holds. Furthermore, (f — g)x = (f + (—9))x = fx + (—g) x = fx — gx by
(2), hence (1) holds. If (1) holds, we put f = g and get Ox = 0 so (4) holds. Putting
f=0in(1), we get(—g) x = Ox — gx = —gx, hence (2) holds. Further, (f + g) x =
=(f - (—9))x = fx — (—g) x = fx + gx hence (3) holds. If (2) holds, we set
g = 0 and get Ox = —O0x hence Ox = 0.

B. It is easy to check C’. We check (5'): If ¢, ¢, € Q, x e X*, then (5") yields
(cr Vre)xZejx, j=1,2, 50 (¢; Vrea)x Z(e1x) Vv (ex). If ueX, u z¢x,
Jj=12,thenu z= (¢; Vge,)x for ¢; Vg, is one of ¢y, c;, whence (5') holds. It
remains to check the Addition. If (5") holds, xe X*,0 < ¢; £ ¢, £ 1, then
(e;x) v (c2x) = (¢; VR cy) x = ¢x hence ¢;x < c¢,x and (5”) holds. If (5”) holds,
xeX*, 0=<c¢; <c; £1 then 0 < ¢y/c, < 1; by (a), (¢,/c;) x £ x and by (b, ¢)
c1x = (cy(cs/ez)) x = ¢5((cy/c2) x) < e,x and (5”) holds.

2.7. Proposition. If (X, d, +, v,0) is a C(Y, P) — K — area, then there is an
extension +*, v *, and o* of +, v, and o to the completion (X, 3) of (X, d) such
that (X,d, +*, v*,.")isa C(Y, P) — K — area Further, if +~, v, o™ is another
extension of +, v, o to (X, d) such that (X,d, +~, v~,0")is an C(Y, P) — K —
area, then +~ = +", v~ = v*, o~ =" If f:(X,d, +, v,0) > (X1, dy +4,
V1, 01) is a contractive A — homomorphism where (X, d,) is complete, then there
is a unique extension f:(X,d, +", v*,o") > (X, dy, +1, V1, 01) of f which is
an A — homomorphism.

Proof. Let x,yeX, {x,},{y} € X, x, > x, y, = y. By 2.5(1), d(x, v ym
Xm V Vm) S d(Xps X)) Vg AV V) s0 {x, v y,} is Cauchy. We denote its limit
in X by x v* y. If {x,;}, {y;} = X are some other sequences tending to x, y then
d(X, V Yu Xp vV y) = d(xp, %) VR d(Vs ¥2) = 0 so x v y does not depend on
the sequences. If x,y,zeX, {x,},{yn}, {z.} = X tending to them then x v*
vi(yvrz)=Ilmx, v (y,vz)=Ilim(x, Vv y)Vvz=_(xv*y v"zand
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likewise commutativity can be proven. Further, x v* x = limx, v x, = lim x, = x
wherefore v * is an upper semilattice operation.

We show that (X,d, v*) is vy — faithful. Indeed, if x,y,u,veX, {x,},
{n}s {4}, {va} = X tending to them, then by 2.5(1) d(x v * y,u v *v) = lim d(x, v
V Y Uy V 0,) £ lim d(x,, u,) Vg d(Vy 0,) = lim d(x,, 4,) Vg lim d(y,, v,) =
= d(x, y) Vg d(u, v)as desired. Thus (X, d, v *)is an v — faithful upper semilat-
tice. Let v ~ be another extension of v to X such that (X, d, v ~)isa vz — faithful
upper semilattice. Taking the metric d; on X x X such that d,((a, b), (¢, d)) =
= d(a, ¢) + d(b, d), we can easily check that X x X with the metric d, defined as
dy((x, y), (u, v)) = d(x,u) + d(y,v) is a completion of (X x X, d;). By 2.5(1)
vi(X x X,dy) > (X , d) is uniformly continuous, thus there is a unique uniformly
continuous extension v ~ : (X x X, d,) - (X, d) of v. Asby 2.5(1), both v*, v~ :
:(X x X, d,) - (X, d) are uniformly continuous, the are equal one to another,
being both equal to v on X x X. We have thus uniquely extended v to (X, d),
having used 2.5(1). Likewise we can uniquely extend + to (X, d) using 2.5(2) and
show that v *, + " fulfil 2.5(3).

