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1982 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 23. NO. 1. 

Embedding Of Presheaves Into Dual Unit Balls 

J. PECHANEC-DRAHOS 
Department of Mathematics, Charles University, Prague*) 

Received 19 November 1981 

By means of embedding of a given presheaf Sř = {Xa |oa^| < A ^ >} into & = {Ba \ Q*^\ . 
. < A ^ >}, where Ba is the duál unit balí of a normed space of continuous functions on Xa, we 
get a theorem on functional separation of inductive limit of Sř\ a theorem on representation of 
presheaves by sections foliows from it. 

BjioaceHHe npe^nynKOB B flyanbHbie e/iHHHHHbie mapu. BjioaceroieM aaHHoro npe^nynKa 
Sř = {Xa \Qaf\ < A ^ >} B F = {Ba \Q**\ < A ^ >}, r#e Ba ecTt .zryajibHbiH eflHHHHHbiH map He-
KOToporo HopMHpoBaHHoro npocTpaHCTBa HenpepbiBHfaix (fryHKOHH Ha Xa MM HOJIV^HM TeopeMy 
o 4>yHKUHOHajibHOH OTflejiHMOCTH HHAyKTHBHoro npeflena Sř\ H3 3TOH TeopeMbi c.iie,zryeT TeopeMa 
o npe,acTaBjieHHH npe;my-iKa ceneHHHMH. 

Vnoření předsvazku do duálních jednotkových koulí. Vnořením daného předsvazku Sř = 

= {x* \Q*fi\ < ^ >} d o & = {B* kí*l <^ = » ' k d e B* J e d u á l n í jednotková koule nějakého 
normovaného prostoru spojitých funkcí na Xa, dostaneme větu o funkcionální oddělitelnosti 
induktivní limity Sř\ z ní plyne věta o reprezentaci předsvazku řezy. 

Introduct ion 

There are two questions we have tried to solve in [2] — [5], and with which we also 
deal here. The one is when the topology t of the inductive limit of a presheaf Sf = 
= {(Xa, ta) \gaP\ <A^>} of topological spaces is Hausdorff, the other is when 
a presheaf of topological spaces over a topological space can be represented by sec
tions in its covering space. The main means we have used there to get results in both 
mentioned directions is the embedding of Sf into a presheaf of compact spaces 
whose inductive limit resp. stalks are Hausdorff. We have dealt there with the 
embedding into cubes Q F ( X a ) (where Q is the compact unit interval and F(Xa) is a set 
of ^-continuous functions on Xa with values in Q), and into the space of all con
tinuous multiplicative linear functional on a Banach algebra <d(Xa) of ^-continuous 
functions on Xa. Both ways have their own traits and every theorem bears the marks 
of that by means of which it was gotten. The theorems proven by the second way 
are more general if we take in account the interplay of the algebras, but their drawback 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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is the requirement that the ^(Xa) 's be Banach algebras. On the other hand, those 
proven by the first way (of embedding in cubes) need not require so much from the 
sets F(Xa) themselves. 

In this paper we employ another sort of embedding that has not been used for 
this end yet, namely the embedding into the unit ball of the dual of a normed space 
N(Xa) of ^-continuous functions on Xa. This method keeps the advantages of the 
embedding into the functional as to the requirements put on the interplay of the 
normed spaces N(Xa) on the one hand, and in a fair measure saves the freedom of 
choice of the sets Fa themselves which the embedding in cubes enjoys, because the Fa's 
may be any, under the only condition that there be a countable confinal subset in 
<A^>. Thus gotten Theorem 2.5 on separation of the topology of inductive limits, 
and Th. 2.6 on the representation extend the range of the theory. 

1. Notation. Throughout the paper the category of topological spaces will be 
denoted by TOP. If 6C is a topological space then the set of all continuous (con
tinuous and bounded) real functions on 3C will be denoted by C(3C -> R) (C*(#* -> R)). 
Where it is convenient we denote a topological space 9C by (X, t), where X is the under
lying set of 9C (sometimes denoted also by |#*|) and t is its topology. 

