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Embedding Of Presheaves Into Dual Unit Balls

J. PECHANEC-DRAHOS
Department of Mathematics, Charles University, Prague*)

Received 19 November 1981

By means of embedding of a given presheaf & = {X, |o,4| (A< )} into 7 = {B, | o7} .
.{4A= )}, where B, is the dual unit ball of a normed space of continuous functions on X,, we
get a theorem on functional separation of inductive limit of &; a theorem on representation of
presheaves by sections follows from it.

BNOXeHHe NpPENNy4KOB B IyaibHble €IMHMYHBIE WIADHL BIOXEHHEM AHHOTO HpeIMy4vKa
& = {X, el (A=)} B T = {B, lo}}| (A=)}, rne B, ectb nyansusiit equEM4HbI map He-
KOTOPOrO HOPMHPOBAHHOTO NPOCTPAHCTBA HENPEPHIBHBIX (GYHKIME HA X, MBI MOJNYYHM TEOPEMY
0 (YHKIHOHANLHON OTHENMMOCTH MHIYKTHBHOTO NMpEAena & ; U3 3TOM TEOPEMEI CIEAYET TeOpeMa
O TIpE/ICTABIIEHHH TPEMIITYKa CEYEHUAMH.

Vnofeni pfedsvazku do dualnich jednotkovych kouli. Vnofenim daného pfedsvazku & =
= {X, |ogp) (A=)} do T = {B, |e3}| (A=)}, kde B, je dudlni jednotkova koule n&jakého
normovaného prostoru spojitych funkci na X,, dostaneme vétu o funkciondlni oddélitelnosti
induktivni limity &; z ni plyne véta o reprezentaci pfedsvazku fezy.

Introduction

There are two questions we have tried to solve in [2]—[5], and with which we also
deal here. The one is when the topology ¢ of the inductive limit of a presheaf & =
= {(X, t,) g,,] (AZ)} of topological spaces is Hausdorff, the other is when
a presheaf of topological spaces over a topological space can be represented by sec-
tions in its covering space. The main means we have used there to get results in both
mentioned directions is the embedding of & into a presheaf of compact spaces
whose inductive limit resp. stalks are Hausdorff. We have dealt there with the
embedding into cubes Q"*=) (where Q is the compact unit interval and F(X,) is a set
of t,-continuous functions on X, with values in Q), and into the space of all con-
tinuous multiplicative linear functionals on a Banach algebra 2/(X,) of t,-continuous
functions on X,. Both ways have their own traits and every theorem bears the marks
of that by means of which it was gotten. The theorems proven by the second way
are more general if we take in account the interplay of the algebras, but their drawback
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is the requirement that the «/(X,)’s be Banach algebras. On the other hand, those
proven by the first way (of embedding in cubes) need not require so much from the
sets F(X,) themselves.

In this paper we employ another sort of embedding that has not been used for
this end yet, namely the embedding into the unit ball of the dual of a normed space
N(X,) of t,~continuous functions on X,. This method keeps the advantages of the
embedding into the functionals as to the requirements put on the interplay of the
normed spaces N(X,) on the one hand, and in a fair measure saves the freedom of
choice of the sets F, themselves which the embedding in cubes enjoys, because the F,’s
may be any, under the only condition that there be a countable confinal subset in
{A=). Thus gotten Theorem 2.5 on separation of the topology of inductive limits,
and Th. 2.6 on the representation extend the range of the theory.

1. Notation. Throughout the paper the category of topological spaces will be
denoted by TOP. If Z is a topological space then the set of all continuous (con-
tinuous and bounded) real functions on Z will be denoted by C(Z — R) (C*(Z — R)).
Where it is convenient we denote a topological space Z by (X, t), where X is the under-
lying set of & (sometimes denoted also by |Z|) and 1 is its topology.