By 2.5(7), if f € C(Y, P) then the map n, : (X, d) — (X, d) sending x € X onto fx
is uniformly continuous so there is a unique extension fi; of n, to the whole of X.
If f = 1then n,isidentical hencesois iy so 1x = xforallxe X. If ¢;,c,€ @, xe X*
then thereis {x,} = X* tendingto x (we have x = y v 0 for a ye X; if {y,} < X,
Yn = y,Wesetx, =y, v 0);then foreach n wehave by 2.5(5) (¢, v g ¢,) x, =(cyx,) v *
v * (czx,), and passing to limits we get (c; Vg cy)x = (c;x) v (cpx) as v * is
continuous. If f, g, f + ge C(Y, P), then n,,, =n, + n, on X so (f + g)x =
= A, ,(x) = Ax) + A,(x) = fx + gx for xeX. Finally if x, ye X, fe C(Y, P),
then d(fx, fy) = lim d(fx,, fy,) < K lim d(x,, y,) = Kd(x, y) whenever {x,}, {y,} <
< X tend to x, y. Let a map m : C(Y, P) x (X, d) - (X, d) fulfil 2.5(7). Then for
any fixed f the map m(f, *): (X, d) - (X, d) is uniformly continuous and hence if
m(f, x) = ny(x) = fx for all x € X, then m(f, x) = A/(x) = fx on X, hence o" is
unique. If f: (X, d, +, v, o) = (Xy, dy, +1, V1, 0y) is a contractive map then it is
uniformly continuous so there is its extension f to X which is unique and easy to be
shown to be an A — homomorphism if so is f.

2.8. Proposition. For a fixed K, the category U,MY(K) (AyME(K)) of all
C(Y, P) — K — areas (metric complete ones), with the contractive A — homo-
morphisms as morphisms is inductive.

Proof. Fix Y,K. Let & = {(X,,d,, +4 Vo o) lg,ﬂl {AZ)} be a presheaf
from A, M(K). Then &y = {(X,, d,) |0.s| <A} is from M; let {(I° D) | {¢, |ae
€ A}y = lim &, in M (see 1.2)), let p, g €I° let a, b e X, be some representatives
of p,ginan X,,and let p v g be the element of I° represented by a v, b. If ¢, d € X,
represent p, ¢, too, then for r represented by ¢ v, d we have by (x) in 1.2B and by
2.5(1), for y 2 «, B and for a, = g,(a), b, = 0,,(b), ¢, = gp,(c), d, = g5,(d):
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:D(p v g, r)=lim{dfa, v,b,c, v,d)|y 2« B} <lim{d(a, c,)|y =« B} vg
Ve Ay )|y Z o, B} = T {dfay ) [y 2 o} v lim {d,{by, d) |y = o} =
= D(p, p) vr D(q, 9) = 0 hence p v q does not depend on the choice of X, and of
the representatives (recall that F(y) = d.(a,, c,), G(y) = d,(b,, d,) are nonincreasing).
If p,q,rel’ a, b, ce X, their representatives, then (p v q) v r = &((a v, b) v,
vee)=Efa ve(b vec))=p v (q v r) Likewise we can show that p v p = p
and commutativity, whence v is an upper semilattice operation. We show that
(I°% D, v) is vy — faithful. If p,q,r,sel’ a,b,c,deX, their representatives,
then by () in 1.2 and by 2.5(1), D(p v ¢, r v s) = lim {d4(g.s(a v, b),
2up(c Vo d)) B = a} = lim {dy(0u(a) v 5 0up(b). Cup(c) Vg ap(d)) B 2 o} <
< lim {dy(044(a), 025(c)) V r dy(0sp(b): 02p(d)) |8 Z @} = lim {d(e.p(a), 0us(c)) -
. lﬁ 2 o} v g lim {dg(0.(b), 06(d)) |B = «} = d(p, r) vrd(q,s) as desired. Thus
(I° D, v)isa v — faithful upper semilattice. In likewise natural way addition can
be brought over to I° with the help of 2.5(2) such that, having denoted it by +,
(I° D, +) is a metric group (i.e. 2.5(2) holds), and that 2.5(3) is fulfilled. Given
pel® ae X, its representative, f € C(Y, P), we set f o p to be the element represented
by f o, a. Likewise as we have proven that p v g does not depend on the represen-
tatives, we can prove that f. p does not either. We show that 2.5(5) holds for .
If ¢, c,€Q, pe(I°)* then p = g v O for a g €I° (see 2.5(5), 2.4). If a € X, repre-
sents g then a v 0 = a* € X, represents p and by 2.5(5) we have (¢, Vgc,)o,a =
= (cy 0, @) V,(cz0,a) hence (¢c; Vgecy)p = (c;p) v (c;p) as desired. The veri-
fication of the other conditions of 2.5D is easier still. As the g,4’s are 4 — homo-
morphisms, we can easily check that (I°, D, +, v, 0) has the required properties
of inductive limits.

