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1982 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 23. NO. 1. 

Sheaves of Metric Lattices 

J. PECHANEC-DRAHOS 
Department of Mathematics, Charles University, Prague*) 

Received 19 November 1981 

The sheaf of sections of the bundle associated with a given presheaf of complete metric 
lattices of suitable sort over a hereditarily paracompact base is isomorphic to the latter. 

nynKH MeTpHMecKHx penieTOK. nynoK pe30B HaKpbreaiomero npocTpaHCTBa flamioro npefl-
ny*nea nonHbix MeTpHnecKHX pemeTOK yflo6Horo copTa Haa HacneflCTBeHHO napaKOMnaKTHbíM 
6a3HCOM H30MOp4>HMH flaimoMy npeflnyHKy. 

Svazek řezů bandlu příslušného danému předsvazku vhodných metrických svazů, úplných 
v dané metrice, nad dědičně parakompaktní bází, je izomorfní původnímu předsvazku. 

Introduction 

In [1], K. H. Hofmann proved that the sheaf of sections of the bundle as­
sociated with a given sheaf of Banach C(X)-modules of a suitable sort over a here­
ditarily paracompact base X i isomorphic to the latter. It is only natural to try to 
find out how much this result rests on the fact that it is a sheaf of Banach C(X)-
modules, and whether the developed machinery would work also in a more general 
case. A possibility seems to be offered in the form of sheaves of metric spaces, but 
since we cannot do without the fact that an isometry of a complete metric space onto 
a dense subset of another one is an isometry onto the latter, we must keep the requir­
ement of completness. Also we need there to multiply elements by some suitable 
functions to make an infinite family of elements be locally finite. Thus complete 
metric linear spaces over C(X) should seemingly be what we want. But when trying 
to generalise the results of [1] to this case, we meet some heavy hardships. While the 
machinery works for Banach spaces as the norm behaves well towards the multi­
plication by the functions from C(K), it fails to work for the metric linear spaces 
over C(X) because the metric behaves poorly towards the multiplication. We need 
multiply the elements by locally finite partitions of unity, and if the elements have 
small norm, the outcoming sum keeps it, while in the metric case the distance of it 
from zero may become big. This poor behavior of metric towards multiplication 
causes the theory to fail to work in the metric case. 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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But as the additive partitions of unity in [1] was in agreement with some sorts 
of metrics — namely with norms — which behaved well towards the multiplication, 
one may be led to taking the lattice — partition of unity and to trying to sort out 
a class of metrics that are in agreement with multiplying the elements by this partition. 
For this we need take the metric linear spaces with a new structure, namely with that 
of upper semilattice, and then to sort out the metrics which are well behaved towards 
it. We are thus lead to the notion of C(Y, P) — area, which is a "module" over the 
set of all continuous functions on a topological space Y with the values in P = 
< —1,1>. This may seem somewhat artificial, to assume that we have the multi­

plication only by the functions from C(Y, P) instead of by all continuous functions 
on Y, but on the other hand, what we need is to multiply by partitions of unity, and 
the functions which they consist of have values only in <0,1>, wherefore it perhaps 
isn't so great a sin to show what is necessary indeed and what is needlessly strong. 

The purpose of this paper is to bring over the K. H. Hofmann's results to a class 
of sheaves of complete metric spaces, namely to the sheaves of C(Y, P) — areas. In 
the first section we adopt the means, developed by K. H. Hofmann in [ l ] for sheaves 
of Banach spaces, to the case of those of metric spaces. In the section two the notion 
of C(Y, P) — area is introduced and its properties which are needed later found. 
Then, following K. H. Hofmann's line of [ l ] , we develop some means that enable 
us to prove in the spirit of [1] that the sheaf of sections of the bundle associated with 
a given sheaf of complete C(Y, P) — areas of suitable sort over a hereditarily para-
compact base is isomorphic to the latter. 

1. Presheaves of metric spaces with contractions 

1.1. Notation. A map of a metric space (Xl9 dx) into another one (X2, d2) is 
called contraction if d2(f(x),f(y)) = dt(x, y) for all x,y EXX. 

The category of all metric (complete metric) spaces with contractions as mor-
phisms is denoted by $R(9JK£). 

A category ft is called inductive if for every presheaf Sf = \Xa |Oa/,| <A^>} from 
it there is Hm Sf = </ |{fa| a e A}> in ft. (here £a : Xa -> / are the natural ft-mor-
phisms). We shall often write Hm Sf = /, for short. 

The following lemma was proven by K. H. Hofmann [1, Lemma 1.6 — 1.9] 
for the category of Banach spaces with contractions. Our proof follows the line of 
that of Hofmann's. 

1.2. Lemma. Both 9M and SRC are inductive. Let Sf = {(Xa, da) |Oa/?| <A^>} 
be a presheaf from Wld£, let <(/°, D) | {£a | a e A}> be its inductive limit in 501, and 
let (/, D) be the completion of (/°, D). Then <(/, D) | {£a | a e A}> is inductive limit 
of Sf in 9Jt(L Moreover, the following holds: 

A. If a, P e A, a e Xa, b e Xp, then a, b represent the same element of/0 (meaning 
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that £a(a) = ^p(b)) iff there is y ^ a, ft such that for a' = Qay(a), b' = QPy(b) we have, 
setting A(y) = {S e A \ S _ y}: 

lim {<*»')> eJb')) | 6 e A(y)} = 0 . 

B. If p, qel such that there are representatives a, b of p, q in an Xa (in which 
case p, q e 1°) then 

(*) D(p, q) = lim {^ (^ (a ) , QaP(b)) \ P e A(a)} = inf {the same set} . 

PrOOf Given a presheaf & = {(Xa, da) \Qafl\ <A^>} from 9ft(9ft£), we can make 
the inductive limit <L|{f/a| a e A}> of ^ ' = {Ka |Oa^| <-4^>} in the category of sets. 
If p, q e L then there are their representatives a, b e Xa for an cxe A, meaning that 
rja(a) = p, rja(b) = q. As the Qa/s are contractions, the function faab(P) = 
= dfi(Qap(a), QaP(b)) is nonincreasing on A(a) = {P e A \ ft = a}; there thus is 

(**) D*ab(p> q) = Km {a^(Oa/?(a), &,(&)) | p e A(a)} = inf {the same set} . 

It is easy to check that, as faab is nonincreasing on A(a), the number D'aab(p, q) 
does not depend on the choice of a and of the representatives a,beXa of p, q. We 
may thus write D' instead of D'aab. So we get a function D' on L x L which is easy 
to be seen to fulfil the triangle inequality. It may happen that D'(p, q) = 0 notwith­
standing that p #= q; from this reason we denote by I0 the set of all equivalence 
classes of Lby "p, q e L, p ~ q iff I)'(p, g) = 0", and by <p: L-+ 1° the map sending 
p G Lonto its equivalence class <p(p). Now, clearly the function D defined on I0 x 1° 
as D(cp(p), cp(q)) = D'(p, q) is a metric on 1°, and (**) readily yields that the £a = 
= <pf/a: (Ka, da) -* (I0, D) are contractions. We shall show that <(J°, D) \ {fa | a e 
G A}> is the inductive limit of Sf in 9ft. For this end we take a fan of contractions 
{fa : (Xa, da) -> (K, d) | a e A} between 5^ and a metric space (X, d), meaning that 
fpQa? = fa f° r a*- OL, pe A, OL = p. As <L| {*/a | a e A}> = lim S?' in the category of 
sets, there is a unique / ' : L-+ X with frja = / . for all cue A. If p, q e L and if a, b e 
eXa are their representatives then from d(f(p),f(q)) = d(fp(QaP(a)), ffi(Qafi(b))) =" 