2. Definition. Let ST = {3Ca \gafi\ <A^>} be a presheaf from TOP. A hull (weak 
hull) of Sf is a pair (% &) where <€ = {^a \aafi\ <A^>} is a presheaf from TOP and 
2C = {ea : 3Ca -» ^ a | a € A}, where each ea is a continuous 1-1 open (continuous 1-1) 
map of 9Ca into c€a such that the following diagram commutes for any a, jS e A, 

it ~ %XJ a 

#* 
J*ß 

Where possible, we omit the family 2£ saying that # is the hull of Sf. If moreover 
every ^ a is compact then # is called compact (weak compact) hull of Sf. 

3. Definition. A presheaf Sf = {Sv \QUV\ X} of sets over a topological space X 
will be called sheaf if 

a) Given an open set U c X and a, b e Sv then the existence of an open cover V 
of U such that Quv(a) = Quv(b) for all Ve y yields that a = b. 

b) Given an open U c X, an open cover rTofU and a family {av e Sv\Ve i^} 
such that QVVnW(av) = Qwwnv(aw) whenever Vn W 4= 0 (such a family will be called 
smooth), then there is an a e Sv with Quv(a) = av f° r all Ve i^. 

In the following few lemmas we shall recall some well known properties of the 
things which shall occur later and order them for the further use. Then we shall be 
able to get the main theorems 8 and 9 following from it. The following lemma is 
well known: 
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4. Lemma. Given two topological linear spaces E9 F and a continuous linear 
map m : E -> F, let us denote by (F*, w*), (F*, w*) their duals with the w*-topology. 
Then the dual map m* : (F*, w*) -> (E*, w|) is continuous and linear; m* is 1-1 
if m(E) is dense in F. 

5. Lemma. A. Given a topological linear space X, let Fx be a normed space of 
some bounded continuous functions on X, endowed with the sup-norm. Let Bx be 
the unit ball of F*. Then Bx is a w*-compact subset of (F*, w*), and if we assign to 
any x e X a function jx(x) on Fx by (jx(x)) (cp) = cp(x) for cpe Fx then for the map 
jjr : X -> F* (we call it a natural evaluation) we have 

(a) j x maps X into Bx, 
(b) jV : X -> (Bx, w*) is continuous; it is open if Fx separates points from 

closed sets of X, 

(c) j x is 1-1 if F* separates points of X, 
(d) for cp e FXife Bx set <p(f) = f(cp). Then (p is a continuous function on 

(B^, w*) and Fx = {<p\(pe Fx} separates points of Bx. 
B. Given another topological space Y and a normed space FY of some bounded 

continuous functions on Y, with the sup-norm, and a continuous map T: X -> Y 
such that F* sends FY into Fx, then the dual map T** : F* -> FY maps Bx into BY 

and T** : (BA, w*) -> (By, w*) is continuous. Further, the following diagram 
commutes: 

(Bx, w*) — * (By, w*) 

1V IV 
T 

X > Y 

Proof. The w*-compactness of Bx is well known. The proof of A(b), (c), (d) is 
standard argument of embedding topological spaces into products. The proof of 
A(a) and B is straightforward. 

6. Lemma. Let £f = {%a |Oa/3| <A^>} be a presheaf from TOP. Suppose that 
for every a e A we have a normed space Fa <= C*(#*a -> R) with the sup-norm which 
separates points) (points, and points from closed sets) of 2£a, and such that g*fi maps Fp 

into Fa for all a, p e A, a = /?. For each a e A let Ba be the unit ball of the dual 
space F* with the w*-topology (denote it by w*), and let ja : %a --> (Ba, w*) be the 
natural evaluations (Lemma 5A). We set £ = {Fa | a e A), % = {ja | a e A}, ZT = 
= {(Ba, w*) |O**| < ^ ^ > } . Then (3T, %) is a weak compact (compact) hull of Sf 
(see 2; it is called the ^-dual hull of Sf), and | = { â | a e A} is a separting family 
for 3T (see 5A(d)). 
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Proof. Straightforward from the lemma 4 and 5. 

7. Notation. Let 9* = {%a |Oa/?| <A^>} be a presheaf from TOP. For a e A 
we set A[a] = {fie A \ p < a} and SfAW = {%a |Da/?| <A[a] ^ > } . We denote by 
S£(Sf) the set of all a e A for which <A[a]^> is right directed and <#"a | {gafi \ p e 
eA[a]}> = l i m ^ [ a ] . 