If & is from A, ME(K), our statement easily follows from 2.7 as the inductive
limit of & in AyIME(K) is just the completion of that in A,IN(K) with the operations
extended by 2.7. The proof is thereby finished.

2.9. Corollary. Let & = {(Xy, dy, +u> Vs ov) qul X} be a presheaf from
A, ME(K) over a topological space X, let E be its bundle. Then

(a): For every x € X the stalk E, over x is an C(Y, P) — K — area with the opera-
tions +,, V, o, defined as the natural bringover of these from &, (see 2.8, 2.7).

(b): If U < X is open, then the set [(U) of all bounded sections over U in E
with its natural metric dy, (see 1.3D) and with the operations +5, v, op pointwise
defined by (r v s)(x) = r(x) v,s(x) for xe U — and likewise for +7,.; — is
a C(Y, P) — K — area.

Proof. (a) readily follows from 2.7, 2.8 (b): Let r, s, u, v e I(U). Then by 2.1b,
dy(r v~ s,u v~ v) = sup {D(r(x) v, s(x), u(x) v, v(x)) |x e U} £ sup {D(r(x),
u(x)) v g Dy(v(x), s(x)) |x € U} < sup {D(r(x), u(x)) |x € U} v g sup { Do(v(x),

s(x)) | x e U} = dy(r, u) v g dy(v, s). Likewise we verify the other requirements of
2.5, and (b) is done.
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2.10. Proposition. Under the conditions of 2.9, (a): We can define the operations
v, + in E stalkwise.

More precisely, if p: E — X is the natural projection (see 1.3B), we denote
byE xyx E = {(r, s)€ E x E| p(r) = p(s)} the pullback of E x E over X. If (r, s)
€E Xy E, x =p(r) = p(s), wesetr vs=rv,s,r+s=r+,s, and get so two
maps V, + : E xy E — E. Let ¢ be the natural topology defined in E by 1.5b. Then,
under this topology, v, + are continuous.

(b): The set I'(U) of all continuous bounded sections over U is closed under
the operations v ~, +~ meaning that r v~ s, r +~ se I'(U) if r, se I'(U).

(c): The natural map py : (Xy, dy, +u> Vs ov) = (F(U), dy, +5, V7, 0p) (see
1.4b, 1.7a) is an A — homomorphism.