= dp(QaP(a), QaP(b)) for all j? = a, and from (**) we get d(f(p),f(q)) ^ 

= lim {d,{QJa)9 qjp)) I j? = a} = D'(p, q), thus/(p') = / (« ' ) whenever D'(p, q) = 
= 0, hence / ' yields a map / : 1° -> K with / <p(s) = / ' (s) for all s e L. Further, 
d(f<p(p)J<p(q)) = d(f(p),f(q)) = D'(p, q) = D(9(p)f ^(q)) so / : (J°, D) - , (X, d) 
is a contraction and f£a = fcprja = frja = fa for all a e A. We have shown that there 
is a contraction / : (I0, D) -> (X, d) with f£a = fa for all a e l Let g : (I0, D) -• 
-• (X, d) be another contraction with g£a = #<p;*/a = fa for all cxe A. Then gcp = f' 
as f' : L-> K is the unique map with f ' ^ a = fa for all cxe A. As cp(L) = I0, we get 
from gcp = fcp = f that g = f which proves our lemma for 9ft. 

If we are in 9ft(£, we — having already made (I0, D) — make the completion 
I0, D) of (I0, D) and denote it by (I, D) as D is just an extension of D. If now (X, d) 
is complete and if {fa : (Xa, da) -> (X, d) \ ex e A} is a fan of contractions then, 
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by what we have just proven, there is a unique contraction f: (I0, D) -> (X, d) 
with f£a = fa for all cue A. There is a unique extension / : (I, D) -> (X, d) off to the 
whole of I which is a contraction thanks the density of I0 in I. Any other contraction 
g : (I, D) -> (X, d) such that g£a = f must be equal to f on I0 and hence equal to / 
on I as I0 is dense in I. We are done. 

It should be noticed that, by 1.2A, aeXa, beXp represent the same element 
in I not only when Qay(a) = Qpy(b) for a y = a, /?, as it is in the usual categories. 

1.3. Notation. Let ST = {(Xv, dv) \QUV\ X} be a presheaf from Wl (9WG) over 
a topological space X. 

A. For x eX let J>(x) = {U c X | U open, x e U}, let = be the partial order 
in @(x) defined as "U = Viff Vc U", and let 9>x = {(-Y^ dv) \QUV\ (@(X) = >}. 
By 1.2, there is Hm Sfx = <(F°, DJ | {£Vx | U e ^(x)}> in Wl(\im STX = <(£„ Dx) | 
| { ^ | Ue @(x)}} in 9Jl(£). The metric space (E°x, Dx) ((Ex, Dx)) is called the stalk 
of Sf over x; it is thus a metric (complete metric) space with a metric D^. If Sf is 
from $R(£ then (Ex, Dx) is just a completion of (F°, Dx). If r, s e I^ such that there 
is U e &(x) and some representatives a, be Xv of r, s (in which case r, s e K°), then 

(*) Dx(r, s) = lim {dK^UV^), Quv(b)) | ^ e *W> V c-: t/} = inf {the same set} . 

B. The set E° = U { ^ | ^ e K } (E = U { ^ | ^ e K } ) with the projection 
p : E° -> K (E -> X) defined as jp(r) = x for all reE°x(re Ex) is called bundle of ST. 

C. If U c K is open, a e K^, we denote by a the map a : U -> E defined by 
a(x) = f Ux(a) for x e U, and set A^ = {a | a e Xt/}. 

D. Let U <= K be open. Any map s : U -> E such that ps = identity is called 
section over U. We say that s is bounded if there is a eXv such that sup {Dx(d(x), 
s(x)) | x € U} is finite. The set of all bounded sections on U is denoted by F(U). 
If s, t e F(U), we set dv(s, t) = sup {Dx(s(x), t(x)) \xeU}. 

1.4. Lemma. Under the conditions of 1.3 we have 

(a): a e F(U) for each a e Xv, and if a, b e Xv then dv(d, B) ̂  dv(a, b); 
(b): The function dv defined on F(U) x F(U) is a metric; 

thus by (a), the map pv : (Xv, dv) -> (F(U), du) which sends any a e Xu onto a e 
e r(U) is a contraction. 

Proof, (a): The boundedness of a readily follows from the definition of F(U); 
since for each x e U we have Dx(d(x), B(x)) = dv(a, b) — see the definition of 
a(x) in 1.3.C and (*) in 1.3.A, (a) follows, (b): Clearly du is a metric if it is finite; 
so we prove the finiteness. If s, t e F(U) then dL(s, a) < oo, dv(t, B) < oo for some 
a,beXv hence 3v(s, t) = dv(s, a) + dv(d, B) + dv(t, b) < dv(s, a) + dv(a, b) + 
+ dv(t, B) < oo. We are done. 

40 



Also the next lemma and its proof follow and extend those of K. H. Hofmann's 
[1, Prop. 3.13] from the category of Banach spaces with contractions to SOtG. 

1.5. Lemma. Let Sf = {(Xv, dv) \QUV\ X} be a presheaf from Wl(£, E its bundle. 
If U cz X is open, asXv,e> 0, let 0(U, a, e) = {r e E \ x = p(r) e U, Dx(r, d(x)) < 
< e}. Then 

(a): cp(x) = Dx(d(x), B(x)) is upper semicontinuous on U for any a, beXv; 
(b): 0b = {0(U, a, e) | U cz X is open, a eXv, e > 0} is a base of a topology f 

in E which yields in the stalks Ex the same topology tx as £>,,. 

Proof, (a): Let a,beXv, xeU, e > 0. As ^ (^ (x ) , 5(x)) = lim {^(.O^a), 
O£/V(b))| Vopen, x e V cz U}, there is an open V cz U with x G Vsuch that dv(Quv(a), 
Quv(b)) < Dx(d(x), B(x)) + e. Since for c = QVv(a)> d = QVv(b) we have c(z) = d(z), 
a*(z) = B(z) for all z G V, we may assume U = V. Then Dy(a(j;), 6(y)) g dj/(a, b) < 
< Dx(d(x), B(x)) + e for all y e U which means the upper semicontinuity of cp(y) 
at x. 

(b): Given r e E — we set p(r) = x — and its metric nbd N£ = {q e Ex\ 
Dx(r, q) < e} in Ex, then the Dx - density of Ex = \J{ZUx(Xu) \ U <-= X open, 
x e U} in the stalk p~*(x) = Ex yields that there is an open nbd V cz U of x and an 
aeXv with a(x) = £Vx(a) e N£/2. Then r e 0(V, a, e/2) n £x c N£ so fx is finer 
than Dx. On the other hand, if r e 0(U, a, e) n Fx then Dx(r, d(x)) < e, e' = e — 
— Dx(r, d(x)) > 0 and N£, cz 0(U, a, e) n Ex so fx is metrisable by Dx. We have 
also proven that any r e F is in a set from 01. All what remains to prove is that if 
0(U, a, e) n 0(V, b,5) + 0 then it contains a 0(W, c, rj). So let r e 0(U, a, e) n 
n 0(V, b, S), let p(r) = x. Set rj = \ min (e - Dx(d(x), r), S - Dx(B(x), r)). The 
density of Ex in Ex yields that there is an open W with x e W' cz U n V and a 
c G Xw. such that D^(c(x), r) < rj. As Dx(^(x), a(x)) ^ Dx(a(^)» 0 + Dx(̂ » £(*)) < 
< iy + .D,(4(x), r) = i(c - D, (4JC) , r)) + Dx(d(x), r) = i(e + Dx(d(x), r)), and as 
q>(y) = Dy(c(y), d(y)) is upper semicontinuous, there is an open nbd W1 of x, 
Wx cz W with cp(>>) < \(e + Dx(d(x), r)) on Wl Likewise on an open W2 a W 
with xeW2 we have for ^(j;) = Dy(c(y), B(y)): \j/(y) < i(d + Dx(B(x), r)). For 
W= WxnW2 we have 0(W, c, n) cz 0(U, a, e) n 0(V, b, 6); indeed, for q e 
G 0(W, c, rj) we have - putting y = p(q) e W: Dy(d(y), q) = Dy(d(y), c(y)) + 
+ Dy(c(y), q) < i(e + Dx(d(x), r)) + r\ = \(e + Dx(d(x), r)) + i(e - Dx(d(x), r)) = 
= e so q G 0(U, a, e). Likewise q e 0(V, b, S) which proves (b). 