2. Definition. Let & = {Z, |0.5| (A=)} be a presheaf from TOP. A hull (weak
hull) of & is a pair (¢, Z) where ¢ = {%, |0,5| (A=)} is a presheaf from TOP and
Z ={e,: %, > %, | xe A}, where each e, is a continuous 1-1 open (continuous 1-1)
map of %, into %, such that the following diagram commutes for any «, B € A,

a < B

Cqp
1,7,

o o

Oup

€ b
Where possible, we omit the family & saying that € is the hull of &. If moreover
every &, is compact then % is called compact (weak compact) hull of &.

3. Definition. A presheaf & = {Sy IQUV| X} of sets over a topological space X
will be called sheaf if

a) Given an openset U < X and a, b € Sy, then the existence of an open cover ¥~
of U such that gyy(a) = guy(b) for all Ve ¥ yields that a = b.

b) Given an open U < X, an open cover ¥~ of U and a family {a, € S, | Ve v}
such that gy w(@y) = ewwnv(aw) whenever VA W % 0 (such a family will be called
smooth), then there is an a € Sy with ¢yy(a) = a, for all Ve ¥".

In the following few lemmas we shall recall some well known properties of the
things which sha'l occur later and order them for the further use. Then we shall be
able to get the main theorems 8 and 9 following from it. The following lemma is
well known:
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4. Lemma. Given two topological linear spaces E, F and a continuous linear
map m : E - F, let us denote by (E*, wi), (F*, w}) their duals with the w*-topology.
Then the dual map m* : (F*, wy) — (E*, wy) is continuous and linear; m* is 1-1
if m(E) is dense in F.

5. Lemma. A. Given a topological linear space X, let Fy be a normed space of
some bounded continuous functions on X, endowed with the sup-norm. Let By be
the unit ball of F. Then By is a w*-compact subset of (Fx, w*), and if we assign to
any x € X a function jx(x) on Fx by (jx(x)) (¢) = ¢(x) for ¢ € Fx then for the map
jx:X - Fy (we call it a natural evaluation) we have

(a) jx maps X into By,
(b) jx : X = (Bx, w*) is continuous; it is open if Fy separates points from

closed sets of X,

(c) jx is 1-1 if Fy separates points of X,

(d) for @ € Fy, fe By set ¢(f) = f(¢). Then ¢ is a continuous function on
(By, w*) and Fy = {¢| @ € Fy} separates points of By.

B. Given another topological space Y and a normed space Fy of some bounded
continuous functions on Y, with the sup-norm, and a continuous map T:X —» Y
such that T* sends Fy into Fy, then the dual map T** : F5 — Fy maps By into By
and T**:(By, w*) - (By, w*) is continuous. Further, the following diagram
commutes:

T**
(Bx, W*) B— (BY’ W*)

e

X Y

Proof. The w*-compactness of By is well known. The proof of A(b), (c), (d) is
standard argument of embedding topological spaces into products. The proof of
A(a) and B is straightforward.

6. Lemma. Let & = {Z, g,ﬁ[ (A=)} be a presheaf from TOP. Suppose that
for every « € A we have a normed space F, = C*(Z, — R) with the sup-norm which
separates points) (points, and points from closed sets) of Z,, and such that g:‘ﬂ maps Fy
into F, for all «, Be A, « < B. For each a € A let B, be the unit ball of the dual
space F, with the w*-topology (denote it by w}), and let j, : Z, — (B,, wy) be the
natural evaluations (Lemma 5A). We set & = {F, |ae A}, Z = {j,|ac 4}, 7 =
= {(B,, w) [eX;| CAZ)}. Then (7, Z) is a weak compact (compact) hull of &
(see 2; it is called the &-dual hull of &), and & = {F, l a € A} is a separting family
for 7 (see 5A(d)).
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Proof. Straightforward from the lemma 4 and 5.

7. Notation. Let & = {Z, |0,5| (A<)} be a presheaf from TOP. For ae A
we set A[a] = {fe 4 | B <o} and & = {Z, |0us] (A[¢] £D}. We denote by
(&) the set of all a e A for which {A[a] <) is right directed and <%, | {0.5| B €
e A[a]}) = lim & 4oy

Now we have made things ready so that we can get the results on functional
separation of inductive limits and representation of sheaves by sections.