Proof. Given (%, Bo) € E X x E and its t-nbd O = O(d, U, ¢) (see 1.3B). Setting
p(xo) = x, we have & — D(d(x), 2o v Bo) > 0 so 0 < ¢ = }(e — D,(d(x), a0 Vv
Vv Bo)) + D(d(x), ao v Bo) = €[4 + 3D (d(x), a0 v Bo) <& and D (d(x), ao v
v Bo) < & < & By 1.5b, t yields the same topology in p~'(x) = E, as D,, and
v :(E,, D,) x (E,, D,) > (E,, D,) is continuous as it coincides with v ,, which is
by 2.5(1) continuous. There thus is 0, = O(b, V, §) with ¢y € 0;,0 < 5 < (¢ — ¢,)
and 0, = O(¢, W, n) with B,€ 0,, 0 < n < }(¢ — ¢,), such that for any pe E, n
N0y, geE,n O, we have p v ge 0(4, U, ¢,) namely D,(b(x) v &(x), d(x)) < &
The upper semicontinuity of ¢(y) = D,(é(y), f(y)) on U for any open U = X and
any e, fe Xy (see 1.5a) yields D(d(y), (b v ¢)* (¥)) = D,(4(y), b(y) v &(»)) < &
on an open nbd W; « U n VW of xo. Now if ye Wy, r,se E,, re O(b, W,, 5),
s€ O(c, W,n), we have Dyr vs, d(y)) < DJSrvs, b(y)v ey)+ DJb(y) v
v e(3). &) S Dy, BY)) + D5, 60) + Dy(B0) v ) ) < 6 + 1 + 6, =
< ¥(e — &) + ¥(e — &;) + & = & which proves (a) for v. The same proof works
for + (only we use 2.5(2) instead of 2.5(1)) whereby (a) is settled.

(b): If r,seI'(U), then F = (r,s):U — (E, t) x (E, t) defined as F(x) =
= (r(x), s(x)) is continuous; moreover, F maps U into E X yx E. Thus the map
¢ =r vy s:U-(E,t)is the composition of F followed by v :E Xy E - E —
which is continuous by (a), so the whole map ¢ is. The same proof works for the
addition. We show that r v ; s is bounded. As r, s are bounded, there is a, b € Xy
such that dy(d, r), dy(b, s) are finite. Then dy((a vy b)*, r vy s) = dy(d v b,
r vy s) < dy(d, r) v g dy(b, s) which is finite, hence r v s is bounded (see 1.3D).
Likewise we can show that r 4+ s is bounded. We are done.

(c): Let U = X be open, a, be Xy. By 2.8, for every x € U the natural map
¢ux : (Xu, dys +u> Vs ou) = (Exs dxy +4» Vs 0,) is an A — homomorphism so
(@ vy b)" (x) = d(x) v, b(x)at any x € U, which says that py(a vy b) = py(a) vy
v pu(b); likewise (a +y b)* (x) = d(x) +, b(x), (fa)* (x) = f d(x), hence
pu(a +y b) = py(a) +, pu(b), pu(fa) = f py(a) which with 1.4b proves (c).

Now we generalize the notion of locally finite family, which is due to K. H.
Hofmann, to MCE as follows:
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2.11. Definition. Let & = {(Xy, dy) IQUV| X} be a presheaf from ME, U = X
open. A. A subset M = I'(U) is called locally finite if for every x € U there is an open
nbd ¥V < U of x and a finite set F = M such that for each r € M there is s € F with
r(y) = s(y) for all ye V.

B. Let & be from Ay ME(K). A set M < I'(U) is called v — closed if for
every locally finite N = M such that r = viN = vi{s|se N} = [(U) (ie. r is
bounded; r is defined as r(x) = v {s(x) | s € N} for x € U) we have r e M.

Following K. H. Hofmann we get in our case

2.12. Lemma. Let & = {(Xy, dy, +v, Vu, ov) lguyl X} be a sheaf (see 1.11)
from A,MCE(K), (E, 1) its bundle (see 1.3A, 1.5b), let py, : (Xy, dy) = (F(U), dy)
(see 1.4b, 1.7a) be the natural map sending X, onto {d|aeX,} = Ay = I'(U).
Then for any locally finite family N = A, we have vgN = v;{n/neN}e 4,
wherefore Ay is v — closed.

Proof. Let N = Ay be locally finite; for every x € U there is an opennbd v, = U
of x and a finite set F, = N such that for every r € N there is s € F, with r[V, = s[V,.
We set F, ={aeXy|deF}, ay, = vyF, by, =ouy(ay); we get a family
# = {b,_ | x€U}. We shall show that & is smooth (see 1.11). Let ¥, n V, + 0;
setting u = VgN, ¢ = @y v v, (br.), d = Qv v.~v,(by,) We have for each ze V, N
NV, :8(z) = u(z) = d(z); by 1.12, ¢ = d which is the smoothness of £.