1.6. Notation. Let £f = {(Xv, dv) \QUV\ X} be a presheaf from S^G, let U cz X 
be open, let E be the bundle of 6f. If t is the topology defined in E by the set 0$ 
from the foregoing lemma, we denote by F(U) the set of all continuous bounded 
sections on U. 
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1.7. Lemma. Under the conditions of 1.6 we have 

(a): de r(U) for each aeXv; thus the map pv from 1.4b sends Xv into F(U) 
wherefore Av cz F(U). 

(b): If r, s e F(U) then <p(x) = Dx(r(x), s(x)) is upper semicontinuous on U. 

Proof, (a): The continuity of a follows from the definition of the topology in E; 
By 1.4a, a is bounded. 

(b): If x e U, e > 0 then there are a,beXu with A = Dx(d(x), r(x)) < e/4, 
B = Dx(B(x), s(x)) < e/4. By 1.5a, \jj(y) = Dy(d(y), B(y)) is upper semicontinuous 
on U so from \l/(x) = <p(x) + A + B < cp(x) + e/2 it follows i//(y) =" <p(x) + e/2 
on an open nbd V cz U of x. As M = {z e E | p(z) e V, Dz(d(p(z)), z) < e/4} resp. 
N = {z e E | p(z) e V, Dz(fi(p(z)), z) < e/4} are nbds of r(x) resp. s(x), there is an 
open W cz Vwith x e Wsuch that r(z) e M, s(z) e N for z e Was r, s are continuous. 
Then for y e W we have p(y) =" ip(y) + Dy(d(y), r(y)) + Dy(B(y), s(y)) < cp(x) + 
+ e/2 + e/4 + e/4 = cp(x) + e. 

Extending K. H. Hofmann's proof from the category of Banach spaces with 
contractions [1, Prop. 3.22] to 9Jt(£ we get 

1.8. Lemma. Let 9> = {(Xv, dv) \QUV\ X} be from 9Jt(L TFAE: 

(1): If U cz X is open a, b eX^and if iT is an open cover of U then dv(a, b) = 
= sup {dv(Quv(a), Quv(b)) \Ve r}; 

(2): Given an open U a X, a, b eXu, an open cover Y of U and e > 0, then 
there is Ve iT such that dv(Quv(a), Quv(b)) > dv(a, b) — e; 

(3): The natural map pv : (Xu, dv) -> (F(U), dv) is an isometry into F(U) for 
any open U cz X (see 1.7a). 

Proof. (1) => (2) is clear. Let a, b eXv and let (2) hold. By 1.4a, dv(d, B) = 

= dv(a, b). If < held, then there would be dv(d, B) < c < dv(a, b); it means 
Dx(d(x), B(x)) < c for any xeU. By (*) in 1.3, for every xeU there is an open 
nbd Vx cz U of x such that dVx(QUVx(a), QUVx(b)) < c. Then iT = {Vx | x e U} is 
an open cover of U and sup {dv(Quv(a), Quv(b)) \Vei^} = c which contradicts 
to (2) whereby (2) => (3) is proven. Let (3) hold; given a, beXv and an open cover V 
of U, we have — setting av = Quv(

a\ bv = Quv(b) : dv(a, b) = dv(d, B) = 
= sup {Dx(d(x), B(x)) | x e U} = sup {sup {Dx(dv(x), Bv(x)) \ x e V} \ Ve r} = 
= sup \dv(dv, Bv) I Ve TT} = sup {dv(av, bv) \ Ve iT} = dv(a, b) so dv(a, b) = 
= sup {dv(av, bv) I Ve V}, hence (1) holds. 

Following K. H. Hofmann we define 

1.9. Definition. 9* is called monopresheaf if it fulfils any of the conditions 
1 — 3 of 1.8. Thus we have 
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1.10. Theorem. Let Sf = {(Xv, dv) \QUV\ X} be a monopresheaf from 9MC. 
Then for any open U c X the natural map FU - (̂ U> Û) -> (-T(t/), -?t/) is an isometry 
into F(U). 

1.11. Definition. A presheaf ST = {(XU, di/) |̂ t/V| X} from $TC is called sheaf 
if it fulfils the following for any open U cz X: 

COND 1: If a, beXv and if for an open cover ir of U we have Quv(a) = 
= quv(b) for all Ve ^ then a = b. 

COND 2: a) Given an open cover iT oiU and a family J*V = {aK G XK | VG ^ } 
such that Qvvnw(av) = f̂YVniY(̂ fr) whenever Vn W+ 0 — we call such a family 
smooth — then there is an a e Xv with Quv(a) = av for all Ve iT\ 

b) If <$? = {bK e -*V | ^ e ^ } is another smooth family and b G XV such that 
2^(6) = bv for all Ve 1T then ^ ( a , fe) = sup {dK(aK, 6-,) | VG ir). 

1.12. Remark. It readily follows from COND 2,b that every sheaf is a mono­
presheaf. Further, it is easy to see that COND 1 is equivalent to the 1-1 ness of the 
map p,j : Xv -> r(U). Also the element aeXv determined by <^v in COND 2a is 
unique because of COND 1. 

2. C(y, P)- K-areas 

2.1. Definition. Let us recall that a semigroup is a pair (5, v ) where S is a set 
and v : S x S -+ S is a map such that for all a, b, c e S we have (a v b) v c = 
= a v (6 v c); it is called commutative if a v b = b v a; it is called an upper 
semilattice if it is commutative and a v a = a. 

Let O be a commutative semigroup operation in the set R of real numbers such 
that 

(a) O - R x R -> R is continuous, 
(b) x O y = x' O y' if x = x \ y = yr, 
(c) 0 Q 0 = 0. 

A metric O — faithful semigroup (upper semilattice) is defined to be a triple 
(5, d, v ), where S is a set, d is a metric on S and v is a commutative semigroup 
(upper semilattice) operation on S, such that for any a, b, x, y e S 

(d) d(a v b, x v y) = d(a> *) O ^(^» y)-

The usual addition in the reals shall be denoted by + , the usual upper semilattice 
operation by v^ meaning xvRy = xiffy^x. 

2.2. Example. A. Let (X, d) be a metric linear space with a translation — 
invariant metric d, let + be the addition in X. Then (X, d, + ) is a metric + — 
faithful semigroup. 
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B. Let (X, d) be a metric space ordered by =\. Then X becomes an upper 
semilattice with the operation v defined as"x , y eX then* = x v yiff y —^ x." It is 
easy to check that if ^ fulfils the condition C: "If x, y, z eX, x _̂  y _̂  z then 
d(x, y) vR d(y, z) ^ d(x, z)", then (X, d, v) is an v^ — faithful upper semilattice. 