Now we have made things ready so that we can get the results on functional 
separation of inductive limits and representation of sheaves by sections. 

8. Theorem. Let Sf = {%a |Oa/?| <4^>} be a presheaf from the category of 
topological spaces. Suppose that there is a set B c A such that 

(1) For every a e B we have a separating set Fa c C*(#*a -> R) such that if we 
consider the sup-norm in the sets Fa then g*p maps Fp onto a norm-dense subset 
of Fa for all oc,peB,a^p. 

(2) Either B is cofinal in <A^>, or <A^> is ordered, <A - B ^ > well ordered 
and A - B c ££(Sf). 

(3) There is a countable cofinal subset of {B^}. 
For a e A let Fa = sp Fa (it is the smallest module containing Fa) and let us 

endow Fa with the sup-norm. Let S = {Fa | a e B}, let ST be the <f-dual hull of SfB = 
= {^ a |O a , |<B^>}(see6> 

Then c^ = Hm 3T is functionally separated (f.s.) meaning that for any p, q G 
e | j f |, p =j= q there is a continuous function f on Jf withf(P) =t= f(q). # = lim Sf B 

and »/ = lim Sf are f.s. If moreover every Fa separates points from closed sets of 9£a 

then 2T is a compact hull of <9V 

Proof. If B is cofinal in <A^> then <B^> is right directed (and Hm Sf is iso
morphic to lim SfB). If <v4^> is ordered, <A — B = > well ordered and A — B c 
c J^f(^) then it is easy to see that B is cofinal in <A[<5] = > with O* being the smallest 
element of {/? e A |{y G A| y = ft} a A — B} (and lim :5^ is again isomorphic to 
Hm SfB because, as it can be easily seen from [2, Lemma 1.4.1(5)], Hm $f is iso
morphic to lim S?Aln). As beS£(Sf) and (A\b\ = > is by 7 right directed, <£ = > 
is such, too, being cofinal in (A[S~\ ^ > . In any case <B^> is right directed (and 
Hm Sf is isomorphic to Hm SfB), and from the condition (3) it follows that there is 
a cofinal subset C of <B^> of the type co0. Thus Hm SfB is isomorphic to Hm Sfc 

and as the condition (1) holds for all a J e C , we may assume that B = C i.e. that 
<B^> itself is of the type co0. 

3T = {(Ba, w*) |O**| <B^>} (see 6) is a weak compact hull (a compact hull if 
moreover the Fas separate points from closed sets of 2Ea) of SfB, where D**are homeo-
morphisms of (Ba, w*) into (Bfi, w*), being continuous and 1-1 by Lemma 5, and the 
(Ba, wa) being compact. Hence 3~ fulfils the conditions of [2, Cor. 1.5.5 or Remark 
1.5.6B]. Thus Jf is f.s. Further, as ST is a weak compact hull of SfB, there is a 1-1 
continuous map; : / -• ^C', whence f is f.s. As J is isomorphic to f, J is f.s., too. 
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9. Theorem. Let Sf = {(Xv, tv) \QUV\ X} be a sheaf from the category of topo
logical spaces over a separated topological space X such that every xeX is of 
a countable local character. Suppose that for each open U cz X we have a set F^ c 
cz C*((XV, tv) -> R) (see 1) which separates points and points from closed sets of 
(Xv, tv), such that QUV maps Fv into Fv for any V cz U, and that 

(1) Every xeX has a filter base Ax of open neighborhoods such that if we 
consider the sup-norm in the sets Fv then Q*VFV is norm dense in Fv for all U, Ve 
e Ax, V c U. 

(2) If U c X is open and if is an open cover of U then sp u{o*KFK | Ve rT} 
is norm dense in sp Fv (sp M is the smallest module containing M). 

Then there is a separated closure t in the covering space P of & such that for 
the set F(U, i) of all continuous sections over U, for the natural map pv sending 
a e Xv onto the section a over U, where a(x) is the germ of a in the stalk over x, 
and for the topology bv(i) projectively defined in Av = p^Xu) by the maps {rv x : 
: Av -> (lx, tjlx) | x G U}, where rUx(d) = a(x) for x e U, we have for any openU cz X 
(a) Pu '• (Xv, tv) -> (Av, bv(i)) is a homeomorphism. 
(b) F(U, t) = Av. 