8. Theorem. Let & = {Z, IQaﬁl (Ag)} be a presheaf from the category of
topological spaces. Suppose that there is a set B = A such that

(1) For every « € B we have a separating set F, = C*(%, — R) such that if we
consider the sup-norm in the sets F, then g;",, maps F, onto a norm-dense subset
of F, foralla, e B, a < B.

(2) Either B is cofinal in (A< ), or (AZ) is ordered, (4 — B=) well ordered
and A — Bc £(¥).

(3) There is a countable cofinal subset of (B< .

For ae 4 let F, = sp F, (it is the smallest module containing F,) and let us
endow F, with the sup-norm. Let & = {F, |« € B}, let 7 be the &-dual hull of & =
= {Z, |0ap| <B=D} (see 6).

Then & = lim 7 is functionally separated (f.s.) meaning that for any p, g e
€|o|, p + q there is a continuous function f on X with f(p) + f(q). # = lim ¥,
and £ = lim & are f.s. If moreover every F, separates points from closed sets of &,
then J is a compact hull of &5.

Proof. If B is cofinal in (A<) then (B<) is right directed (and lim & is iso-
morphic to lim ). If (4<) is ordered, (4 — B<) well ordered and 4 — B
< Z(&) then it is easy to see that B is cofinal in (4[6] <) with 6 being the smallest
element of {feA|{ye Aly 2 B} = A - B} (and lim & is again isomorphic to
lim &y because, as it can be easily seen from [2, Lemma 1.4.1(5)], lim & is iso-
morphic to lim & 44)). As 6 € Z(&) and (A[6] <) is by 7 right directed, (B<)
is such, too, being cofinal in {A[d] <). In any case (B<) is right directed (and
lim & is isomorphic to lim &), and from the condition (3) it follows that there is
a cofinal subset C of (B<) of the type w,. Thus lim & is isomorphic to lim ¥
and as the condition (1) holds for all «, f € C, we may assume that B = C i.e. that
{BZ) itself is of the type w,.

T = {(B,, w}) |ex;| <B=<)} (see 6) is a weak compact hull (a compact hul! if
moreover the F,’s separate points from closed sets of Z,) of &, where 0x pare homeo-
morphisms of (B,, w;) into (B, w}), being continuous and 1-1 by Lemma 5, and the
(B,, wy) being compact. Hence 7 fulfils the conditions of [2, Cor. 1.5.5 or Remark
1.5.6B]. Thus " is f.s. Further, as 7 is a weak compact hull of &5, there is a 1-1
continuous map j : # — X", whence ¢ is f.s. As . is isomorphic to ¢, £ is f.s., too.
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9. Theorem. Let & = {(Xy, ty) IQuyl X} be a sheaf from the category of topo-
logical spaces over a separated topological space X such that every xe X is of
a countable local character. Suppose that for each open U = X we have a set F, <
= C*((Xy, ty) = R) (see 1) which separates points and points from closed sets of
(X, ty), such that gf, maps Fy into Fy, for any ¥ < U, and that

(1) Every x € X has a filter base Ax of open neighborhoods such that if we
consider the sup-norm in the sets Fy, then gf,F is norm dense in F, for all U, Ve
eAx, Ve U.

(2) If U = X is open and ¥ is an open cover of U then sp U{ofyFy | Ve ¥}
is norm dense in sp Fy (sp M is the smallest module containing M).

Then there is a separated closure  in the covering space P of & such that for
the set I'(U, i) of all continuous sections over U, for the natural map py sending
a € Xy onto the section d over U, where d(x) is the germ of a in the stalk over x,
and for the topology by(?) projectively defined in Ay = py(Xy) by the maps {ry , :
: Ay > (I, }[1) | x € U}, where ry (d) = d(x) for x € U, we have for any openU < X
(@) pu : (Xy, ty) = (Ay, by(?)) is a homeomorphism.