2.3. Definition. A group upper semilattice is a commutative group (G, + ) 
which is an upper semilattice with the operation v such that for any x, y, z e G 

(*) (x v y) + z = (x + z) v (y + z) . 

It shall be denoted by (G, + , v ). We shall often write + instead of + where it cannot 
lead to a misunderstanding. 

2.4. Lemma. Given a group upper semilattice (G, + , v ) then we have for any 
x, y e G (denoting by 0 the neutral element of G and by — a the inverse element of 
ae G):x + y = x v y — (( — x) v ( —y)), hence setting x+ = x v 0, x~ = ( — x) v 
v 0, we have x = x+ — x~. 

Proof. From (*) we get x v y — (( — x) v ( — y)) = x + 0 v (y — x) — 
— (( — y) + (y — x) v 0) = x + y as v is commutative. 

2.5. Definition. The set of all continuous functions on a topological space Y 
with values in the interval P = < - 1 , 1> (Q = <0, 1 » is denoted by C(Y, P) (C(Y, Q)). 
The set of all constant functions from C(Y, P) (C(Y, Q)) is denoted by P(Q). 

A C(Y, P) — area is a structure (X, d, +, v, o) where X is a set, d is a metric 
on X, + is a commutative group operation on X, v is an upper semilattice operation 
on X, and o : C(Y, P) x X -» X is a map such that 

A: (X, d, v) is a vR — faithful upper semilattice, i.e. 
(1) d(x v y, u v v) g d(x, u) vR d(y, v) for any x, y, u,veX. 

B: (X, d, + ) is a metric group meaning 
(2) d(x + y, u + v) _ d(x, u) + d(y, v) for any x, y,u, ve X. 

C: (X, +, v ) is a group upper semilattice, i.e. 
(3) (x v y) + z = (x + z) v (y + z) for any x, y, z. 

D: The map 0 : C(Y, P) x X -> X sending (/, x) e C(Y, P) x X o n t o / 0 x fulfils 
the conditions below for every x, y e X, f, g e C(Y, P), and any constant functions 
cuc2eC(Y,Q): 

(4) 1 o x = x, 
(5) (ci v f i c 2 ) o X - - ( c 1 o x ) v (c2 o x) for any x e X+, where X+ = 

= [x+ = x v 0 | x e X) — see 2.4, 
(6) ( / + g) o x = f o x + g o x whenever / + g e C(Y, P), 
(7)d(foX,foy)^d(x,y). 
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We shall often write/x instead of/ 0 x, for short. 
A map F : (Xl9 dl9 +l9 v l9 01) -> (X2, d2 + 2 , v 2 , o2) between two C(Y, P) -

areas is called an A — homomorphism if for all x, y e Xl9 fe C(Y, P) 

( r ) F ( x + 1 y ) = F(x)+2F(y), 
(2')F(x V l y ) = F(x) v 2 F (y ) , 
( 3 ' ) F ( / 0 1 x ) = / 0 2 F ( x ) . 

The category of all C(Y, P) — areas (metric — complete ones) with the contrac­
tive A — homomorphisms shall be denoted by 2Iy9JJ(2Iy9KG). Where possible, the 
index Y shall be left out. 

If instead of (7) we assume only 
(7') There is a constant K such that d(fx9fy) = Kd(x9 y) for all x, yeX9 

fe C(Y9 P), then (X, d9 + , v , o) is called a C(Y, P) - K - area. The category of 
all those - with a fixed K - is denoted by 9Iy2K(K) (2ly2R(E(K)). 

2.6. Remark. A. Let (X, + ) be a commutative group such that there is a map 
of L = C(Y, P) x X -> X sending (/, x)e L onto fx. Denoting by 0 the neutral 
element of X and by — a the inverse element of a e X, then (1) o (3) => (2) => (4) 
below, for any / , g e C(Y9 P), xeX. 

(1) (f-g)x=fx-gx whenever f-ge C(Y, P), 
(2)(-g)x= -(gx)9 

(3) ( / + g) x = fx + gx whenever f+ge C(Y9 P), 
(4) Ox = 0. 

B. Let a metric group (X, d9 +) with the addition + be partially ordered by _̂  
meaning that for all x, y9 z, w, v e X 

A' (V) x + z ^ y + z if x ^ y , 
B'\ (2!) d(x + y, u + v) = d(x9 u) + d(y9 v)9 

such that for any x, y e X there is their least upper bound x v y and such that this 
upper semilattice operation v makes (X, d9 v ) into an v R — faithful upper semi-
lattice (by 2.2B, it is enough that _̂  be an order, and that d, ^ fulfil the condition C 
of 2.2B). Let Ybe a topological space, let C(Y) be the set of all continuous bounded 
functions on Yand let (X, d9 + ) be a C(Y) module meaning that 

D': There is a map 0 : C(Y) x X -> X sending (/, x) e C(Y) x X onto fx such 
that for every x9 yeX9 fe C(Y) and any constants cl9 c2 e Q, cx ^ c2 we have 

(4') lx = x, 

(5") Clx ^ c2x if x e X + , 
(6') ( / + g) x = fx + gx9 

(T) d(fx9fy) = d(x9 y) if fe C(Y9 P), 
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then (3'), (5') below hold for any x, y, z eX and any cu c2 e Q, c1 ^ c2, wherefore 
(X, d, + , v , 0) is a C(Y, P) - area. 

C. (3') (x v y) + z = (x + z) v (y + z), 

(5') (c1 vRc2)x = (cxx) v (c2x) if xeX+. 

If instead of (7') we have (!"): There is a constant K with d(fx,fy) g Kd(x, y) for 
all x, y e X, fe C(Y, P), then (X, d, +, v , 0) is a C(Y, P) - K area. 

Addition. We have (5'") => (5") o (5') for (5m): For all x, yeX with x ^ y 
and any c, d e Q we have (a): ex ^ x if x e X+; (b): ex ^ cy; (c): c(dx) = (cd) x. 

Proof. A. Let (3) hold. Then Ox = (0 + 0) x = Ox + Ox hence Ox = 0 and (4) 
holds. Further, setting g = —/ in (3) we get by (4) 0 = Ox = fx + (—/) x hence 
(2) holds. Furthermore, (f - g)x = (f + (-g))x = fx + (-g)x = fx - gx by 
(2), hence (l) holds. If (1) holds, we put / = g and get Ox = 0 so (4) holds. Putting 
/ = 0 in (1), we get (—g) x = Ox — gx = —gx9 hence (2) holds. Further, ( / + g) x = 
= (f — ( — g)) x = fx — ( — g) x = fx + gx hence (3) holds. If (2) holds, we set 
g = 0 and get Ox = — Ox hence Ox = 0. 

B. It is easy to check C. We check (5'): If cl9 c2 e Q9 x eX+, then (5") yields 
(c1 v ^ C j j x ^ CjX, j = 1, 2, so (c1 vR c2) x _: (cxx) v (c2x). If u eX, u =: CjX, 
j = 1,2, then u ^ (c1 v R c 2 ) x for cx v R c 2 is one of cl9 c2, whence (5') holds. It 
remains to check the Addition. If (5") holds, x G X + , 0 ^ cx ^ c2 ^ 1, then 
(cxx) v (c2x) = (ci VR ci) x = cix hence cxx = c2x and (5") holds. If (5W) holds, 
xeX+, 0 = cx < c2 ^ 1 then 0 = c1\c2 ^ 1; by (a), (eje^x = x and by (b, c) 
cxx = (c2(c1lc2))x = c2((c1lc2)x) ^ c2x and (5") holds. 