By COND 2 of 1.11, there is b € Xy with gy (b) = by,_for all xe U. As b(x) =
= b, (x) = u(x) for all xe U we get u € Ay. The following lemma is in the spirit
of [1, Lemma 4.8, p. 35].

2.13. Lemma. Let & = {(Xy, dy, +u, Vo, ov) IQUV[X} be a presheaf from
AL ME(K), X regular, let U = X be open and paracompact, let M < I'(U) such
that

(1) Mis v — closed;

(2) M is a subgroup of I'(U) with respect to +, and fme M for any fe
e C(X, Q), me M;

(3) M(x) = {m(x)| me M} is dense in I'(U)(x) = {o(x)| o e I[(U)} for all
xeU;

(4) The multiplication of the sections ¢ € I'(U) by the functions from C(X, Q)
is pointwise meaning that (f .y 6)(x) = fo, o(x) = f(x) o, 0(x) for any xe U,
o e I'(U), fe C(X, Q).

Then M is dense in (I'(U), dy).

Proof. If ¢ e I(U)*, & > 0 then by (3), for every x € U there is m, € M with
D (m(x), o(x)) < & As ¢(y) = Dy(m,(y),o(y)) is by Lemma 1.7b upper semi-
continuous, there is an open nbd ¥, = U of x such that ¢(y) < & on V,. Since X
is regular, we may assume V, < U. As ¥~ = {V, ] x € U} is an open cover of U and U
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is paracompact, there is an open locally finite refinement %~ = {W, | xeU} of v
and a family ¢ = {g, | x e U} with g, e C(U, Q), such that — setting S, =

={yeU|g(y) >0} — we have S, < W, < W, c V, for all xeU, and that

v {g.(y) | x e U} = 1forevery y € U (% isa locally finite lattice — partition of unity
subordinated to ¥°). For every x € U let f, be the extension of g, to X by zero on
X — U;then f, e C(X, Q) for V, = U. Setting # = {f,m, | xeU},wehave F ¢ M
by (2). Further, & is locally finite. Indeed, for every z € U there is an open nbd N,
of z such that only finitely many f,’s are nonzero on N,. By (4), if fe C(X, Q), f = 0
on N,, ceI(U), then (fo)(t) = fo(f) = f(t) o(f) on N, which shows that only
finitely many f,m_’s may be nonzero on N, which is the local finiteness of #. Let
us set m = vy F = vg{fom, l x €U}, and let F, be the finite set of all the x’s
for which f,m, is nonzero on N,. As m = Ov (vg{fim,|xeF,}), we get from
(2) and 2.10b that m is a continuous section over U, and for any ze€ U we have

D (o(2). m(z)) = DA(Vr/u(2) o(2).  (Vufims)(2)) = DAV . (£2) o(2)).
V. () (2)) = D(V (fd2) o(2)), V (fx(Z) my(2))) = D(OV( V: (fd2)-

xeU,zeW x

@) v (Ve (HOm@)S Ve DD o LG M) =
gxevvz:W KD,(o(z), m(z)) £ K xev,: D (a(z) m,(z)) £ Ke, which shows that m

is bounded and hence m € M by (1) on the one hand, and that m is Ke — close to o
on the other. In order that all the above inequalities be clear, we must bear in mind
that (E,, D,, +,, V., ;) is, by 2.9a, a C(X, P) — K — area. The first equality thus
holds as V{f«(z)| x€ U} = 1 and 1 o(z) = o(z), the next as, by the definition of
maximum of a locally finite family (see 2.11B), we have ( Vu fimy) (z) = V, (fimy) (2)s

and because ( Vz f2)) o(z) = Vz £(z) o(z) by 2.5(5), the th1rd as (fym x) (z) fd2).

m,(z) by (4) the next as fx(z) =0 for z¢ W, the fifth as D,(Ovb,0vd) <
< D,(0,0) v gD,(b, d), the sixth as D,(fa, fb) 5 KD,(a, b) for fe C(X, Q), the
seventh as W, = V,, the eight as D,(o(z), m,(z)) < e on V,.