(b) (U, 1) = Ay.

Proof. Let 7 = {(By, wy) Igzﬂ X} be the &-dual hull of & by & = {sp Fy l 0+
+ U < X open}. By Th. 8, 7, = J 4, is a compact hull of &, and it is easy to see
that Th. 8 can be applied to show that (H,, h,) = lim 7, is f.s.

For each open U < X let Ay be the set of the sections in the covering space H
of J which canonically correspond to By, and for x € U let £, or ny, be the canonical
maps of By or Ay, into (H,, h,), respectively. (Thus for f € By, &yx(f) = ny(f) = the
germ of f at x ( fis the section from A}, corresponding to f, i.e. f(x) = germ of f at x
for each x € U).) We denote by h the topology in H defined by “O < H is h-open
iff 0 N H, is h.-open for all x e X’; clearly h/H, = h,. For open U < X let by(h)
be the topology in Ay projectively defined by the maps {ny, : Ay = (H,, h,) | x e U}.
As the (H,, h,)'s are f.s., (4y, by(h)) is Hausdorff for any open U < X.

For open U < X let py, : B, - Ay be the map sending f € By onto the section
f € Ay, where f(x) = germ of f at x, for x € U. Then we easily show that py : (By,
wy) — (Ay, by(h)) is continuous for any open U < X;; for this end the continuity of
the maps ny,py : (Bu, wy) = (H,, h,) for any fixed open U < X and each x € U is eno-
ugh owing to the projective definition of by(h) by the maps {ny, : 4y > (H,, h,)| x €
e U}. But plainly ny.py = &y, and &y, : (By, wy) = (H,, hy) is continuous for each
xeU.

Further, each py is 1-1. To show it, take f, g € By so that py(f) = py(g). It
means that there is an open cover ¥~ of U such that o53(f) = eiv(9), i-e. fo0ly =
= g o opy, for each Ve ¥ . The latter equality means that, given any Ve ¥, for
each ¢ € F,, we have f(o5y(¢)) = g(etv(9)) ie. f =g on gfyFy. Thus f =g on
each gyyFy for Ve ¥, hence f = g on U{g},Fy| Ve ¥} and the condition (2)
yields that f = g on Fy.
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From that what we have known we gather that each py, : (By, wy) — (4y, by(h))
is a homeomorphism as it is 1-1, continuous, the former space is compact and the
latter HausdorfT.

Now, for each open U = X we have by Lemma 5 the natural evaluation j, :
: (Xu, ty) = (By, wy) which is by 5 (b), (c) continuous and 1-1. There thus is a con-
tinuous 1-1 map j, : (I, #}) = lim &, — (H,, h,) for each xe X. Let t, be the
topology in I, projectively defined by j, : I, — (H,, h,), and ¢ the topology in the
covering space P of & defined by “O < P is t-open iff O n I, is t,-open for each
x € X”; thus t[I, = t,. Let by(t) be the topology projectively defined in 4y by the
maps {fy, : Ay = (I, 1,) | x € U}. Now we have the following commutative diagram:

by Ju Py
(4u, by(1)) <— (X, ty) —— (Bu, wp)

— (A, by(h))
Nux é’Ux iilx ”;]x

L \ Jx ¥
- s (,t)——(Hoh)e

Firstly we shall show that p, is continuous. To this end it is enough that n,,p, be
continuous for any x e U owing to the definition of by(t). But the latter maps are
continuous iff &y, is for each x € U. Owing to the way of definition of ¢, this happens
iff j, &y, is continuous for each x € U. But j &y, = &, jy Which is continuous because
such is j, and &, for each x € U.