2.7. Proposition. If (X, d, +, v , 0) is a C(Y, P) — K — area, then there is an 
extension + A, v A, and 0

A of + , v , and o to the completion (X, S) of (X, d) such 
that (£ , 3, + A, v A, 0

A) is a C(Y, P) - K - area Further, if + ~, v ~, 0~ is another 
extension of + , v , 0 to ($, S) such that (X, 5, + ~, v ~, 0~) is an C(Y, P) — K — 
area, then + ~ = + A , v ~ = v A, 0~ = 0

A . If / : (X, d, +, v , o) -> (Xi9 dt +l9 

v j , 01) is a contractive A — homomorphism where (Xl9 dx) is complete, then there 
is a unique extension / : (£9 d9 +

A , v A , 0
A ) - » (Xl5 dl9 +l9 v l9 01) of / which is 

an A — homomorphism. 

Proof. Let x, y e£, { x j , {y„} a X, xn -> x, yn -> y. By 2.5(1), d(xn v yn, 
xm v ym) = d(xn,xm) vRd(yn9ym) so {x„ v ^ } is Cauchy. We denote its limit 
in % by x v A y. If {x^}, {>/} c= X are some other sequences tending to x, y then 
d(xn v j n , x; v yn) = d(xn9 xn) vR d(yn9 yn) -+ 0 so x v A y does not depend on 
the sequences. If x, y9 zeX, {xn}, {yn}, {zn} a X tending to them then x v A 

v A (y v A z) = lim xn v (yn v zn) = lim (x„ v yn) v zn = (x v A y) v A z and 
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likewise commutativity can be proven. Further, x v A x = lim xn v xn = lim xn = x 
wherefore v A is an upper semilattice operation. 

We show that (1,-3, v A ) is v^ — faithful. Indeed, if x,y,u,ve%, {xn}9 

{yn}, {un}, {vn} a X tending to them, then by 2.5(1) <3(x v A y, u v Av) = lim d(xn v 
v yn, un v vn) =" lim d(xn, un) vRd(yn, vn) = lim d(xn, un) vR lim d(yn, vn) = 
= B(x, y) v R 3(u, v) as desired. Thus ( 1 , <l, v A) is an v ^ - faithful upper semilat­
tice. Let v ~ be another extension of v to 1 such that ( 1 , <l, v ~) is a v R — faithful 
upper semilattice. Taking the metric d1 on X x X such that dt((a, b),(c,d)) = 
= d(a, c) + d(b, d), we can easily check that 1 x 1 with the metric d2 defined as 
d2((x, y), (u, v)) = <3(x, u) + cl(y, v) is a completion of (X x X, dt). By 2.5(1) 
v : (X x X, di) -> ( 1 , d) is uniformly continuous, thus there is a unique uniformly 
continuous extension v " : ( l x l , ( J 2 ) - > ( 1 , 3) of v . As by 2.5(1), both v A, v ~ : 
: ( 1 x 1 , d2) -• ( 1 , a*) are uniformly continuous, the are equal one to another, 
being both equal to v on X x X. We have thus uniquely extended v to ( 1 , <3), 
having used 2.5(1). Likewise we can uniquely extend + to ( 1 , <3) using 2.5(2) and 
show that v A, + A fulfil 2.5(3). 

By 2.5(7), i f / e C(Y, P) then the map nf : (X, d) -• (X, d) sending xeX onto fx 
is uniformly continuous so there is a unique extension fif of nf to the whole of 1 . 
If/ = 1 then nf is identical hence so is hf so lx = x for all x e 1 . If ct, c2 e Q, x e 1 + 

then there is {x„} c X+ tending to x (we have x = y v 0 for a j e l ; if {y„} <= X, 
yn -• y,wesetxrt = yn v 0); then for each n we have by 2.5(5) (cx v Rc2)xn =(c1xn) v A 

v A (c2xn), and passing to limits we get (cx v Rc2)x = (cxx) v A (c2^) as v A is 
continuous. If / , g, f + g e C(Y, P), then nf+g = nf + ng on X so ( / + g) x = 
= / J / +^(X) = nf(x) + ^(x) = fx + ax for x e l . Finally if x, ^ e l , / e C(Y, P), 
then 3(fx,fy) = lim d(fxn,fyn) g K lim d(xw, >;„) = Ka*(x, y) whenever {xn}, {yn} c 
c= K tend to x, y. Let a map m : C(Y, P) x ( 1 , a1) -> ( 1 , 5) fulfil 2.5(7). Then for 
any fixed / the map m(f, •) : ( 1 , S) -> ( 1 , 5) is uniformly continuous and hence if 
m(f, x) = nf(x) = / x for all x e K, then m(f, x) = fif(x) = fx on 1 , hence oA is 
unique. I f / : (X, d, + , v , o) -> (K1? dx, + l 9 v 1 , o 1 ) i s a contractive map then it is 
uniformly continuous so there is its extension / to 1 which is unique and easy to be 
shown to be an A — homomorphism if so is / 

2.8. Proposition. For a fixed K, the category WYWl(K) (5ly9We(K)) of all 
C(Y, P) — K — areas (metric complete ones), with the contractive A — homo-
morphisms as morphisms is inductive. 

Proof Fix Y,K. Let Sf = {(Xa, da, +a, v a, oa) \QaP\ < ^ > } be a presheaf 
from «y2R(K). Then Sfx = {(Xa, da) \Qa^\ <A^>} is from 2R; let <(/°, D) \ {£, ( a e 
e A}> = lim £?! in 9JI (see 1.2)), let p, qel°, let a, beXa be some representatives 
of p, q in an Xa, and let p v q be the element of 1° represented by a vab.Ifc,deXfi 

represent p, q, too, then for r represented by c v p d we have by (*) in 1.2B and by 
2.5(1), for y = oc,p and for ay = Qay(a), by = Qay(b), cy = Qfiy(c), dy = Qpy(d) : 
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: D(p v q,r) = lim {dy(ay v yby,cy v y dy) 
vR {dy(by, dy) \y =• <x, p} = lim {dy(ay, cý) 

y ^ «, ß} й üm {dy(ay, cy)\ y ^ J j v . 
ľ š s } v R lim {đy(by, dy) \y ^ a} = 

= D(p, p) v R D(q, q) = 0 hence p v q does not depend on the choice of Xa and of 
the representatives (recall that F(y) = dy(ay, cy), G(y) = dy(by, dy) are nonincreasing). 
If p, q,re I0, a,b, ce Xa their representatives, then (p v q) v r = £a((a v ab) v a 