We have thus shown that ¢ € I'(U)* can be ¢ — approximated by an me M.
If 6 € I(U)is any, we have 6 = ¢* — ¢~ withe*, ¢~ € I'(U)*; We ¢ — approximate
6*,67 by m,neM, and then m —neM, D,(o*(z) — 67(z), m(z) — n(z)) <
< D.(0*(2), m(z)) + D,(—07(2), —n(z)) < (1 + K) e as D,(—a, —b) < KD,(a, b)
by 2.5(7). We are done.

The following notion was introduced by K. H. Hofmann for presheaf of Banach
spaces [1, 2.14, p. 12]:

2.14. Definition. Given a preshafl & = {(Xy, dy, +y, vy, op) |qu| X} from
WME(K), M < X, we set Iy = {fe C(X, Q)| f =0 on M}. & is called “well
supported” if for any open U < X, fely, ae X, we have f o, a = 0.

2.15. Lemma. Let & = {(XU, dy, +us vy, °U) IQUVI X} be a well supported
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sheaf from A,IME(K), X normal, U, V = X open, V < U, a € Xy. Then there is
b EXX With Qxy(b) = Quy(a).

Proof. There is an open W = X with V< W< Wc U, and fe C(X, Q) with
f=1onV,f=0on X — W Further, {U, X — W} is an open cover of X. We
set ay_p =0, ay = fa. As fely_y, we have felx_p)nu SO Quuax-wy(au) =
= Quunx-w)f8) = foyuax-w)a) = 0 for & is well supported. Also
Ox-w,unx-w)@x-w) = 0 hence {ay_p, ay} is a smooth family (see 1.11). As &
is a sheaf, there is beXy with oy (b) = ay = fa. Then ox,(b) = gyy(ay) =
= ouy(fa) = fouy(a) = oyv(a) for f = 1 on Vand & is well supported.

2.16. Let & = {(Xy, dy, +u, Vo, ou) [euv| X} be a well supported sheaf from
A ME(K) over a normal X, xe X, re EY (see 1.3A, B). Then there is b € Xy such
that b(x) = r.

Proof. There is an open nbd V < U of x and a € Xy with d(x) = r. There is
an open nbd W of x such that W < V. By the foregoing lemma, there is b e Xy
with gxu(b) = oyw(a) whence b(x) = d(x) = r.

We shall extend [1, Prop. 2.13, p. 11] to our case.

2.17. Lemma. If & = {Xy, dy, +y, Vu, ov) |oov] X} is form WME(K), X
normal, then (1) = (2) = (3) below:

(1) @) & is a well supported sheaf;
b) For every a € Xy the map M, : C(X, Q) - X sending f e C(X, Q) onto
fa is continuous at zero with respect to the sup — norm meaning: For every a € X
¢ > 0 there is § > 0 such that 0 < f < § yields dy(fa, 0) < ¢; '
(2) For every x € X we have I.E, = 0;.
(3) For every o € I'(U), fe C(X, @), x € U we have (fo) (x) = f(x) o(x) whence
the condition (4) of 2.13 is fulfilled.

Proof. Let (2) hold, let ¢ € I'(U), f e C(X, @), x € U. Then (f — f(x)) e C(X, P),
o =(f = f(x))",¥ = (f — f(x))” € C(X, Q) and they both are in I, hence (¢o) (x) =
=@ a(x) =0, (Yo)(x) =y o(x) =0 and thus (fo)(x) — f(x) a(x) = (fo) (x) —
() 9) () = (7~ 1)) () = (0 — ¥) ) (x) = (90 — 2) () =
= (¢0) (x) — (¥o) (x) = 0 and (3) holds.