Proof. Let F = {(BU9 w*,) |O**| K} be the <f-dual hull of Sf by S = {sp F-, | 0 #= 
4= U c K open}. By Th. 8, ^~x = FAx is a compact hull of SfAx, and it is easy to see 
that Th. 8 can be applied to show that (Hx, hx) = lim 3TX is f.s. 

For each open U cz X let A'v be the set of the sections in the covering space H 
oiZT which canonically correspond to Bv, and for x e U let £'Ux or rj'Ux be the canonical 
maps of Bv or A'v into (Hx, hx), respectively. (Thus f o r / e 2^, ^ x ( / ) = rj'Ux(f) = the 
germ of/ at x ( / is the section from A'v corresponding t o / i.e. f(x) = germ o f / a t x 
for each x e U).) We denote by h the topology in H defined by "O cz H is h-open 
iff O n Hx is h^-open for all x G I " ; clearly h/H,, = h,,. For open U c X let b^(h) 
be the topology in A'v projectively defined by the maps {rj'Ux : A'v -> (Hx, hx) \ x e U}. 
As the (Hx, hx)'s are f.s., (A^, bv(h)) is Hausdorff for any open U cz X. 

For open U cz X let ^ : Bv -> 4̂[/ be the map sending /eB^ onto the section 
feA'u, where/(x) = germ of/ at x, for x e U. Then we easily show that p'v : (Bv, 
w*) -> (A[/, b[/(h)) is continuous for any open U cz X; for this end the continuity of 
the maps rj'UxPu : (Bi/, w*) -> (Hx9 hx) for any fixed open U cz K and each x e U is eno
ugh owing to the projective definition of bv(h) by the maps {rj'Ux : ̂  -> (Hx, hx)\xe 
e U}. But plainly rj'Uxp'u = ^ x and ^ , : (Bv, w*) -> (Hx, hx) is continuous for each 
xeU. 

Further, each pv is 1-1. To show it, take f,g e Bv so that p'v(f) = p'u(g\ It 
means that there is an open cover V of U such that Q**(f) = Quv(9), i.e. / o ^* r = 
= g o O*F, for each VeY*. The latter equality means that, given any Ve'f, for 
each (peFv we have /(O*F((p)) = g(0uv((p)) i.e. / = g on e*KFK. Thus / = g on 
each QIVFV for Ve f , hence / = g on u{g*KFK \Veir} and the condition (2) 
yields that f = g on Fv. 

59 



From that what we have known we gather that each p'v : (BV9 wv) -> (Av, bv(h)) 
is a homeomorphism as it is 1-1, continuous, the former space is compact and the 
latter Hausdorff. 

Now, for each open U c X we have by Lemma 5 the natural evaluation j v : 
: (XV9 tv) -> (BV9 WV) which is by 5 (b), (c) continuous and 1-1. There thus is a con
tinuous 1-1 map jx : (lx9 tx) = Hm SfAx -• (Hx9 hx) for each xeX. Let tx be the 
topology in Ix projectively defined by j x : Ix -> (Hx9 hx)9 and t the topology in the 
covering space P of Sf defined by "O c P is t-open iff O n Ix is t^-open for each 
xeX"; thus tjlx = tx. Let ^ ( t ) be the topology projectively defined in Av by the 
maps {rjVx : Av -> (I^, tx) | x e U}. Now we have the following commutative diagram: 

(Av, bv(t)) 
Pv 

tUx 

(xv, tv) 

Šux 

-* (-* tx) 

— - > (Bv, w*v) — ^ - * (A'v, b'v(h)) 

Чvx 

(Hx, hx)^ 

Firstly we shall show that pv is continuous. To this end it is enough that rjVxpv be 
continuous for any xeU owing to the definition of bv(t). But the latter maps are 
continuous iff £Ux is for each xeU. Owing to the way of definition of tx this happens 
iff jx£Ux is continuous for each xeU. But f . . ^ = <^'Vxjv which is continuous because 
such is j v and £'Ux for each xeU. 