v a c) = £a(a v a(b v ac)) = p v (q v r). Likewise we can show that p v p = p 
and commutativity, whence v is an upper semilattice operation. We show that 
(I0, D, v) is v R — faithful. If p, q, r, s e 1°, a, b, c, de Xa their representatives, 
then by (*) in 1.2 and by 2.5(1), D(p v q, r v s) = lim {dp(QaP(a v a b), 
Q*p(c v a d)) \P = a} = lim {dp(QaP(a) vpQap(b)9 QaP(c) v p QaP(d)) \fi = a} g 
<: lim {dp(QaP(a), QaP(c)) vR dp(QaP(b), QaP(d)) \p = a} = lim {dp(QaP(a), QaP(c)). 
. \fi = a} vR lim {dp(QaP(b), Qafi(d)) \p = a} = d(p, r) v R d(q, s) as desired. Thus 
(I0, D, v) is a v R — faithful upper semilattice. In likewise natural way addition can 
be brought over to I0 with the help of 2.5(2) such that, having denoted it by +, 
(I0, D9 +) is a metric group (i.e. 2.5(2) holds), and that 2.5(3) is fulfilled. Given 
pel0, aeXa its representative, / e C(Y, P), we set / 0 p to be the element represented 
by / o a a. Likewise as we have proven that p v q does not depend on the represen­
tatives, we can prove that / 0 p does not either. We show that 2.5(5) holds for o. 
If cl9 c2 e Q9 p e (I°)+ then p = q v 0 for a q e I0 (see 2.5(5), 2.4). If a e Xa repre­
sents q then a v 0 = a+ e X+ represents p and by 2.5(5) we have (cx vRc2) 0aa = 
= (ct 0aa) va (c2 oa a) hence (ct vRc2) p = (cxp) v (c2p) as desired. The veri­
fication of the other conditions of 2.5D is easier still. As the Qafi's are A — homo-
morphisms, we can easily check that (I0, D9 +9 v , 0) has the required properties 
of inductive limits. 

If Sf is from 5ly9JlCt(K), our statement easily follows from 2.7 as the inductive 
limit of Sf in S&Yyjl(£(K) is just the completion of that in 21y9Ji(K) with the operations 
extended by 2.7. The proof is thereby finished. 

2.9. Corollary. Let Sf = {(XU9 dU9 +U9 vu,oU)Quv\x} be a presheaf from 
^Iy9WG(K) over a topological space X, let E be its bundle. Then 

(a): For every x e X the stalk Ex over JC is an C(Y, P) — K — area with the opera­
tions + x, v x, ox defined as the natural bringover of these from Sfx (see 2.8, 2.7). 

(b): If U cz X is open, then the set F(U) of all bounded sections over U in E 
with its natural metric dv (see 1.3D) and with the operations +U9 vUfOU pointwise 
defined by (r v ^ s) (x) = r(x) v xs(x) for xe U — and likewise for -f ~, ou — is 
a C(Y, P) - K - area. 

Proof, (a) readily follows from 2.7, 2.8 (6): Let r, s9u,ve F(U). Then by 2.1b, 
dv(r v ~ s, u v ~ i;) = sup {Dx(r(x) vx s(x), u(x) vx v(x)) \x e U} S sup {Dx(r(x)9 

u(x)) vR Dx(v(x)9j(x)) \x e U] = sup {Dx(r(x), u(x)) \xeU} vR sup {Dx(v(x)9 

s(x)) I x e U} = ctv(r9 u) v R dv(v9 s). Likewise we verify the other requirements of 
2.5, and (b) is done. 
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2.10. Proposition. Under the conditions of 2.9, (a): We can define the operations 
v , + in E stalkwise. 

More precisely, if p : E -> X is the natural projection (see 1.3B), we denote 
by E x x E = {(r, s) e E x E | p(r) = p(s)} the pullback of E x E over X. If (r, s) e 
e E x x E9 x = p(r) = p(s), we set r v s = r v x s, r + s = r +x s, and get so two 
maps v , + : E xx E ^ E. Let t be the natural topology defined in E by 1.5b. Then, 
under this topology, v , + are continuous. 

(b): The set F(U) of all continuous bounded sections over U is closed under 
the operations v ~, + ~ meaning that r v ~ s, r + ~ s e F(U) if r, se F(U). 

(c): The natural map pv : (Xv, dv, +v, v U9 oV) -> (K(U), dU, + £, v ^ , o^) (see 
1.4b, 1.7a) is an A - homomorphism. 

Proof. Given (a0, p0) e E xxE and its f-nbd O = 0(d9 U, e) (see 1.3B). Setting 
p(cc0) = x, we have e — Dx(d(x), a0 v fi0) > 0 so 0 < ex = i(e — ^ (^ (x ) , a0 v 
v i80)) + Dx(d(x), a0 v J80) = e/4 + |Dx(a(x), a0 v po) < e and .Dx(d(x), a0 v 
v /?0) < fix < e. By 1.5b, t yields the same topology in p~1(x) = Ex as Dx, and 
v : (Ex, Dx) x (Ex, Dx) -> (Ex, Dx) is continuous as it coincides with v x9 which is 
by 2.5(1) continuous. There thus is 01 = 0(6, V, O*)with oc0eOl90 < S ^ i(e - ex) 
and 0 2 = 0(c, W, .7) with po e 0 2 , 0 < rj ^ ^(e — ex), such that for any peExr\ 
n Ox, q e Ex n 0 2 we have p v qe 0(d9 U, ej) namely Dx(£(x) v c(x), a(x)) < ex 

The upper semicontinuity of cp(y) = Dy(e(y)9 f(y)) on U for any open U c X and 
any e j e l , (see 1.5a) yields Dy(d(y)9 (b v c)A (y)) = Dy(d(y)9 B(y) v t(y)) < et 

on an open nbd W1 a U n Vn W of x0. Now if y e Wl9 r, s e Ey9 re 0(b9 Wl9 S), 
s e 0(c, W, rj), we have Dy(r v s, d(y)) ^ Dy(r v s, B(y) v t(y)) + Dy(B(y) v 
v t(y), d(y)) = Dy(r9 B(y)) + Dy(s, c(y)) + Dy(B(y) v c(y), d(y)) < S + n + e, = 

= |(e — ex) + i(e — ex) + e1 = e which proves (a) for v . The same proof works 
for + (only we use 2.5(2) instead of 2.5(1)) whereby (a) is settled. 

(b): If r,se F(U), then F = (r, s) : U -> (E, t) x (E, t) defined as F(x) = 
= (r(x), s(x)) is continuous; moreover, F maps U into E xxE. Thus the map 
<P = r v£ s : U -> (E, t) is the composition of F followed by v : E xxE -> E — 
which is continuous by (a), so the whole map cp is. The same proof works for the 
addition. We show that r v ^ s is bounded. As r9 s are bounded, there is a, b e Xv 

such that dv(d9 r)9 dv(B9 s) are finite. Then 3v((a v v b)A, r v u s) = 3v(d v ^ £, 
r yu s) = du(a> r) vR dv(B9 s) which is finite, hence r v ^ s is bounded (see 1.3D). 
Likewise we can show that r + u s is bounded. We are done. 

(c): Let U c= X be open, a, beXv. By 2.8, for every x e U the natural map 
£Ux : (Xc/, dVi +c/, v ^ oV) -> (Ex9 dx9 +x9 v x9 ox) is an A — homomorphism so 
(a v u b)A (x) = d(x) v x B(x) at any x e U, which says that pv(a v v b) = pv(

a) v u 
v j Pu(b); likewise (a +v b)A (x) = d(x) +x B(x)9 (fa)A (x) = f d(x)9 hence 
Pu(a +u b) = pv(

a) +xPu(b), Pu(fa) = fPu(a) which with 1.4b proves (c). 
Now we generalize the notion of locally finite family, which is due to K. H. 

Hofmann, to SDICS as follows: 
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2.11. Definition. Let ST = {(Xv, dv) \QUV\ X} be a presheaf from Wl£, U c= X 
open. A. A subset M c= F(U) is called locally finite if for every xeU there is an open 
nbd V a U of x and a finite set F c: M such that for each r e M there is s G F with 
r(y) = s(y) for all y e V. 