Let (1) hold. As the map n, : (E,, D,) - (E,, D,), where n/(a) = fa for ac E,
is continuous and E_ (see 1.3A) is dense in E,, it is enough to show that I,E} = 0.
Let re E2, fel,, e > 0; by 2.16, there is a € Xy with d(x) = r. By (1b), there is
6 > 0 with 6 < 1 such that dX(ga, 0) <¢if 0 £ g <0. As fel,, there is an open
nbd U of x such that 0 < f < § on U. Setting h = min (f, 6) we have h e C(X, Q),
and (i) 0 < h < 6, (ii) h = f on U. By (i), dx(ha, 0) < ¢; by (ii), foxu(a) = h oxu(a)
for & is well supported. So D.(fr,0) £ dy(fexu(a), 0) = dy(hoxi(a), 0) <
< dx(ha, 0) < ¢; thus fr = 0.
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2.18. Theorem. Let & = {(Xy, dy, +u> Vu» ov) lQUyl X} be a well supported
sheaf from A,MCE(K), X hereditarily paracompact, let the multiplication M, :
1 C(X, Q) - (Xy, dx) sending a € Xy onto fa € Xy be continuous at zero meaning
that for every a € Xy, ¢ > 0, there is > 0 such that fe C(X, @), 0 < f < 6 yields
dy(fa, 0) < &. Let ¢ be the topology in the bundle E of & defined in 1.5b, let I'(U)
for open U = X be the set of all continuous bounded sections on U (see 1.6). Then
for every open U c X the natural map py : (Xy, dy) = (I'(U), dy) (see 1.4b) is an
isometric isomorphism onto I'(U).

Proof. & is a sehaf hence it is a monopresheaf by 1.12. Let U = X be open
By 1.10, py : (Xy, dy) = (I(U), dy) is an isometry into I'(U). By 2.12, the py —
image Ay of Xy is v — closed hence Ay fulfils the condition (1) of 2.13. Clearly
the condition (2) of 2.13 is fulfilled for Ay. By 2.16, {o(x) | o € Ay} is dense in EJ
for any x € U, and as E? is dense in E,, the condition (3) of 2.13 is fulfilled by Ay.
By 2.17, Ay fulfils also the cond. (4) of 2.13. Thus Ay is dense in I'(U) by 2.13. Since
pu is an isometry and (Xy, dy) is complete, we have Ay, = I'(U). We’re done.

Added in proof: The author has been told that the hypothesis that the base
spaces be hereditarily paracompact in [1] has been weakened to the requirement
that they be locally paracompact (see [2]) Likewise it can be easily shown that Th.
2.18 holds also for locally paracompact X. Indeed, what we have actually shown in
the proof of Th. 2.18 is the following

2.18*. Theorem. Let & = {(Xy, dy, +u, Vu» ov) ]gwl X} be a well supported
sheaf from W,MCE(K), let the multiplication M, : C(X, Q) —» (X, dx) sending
a € Xx onto fa € Xy be continuous at zero (see Th. 2.18). Denote by ¢ the topology
in the bundle E of & defined in 1.5b, and by I'(U), for open U < X, the set of all
continuous bounded sections on U. Let U = X be open and paracompact. Then the
natural map py : (Xy, dy) > (I(U), dy) is an isometric isomorphism onto I'(U).
(Taking U < X open and paracompact in the proof of Th. 2.18, we get the proof
of Th. 2.18%.)

Now, let the space X in Th. 2.18 be only locally paracompact, U = X open.
By 1.10, py : (Xy, dy) = (I'(U), dy) is an isometric isomorphism into I'(U), and it
is only to show that it is onto I'(U). Let r € I' (U ). As X is locally paracompact, there
is an open cover ¥” of U with each Ve ¥~ paracompact. By Th. 2.18*, p, : (X, dy) —
— (I'(V), dy) is an isometric isomorphism onto I'(V) for each Ve ¥, hence there is
ay € X, such that p,(ay) = r/V for each Ve ¥ (r[V is the restriction of r to V).
IfV,We¥, xeVnW, then [py.woyyw(av)] (x) = r(x) = [pyowowyawlaw)] (x)
whence JVnW(anWQVVnW(aV)a anWQWVnW(aW)) =0. As pyw :(XVnW, anW) e
— (I'(V A W), dy ) is an isometry, we get 0yy w(ay) = owyw(aw). As & is a sheaf
there is a € X, with oyy(a) = a, for all Ve ¥". Then py(a) = r and here we are.
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