Now we shall show the continuity of py '. Since py, is a homeomorphism and jy
as well (onto jy(Xy)), it is enough to show the continuity of g, = pyjypy ' Owing
to the definition of by(h) it will be assured by the continuity of ny,qy for each x e U.
But it is j,#y, Which is continuous for all x € U iff such is #, for all x € U (mind the
definition of ¢,). But it is just the case owing to the definition of by(t).

IfU c X is open, x e U, a € Xy, « = &y(a), we set graph (a; U) = {&y,(a) | ye
e U}. For ae P, ael, we set H(x) = {N U graph (a; U)| N is a t,-neighborhood
of a in I, U < X open with x e U, a € X, with ¢y,(a) = a}. Then H(a) is a base
of a filter round «. These bases define a closure # in P. Plainly /I, = ¢, for all xe X
whence by(t) = by(f) for all open U = X, which finishes the proof of (a).

To prove (b) we first notice that py is 1-1 for any open U = X. Namely if for
a, be Xy, a + b we have py(a) = py(b) then (look at the diagram) j.ny, pu(a) =
= jMux Pu(b) for any x e U. But it means that ny,py ju(a) = ny.py ju(b) for all
x € U. But py, jy and ny, are 1-1 hence it is impossible (the latter map is 1-1 because,
given p,q € Ay, p + g, we can find for any yeU a V,e Ay, V, = U, and then at
least for one V¥, we must have u = opy (p) + oiv,(q) = v; therefore ny,(p) =
= (germ of u at y) #+ (germ of v at y) = n; (q) as o}y are 1-1 for V, We 4y).

It is clear that for any open U < X and any a € X, the section py(a) = d: U —
— (P, 1) is continuous, hence Ay = I'(U, ). And if r € I'(U, 1) then by the definition
of #, for each x € U there is an open V, < U and an a,_e X, _such that r(y) = d, (v)
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for all yeV,. If zeV,nV, then 4, (z) =r(z) = dyy(Z), hence dy, = dy, on
W = V, n V,. It means that py(ay) = py(by) for ay = ov.wl(ay,), by = oy wlay,)-
As py is 1-1, we have ay = by, i.. the family {ay, | x € U} is smooth (see 3). There
thus is a € Xy such that oy, (@) = ay, for all x € U. Thus 4(y) = dy (v) = r(y) for
all y e U hence py(a) = 4 = r and I'(U, t) = Ay which proves (b).

10. Remark. It might be worth to notice that in the proof of the assertion (a)
of Th. 9 & need not be a sheaf; it is enough that it be only a presheaf, i.e. it need not
fulfil the conditions a, b of Def. 3. In fact, if a presheaf & fulfils all the conditions
of Th. 9 then it fulfils the condition (a) of Def. 3, because we have shown in the proof
that the maps are 1-1 which is equivalent to the condition (a) of Def. 3. But it need
not fulfil the cond. (b). The latter we needed to prove the inclusion I'(U, 1) = 4,
in the assertion (b) of Th. 9. In fact, we have proven the following: “Let a presheaf &
fulfil the conditions of Th. 9. Then there is a topology 7 in the covering space P of &
such that py : (Xy, ty) = (Ay, by(?)) is a homeomorphism and A4, = I'(U, ) for
any open U = X. Moreover, the maps py : (Xy, ty) = (4y, by(f)) are jointly con-
tinuous (it is to say that py : (Xy, ty) X U — (Ay, by(?)) sending (a, x)e Xy x U
onto d(x) are continuous)”. Namely, setting for «e P, a1, : K(«) = {U}I, | y e U,
y*£x}UN | xeU < X open, N is a t,-neighborhood of a} then it is easy to see
that K(«) is a base of a filter round « in P and that these bases yield a Hausdorff
topology 7 in P such that #[I, = t, for all x € X. Bearing in mind all what we have
already proven it is easy to see that 7 has all the properties we have claimed. If
(I, 1¥) = lim &, then i/I, is coarser than 7} for any x € X. If & is moreover a sheaf
then the full assertion of Th. 9 holds. Notice that 7 is only a closure, not a topology.
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