B. Let Sf be from 2ry2R£(K). A set M c F(U) is called v ~ - closed if for 
every locally finite N c M such that r = v ^ N = v^{s | s e N } c= F(U) (i.e. r is 
bounded; r is defined as r(x) = v JC{s(x) | s e N} for x G U) we have r e M. 

Following K. H. Hofmann we get in our case 

2.12. Lemma. Let S? = {(Xv, dv, +v, v v, 0(/) \QUV\ X} be a sheaf (see 1.11) 
from 2Iy2R(£;(K), (E, t) its bundle (see 1.3A, 1.5b), let pv : (Xv, dv) -> (F(U), dv) 
(see 1.4b, 1.7a) be the natural map sending Xv onto {d\ aeXv} = Av c= F(U). 
Then for any locally finite family N cz Au we have v ^ N = v^{n\neN} e Av 

wherefore Av is v ^ — closed. 

Proof. Let N c= Av be locally finite; for every x e U there is an open nbd v x c= U 
of x and a finite set Fx a N such that for every r e N there is s G Fj, with r\Vx = s\Vx. 
We set Fx = {aeXv\ deFx}, aVx = vvFx, bVx = QUVx(aVx); we get a family 
& = {bVx | x e U}. We shall show that & is smooth (see 1.11). Let Vx n Vy #= 0; 
setting u = v ^N, c = ^ x r x n v y ( V j 5 ^ = £FyV,nVy(*Vy) we have for each z e Vx n 
n Vy : c(z) = u(z) = <2(Z); by 1.12, c = d which is the smoothness of «^\ 

By COND 2 of 1.11, there is b e Xv with QUVx(b) = bVx for all x e U. As 5(x) = 
= BVx(x) = u(x) for all x G U we get u e Av. The following lemma is in the spirit 
of [1, Lemma 4.8, p. 35]. 

2.13. Lemma. Let Sf = {(XJJ^U, +v, v v, oV) \QUV\ X} be a presheaf from 
$1X9D1(£(K), X regular, let U c= X be open and paracompact, let M c F(U) such 
that 

(1) M i s v ^ - closed; 
(2) M is a subgroup of F(U) with respect to +£, and fmsM for any fe 

G C(K, Q), meM; 
(3) M(x) = {m(x) | m G M} is dense in F(U) (x) = {o(x) \ a e F(U)} for all 

XG U; 
(4) The multiplication of the sections a e F(U) by the functions from C(K, Q) 

is pointwise meaning that (f ou a) (x) = f ox <r(x) = f(x) ox a(x) for any xeU, 
oer(U),feC(X,Q). 

Then M is dense in (F(U), dv). 

Proof. If a G F(U)+, e > 0 then by (3), for every xeU there is mx e M with 
Dx(mx(x), G(X)) < e. As cp(y) = Dy(mx(y), a(y)) is by Lemma 1.7b upper semi-
continuous, there is an open nbd Vx c: U of x such that cp(y) < e on Vx. Since K 
is regular, we may assume Vx c U. As TT = {Vx | x G U} is an open cover of U and U 
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is paracompact, there is an open locally finite refinement iV = {Wx j x e U} of ^ 
and a family & = {gx\ x eU} with gx e C(U, Q), such that — setting Sx = 
= {y e U gx(y) > 0} - we have 5* c Wx c Wx c Fx for all xeU, and that 
v R{gx(y) x e U} = 1 for every y e U (^ is a locally finite lattice — partition of unity 
subordinated to 'V). For every x e U let fx be the extension of gx to X by zero on 
X - U; then/ , e C(X, 6) for P* <= ^- Setting J^ = {/,mx | x e U}, we have & c M 
by (2). Further, ^ is locally finite. Indeed, for every zeU there is an open nbd Nz 

of z such that only finitely many fxs are nonzero on Nz. By (4), i f / e C(K, Q),f = 0 
on Nz, aeT(U), then (fa) (t) = f o(t) =f(t)a(t) on Nz which shows that only 
finitely many fxmxs may be nonzero on Nz which is the local finiteness of ^ . Let 
us set m = Vu^= Vu{fxmx \xeU}, and let Fz be the finite set of all the x's 
for which fxmx is nonzero on Nz. As m = 0 v ^ ( V ^ / A | X e Fz}), we get from 
(2) and 2.10b that m i s a continuous section over U, and for any z e U we have 
Dz(a(z), m(z)) = Dz(( \/R fx(z)) a(z), ( Vvfxmx) (z)) = D2(V , (fx(z) a(z)), 

xeU xeU xeU 

Vz (fxmx) (z)) = Dz( V2 (fx(z) <x(z)), V2 (L(z) m,(-))) = £>2(0 v ( V* (L(z) . 
xeU xeU xeU xeU,zeWx 

.a(z))),0v( Vz (fx(z)mx(z)))^ V« Dz(fx(z)a(z), fx(z)mx(z)) ^ 
xeU,zeWx xeU,zeWx 

= VR KDz(a(z), mx(z)) ^ K VR DZ(-(~)>
 mx(z)) = K*> which shows that m 

x6t/,zeWx xeU,zeVx 

is bounded and hence m e M by (1) on the one hand, and that m is Ke — close to a 
on the other. In order that all the above inequalities be clear, we must bear in mind 
that (£z, Dz, + z , v z , cz) is, by 2.9a, a C(K, P) - K - area. The first equality thus 
holds as VR{/x(z) \ xeU} = 1 and 1 a(z) = a(z), the next as, by the definition of 
maximum of a locally finite family (see 2.11B), we have ( VU /xmx) (z) = Vz (fxmx) (z)» 

xeU xeU 

and because ( yjx(z)) a(z) = Vzfx(z) a(z) by 2.5(5), the third as (fxmx) (z) = fx(z) . 
xeU xeU 

. mx(z) by (4), the next as fx(z) = 0 for z £ Wx, the fifth as Dz(0vb, Ovd) = 

= Dz(0, 0) v*Dz(b, d), the sixth as Dz(fa,fb) = KDz(a, b) for fe C(X, Q), the 
seventh as Wx c Vx9 the eight as Dz(a(z), mx(z)) < e on Vx. 

We have thus shown that a e F(U)+ can be s — approximated by an m e M. 
If a e r(U) is any, we have a = a+ - a~ with a+, a~ e F(U)+; We e — approximate 
a+,a~ by m,neM, and then m — neM, Dz(a

+(z) — a~(z), m(z) - n(z)) = 

= Dz(a
+(z), m(z)) + D Z ( - < T - ( Z ) , -«(z)) < (1 + K)e as Dz(-a9 -b) = KDz(a, b) 

by 2.5(7). We are done. 
The following notion was introduced by K. H. Hofmann for presheaf of Banach 

spaces [1, 2.14, p. 12]: 

2.14. Definition. Given a preshaf 9> = {(Xv, dv, +V9 v U9 ov) \QUV\ X} from 
WXVW(K), M c: X, we set IM = {fe C(X, Q) \f = 0 on M}. Sf is called "well 
supported" if for any open U c X, / e Iv, a e Xv we have f ou a = 0. 

2.15. Lemma. Let ^ = {(X-,, dc;, +t;, v v, ou) \Quv\ X} be a well supported 
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sheaf from ^xmd(K)9 X normal, U, V c X open, V c U, a e Xv. Then there is 
beXx with Qxv(b) = Quv(a). 