Now we shall show the continuity of pv \ Since p'v is a homeomorphism and j v 

as well (onto jv(Xv))9 it is enough to show the continuity of qv = pvjvpv
l. Owing 

to the definition of bv(h) it will be assured by the continuity of rjVxqv for each xeU. 
But it is jxrjVx which is continuous for all x e U iff such is rjVx for all x e U (mind the 
definition of tx). But it is just the case owing to the definition of bv(t). 

If U a X is open, x e U, a e XV9 a = ^Ux(a)9 we set graph (a; U) = {£Uy(a) | y e 
e U}. For a e P, a elx we set H(a) = {N u graph (a; U) | N is a t^-neighborhood 
of a in IX9 U <= X open with x e U, a eXv with £Ux(a) = a}. Then H(a) is a base 
of a filter round a. These bases define a closure t in P. Plainly tjlx = tx for all x e X 
whence bv(t) = bv(i) for all open U c K, which finishes the proof of (a). 

To prove (b) we first notice that pv is 1-1 for any open U a X. Namely if for 
a9b e XU9 a 4= b we have p^a ) = Pu(^) t n e n (look at the diagram) jxrjUx pv(a) = 
= )xnuxPu(b) for any x e U. But it means that r]'Vxp'vjv(a) = r\Vxp'v jv(b) for all 
x e U. But pV9jv and / /^ are 1-1 hence it is impossible (the latter map is 1-1 because, 

given p9qe AV9 p =1= q9 we can find for any y e U a Vye Ay, 
least for one 

U, and then at 
Vy we must have u = QVVy(p) * £*Vy(<1) = i>; therefore >/^(P) = 

= (germ of u at y) =j= (germ of v at y) = >l[/y(q) as D*^ are 1-1 for V, We Ay). 
It is clear that for any open U <= K and any a e Xv the section pv(a) = a : U —> 

-> (P, t) is continuous, hence Av c F(U, t). And if r e F(U, t) then by the definition 
of ?, for each x e U there is an open Vx c U and an aKx e KKx such that r(y) = aKjc(y) 
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for all yeVx. If Z e Vx n V, then aKjc(Z) == r(Z) = ^Ky(Z), hence dVx = dVy on 
W = Vxn Vy. It means that pw(aw) = pw(bw) for aw = e V ^ a ^ ) * *V = Qvyw{avy\ 
As /v is 1-1, we have aw = bw, i.e. the family [aVx | x e U} is smooth (see 3). There 
thus is aeXv such that £c/Fx(a) = avx f ° r all x e U. Thus d(y) = aKy(y) = r(y) for 
all y e U hence p^OO = a = r and F(U, ?) c Av which proves (b). 

10. Remark. It might be worth to notice that in the proof of the assertion (a) 
of Th. 9 Sf need not be a sheaf; it is enough that it be only a presheaf, i.e. it need not 
fulfil the conditions a, b of Def. 3. In fact, if a presheaf Sf fulfils all the conditions 
of Th. 9 then it fulfils the condition (a) of Def. 3, because we have shown in the proof 
that the maps are 1-1 which is equivalent to the condition (a) of Def. 3. But it need 
not fulfil the cond. (b). The latter we needed to prove the inclusion F(U, i) c Av 

in the assertion (b) of Th. 9. In fact, we have proven the following: "Let a presheaf Sf 
fulfil the conditions of Th. 9. Then there is a topology 1 in the covering space P of Sf 
such that pu : (Xv, tv) -> (Av, bv(1)) is a homeomorphism and Av c F(U, ?) for 
any open U <= X. Moreover, the maps pv : (Xv, tv) -> (Av, bv(1)) are jointly con
tinuous (it is to say that pv : (Xv, tv) x U -• (Av, bv(1)) sending (a, x)eXv x U 
onto d(x) are continuous)". Namely, setting for a e P, oceIx : K(a) = {v}ly | y e U, 
y4"x}yjN\xeUczX open, N is a ^-neighborhood of a} then it is easy to see 
that K(a) is a base of a filter round a in P and that these bases yield a Hausdorff 
topology t in P such that 1jlx = tx for all xeX. Bearing in mind all what we have 
already proven it is easy to see that 1 has all the properties we have claimed. If 
(Ix, tx) = Hm SfAx then 1jlx is coarser than tx for any xeX. If Sf is moreover a sheaf 
then the full assertion of Th. 9 holds. Notice that t is only a closure, not a topology. 
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