Proof. There is an open W c X with V c W c W c U, and fe C(X, £)) with 
/ = 1 on V, / = 0 on X - W. Further, {U, X - W} is an open cover of X. We 
set ax_w = 0, av = fa. As feIx_W9 we have / e J(_--F)nl7 so ei/itn(jr-iF)(«c/) = 
= Quun(x-*)(fa) = fQuun(x-W)(a) = 0 for Sf is well supported. Also 
Qx-w,un(x-W)(ax-w) = 0 hence {ax_W9av} is a smooth family (see 1.11). As Sf 
is a sheaf, there is b eXx with Qxu(b) = av = fa. Then ^xV(^) = ^vV(̂ U) = 
= Quv(fa) = fQuv(a) = Quv(a) for/ = 1 on Vand Sf is well supported. 

2.16. Let Sf = {(XU9 dU9 +U9 vU9 oc/) \Quv\ X} be a well supported sheaf from 
yLxWl&(K) over a normal X9 xeX9 re E°x (see 1.3 A, B). Then there is b e Xx such 
that h(x) = r. 

Proof. There is an open nbd V c U of x and a e XY with a(x) = r. There is 
an open nbd W of x such that W c V. By the foregoing lemma, there is b e Xx 

with 0*^(6) = Qvw(a) whence B(x) = d(x) = r. 
We shall extend [1, Prop. 2.13, p. 11] to our case. 

2.17. Lemma. If Sf = {XU9dU9 +U9 v U9 oV) \Quv\ X} is form Mx3Jl<£(K)9 X 
normal, then (1) => (2) => (3) below: 

(1) a) Sf is a well supported sheaf; 
b) For every a e Xx the map Ma : C(X9 Q) -> X* sending / e C(X, Q) onto 

/a is continuous at zero with respect to the sup — norm meaning: For every a e Xx 

e > 0 there is 3 > 0 such that 0 = / < 3 yields dx(fa9 0) < e; 
(2) For every x e X we have Ĵ K .̂ = 0; 
(3) For every G e F(U), fe C(X, Q), x e U we have (/o-) (x) = / (x ) cr(x) whence 

the condition (4) of 2.13 is fulfilled. 

Proof. Let (2) hold, let G e F(U),/e C(X, Q)9 xeU. Then ( / - /(*)) e C(X, P), 
cp = (f - f(x))+

9 \j/ = (f - /(*))" 6 C(X, Q) and they both are in Ix hence (<PG) (X) = 
= cp G(X) = 0, (\J/G) (X) = \j/ G(X) = 0 and thus '(fa) (x) - f(x) G(X) = (fa) (x) -
- (f(x) a) (x) = ( ( / - /(*)) a) (x) = ((cp - f) a) (x) = (cpa - </>*) (x) = 
= (cpa) (x) - (xj/a) (x) = 0 and (3) holds. 

Let (1) hold. As the map nf : (Ex9 Dx) -> (EX9 Dx)9 where nf(a) = fa for a e Ex 

is continuous and Ex (see 1.3A) is dense in Ex9 it is enough to show that IXEX = 0. 
Let re Ex9 felx9 e > 0; by 2.16, there is aeXx with d(x) = r. By (lb), there is 
6 > 0 with 3 = 1 such that dx(ga9 0) < e if 0 = g __ (5. As felx9 there is an open 
nbd U of x such that 0 = / < 3 on U. Setting ft = min (/, <5) we have h e C(X, Q), 
and (i) 0 <_ ft __ 5, (ii) ft = / on U. By (i), d*(fta, 0) < fi; by (ii), fQxu(a) = ft Oxl7(a) 
for Se is well supported. So Dx(fr9 0) = dJjQxu(a)9 0) = dv(hQxu(a)9 0) = 

= dx(fta, 0) < e; thus/r = 0. 
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2.18. Theorem. Let Sf = {(Xv, dv, + -,, v^ , ou) \QUV\ X} be a well supported 
sheaf from ^X$R(£(K), X hereditarily paracompact, let the multiplication Ma : 
: C(X, Q) -> (Xx, dx) sending a e Xx onto fa e Xx be continuous at zero meaning 
that for every a e Xx, e > 0, there is S > 0 such that fe C(X, Q), 0 ^ / < <5 yields 
dx(f<*> 0) < £. Let t be the topology in the bundle E of •$* defined in 1.5b, let F(U) 
for open U c K be the set of all continuous bounded sections on U (see 1.6). Then 
for every open U c X the natural map p^ : (Xv, dv) -> (F(U), dt/) (see 1.4b) is an 
isometric isomorphism onto F(U). 

Proof. Sf is a sehaf hence it is a monopresheaf by 1A2. Let U c X be open 
By 1.10, pv : (Xv, dv) -> (F(U), dv) is an isometry into F(U). By 2A2, the pv -
image Av of Xv is v ^ — closed hence Av fulfils the condition (1) of 2A3. Clearly 
the condition (2) of 2.13 is fulfilled for Av. By 2.16, {<x(x) | o e Av} is dense in Ex 

for any xeU, and as F° is dense in Ex, the condition (3) of 2.13 is fulfilled by Au. 
By 2.17, Av fulfils also the cond. (4) of 2.13. Thus Av is dense in F(U) by 2.13. Since 
pu is an isometry and (Xv, dv) is complete, we have Av = F(U). We're done. 

Added in proof: The author has been told that the hypothesis that the base 
spaces be hereditarily paracompact in [ l ] has been weakened to the requirement 
that they be locally paracompact (see [2]) Likewise it can be easily shown that Th. 
2.18 holds also for locally paracompact X. Indeed, what we have actually shown in 
the proof of Th. 2A8 is the following 

2.18*. Theorem. Let Sf = {(Xv, dv, +v, v v, ou) \QUV\ X} be a well supported 
sheaf from <axWl<£(K)9 let the multiplication Ma : C(X, Q) -> (Xx, dx) sending 
aeXx onto fa eXx be continuous at zero (see Th. 2.18). Denote by t the topology 
in the bundle E of Sf defined in 1.5b, and by F(U), for open U cz X, the set of all 
continuous bounded sections on U. Let U c X be open and paracompact. Then the 
natural map pv : (Xv, dv) -> (F(U), dv) is an isometric isomorphism onto F(U). 
(Taking U c X open and paracompact in the proof of Th. 2.18, we get the proof 
of Th. 2.18*.) 

Now, let the space X in Th. 2.18 be only locally paracompact, U c X open. 
By 1.10, pv : (Xv, dv) -> (F(U), du) is an isometric isomorphism into F(U), and it 
is only to show that it is onto F(U). Let r e F(U). As X is locally paracompact, there 
is an open cover V of U with each Ve ir paracompact. By Th. 2.18*, pv : (Xv, dv) -> 
-> (F(V), dv) is an isometric isomorphism onto F(V) for each Ve "T, hence there is 
aveXv such that pv(av) = r/Vfor each Ve V (r/Vis the restriction of r to V). 
If V, We-T,xe Vn W, then [pVnwQvvnw(<*v)] (*) = Kx) = [PvnwQwvnw(<*w)] W 
whence dVnW(pVnWQVVnW(av), pVnWQwvnw(aw)) = 0. As pVnW : (XVnW, dVnW) -> 
-> (F(Vn W), dVnW) is an isometry, we get QVVnW(av) = Qwvnwfaw)- As ^ is a sheaf 
there is a e Xv with Quv(a) = av for all Ve V. Then pv(a) = r and here we are. 
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