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In this note we give examples which show that there are many distinct types of exponentia
tion. A definition of exponentiation will be presented which encompasses these various types of 
exponentiation. Using this definition, several well known results on exponentiation in a semigroup, 
including the Euler-Fermat Theorem for finite semigroups, are generalized. 

V této poznámce uvádíme příklady ukazující, že existuje mnoho různých typů exponenciace. 
Bude prezentována definice exponenciace, zahrnující tyto různé speciální typy. Užitím této defi
nice jsou zobecněny některé známé výsledky o exponenciaci v pologrupě, včetně Euler-Fermatovy 
věty pro konečné pologrupy. 

B 3TOH 3aMeTKe MM BKJiiOHaeM npHMepbi noxastroaioruHe, HTO cymecTByioT MHorne pa:3JiHH-
Hbie THIJM o6pa30BaHH« CTeneHeň. By^eT npeflcraBJíeHO onpe^ejieHHe o6pa30BaHHH CTeneHeň, 
BKJiioHaiomee 3TH pa3JiHHHbie -iacTHbie TIHIM. Hcnom>3yíi STO onpeaejieHHe, MM o6o6rnaeM HCKOTO-
pbie H3BecTHbie pe3yjnvraTM o creneHHx B nojiyrpynne, BjcjnoHaa TeopeMy 3itnepa-OepMaTa AJIH 
KOHeHHbix nojiyrpynn. 

Throughout this note, G denotes a groupoid (i.e. a nonempty set with a binary 
operation); and N denotes the set of counting numbers. 

Definition 1. Let P and S be nonempty sets with x e S. A P-exponentiation of x is 
a mapping E: {x} x P -> S. For keP, xk denotes E(x, k) and is called the k-th 
power of x. 

Example 2. Let S be a set and M the set of all mappings from 5 into S. 

(i) An M-exponentiation of x e S can be defined as E(x,f) = xf = (x)f for 
feM. This type of exponentiation is considered in Bruck's article on nonassociative 
integers [ l, pp. 82-86]. 

(ii) An N-exponentiation of x e S can be defined as 

^ ^ " { ( x ) / ' - 1 ' if ŕ> 1 
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where i e N,fe M, andf1 ' - 1 denotes the (i — l)-th composition off If 5 is a semi
group and f is the inner right translation defined by (s)f = sx for all s e S, then E 
is the usual exponentiation of x in the semigroup 5 . 

Example 3. Let S = {x, b, c). An N-exponentiation of x can be defined as 

E(x, i) = xl = 
x if i = 1 
b if i is even 
c if i is odd . 

Usually exponentiation is defined in terms of an associative binary operation. 
The next three definitions of N-exponentiations in a groupoid will be used to exemplify 
the generality of our results. 

Definition 4, For xe G and neN, x1 = x and xn + 1 = xnx. 

Definition 5. For xe G and neN, xl = x and 

x if n = 1 
x V " 1 if n > 1 . 

Definition 6. For xeG and n e N, x1 = x and 

xnx if n + 1 is odd 
(x(" + 1) /2)(x (" + 1)/2) if w + 1 is even. 

Using the following nonassociative operation table and considering aD in each 
of the last three definitions, we can see that these definitions are distinct. 

Table I 

• a b c d 

a c b c b 
b b c a c 
c b a a d 
d d c d a 

Definition 7. Suppose S is a set and xe S with an N-exponentiation E and x has only 
finitely many distinct powers. Let r be the least positive integer such that xr = xn 

[i.e. E(x, r) = E(x, n)] for some positive integer n where n > r. Let u be the least 
possible value for n. Call r the index of x and m{= u — r) the period of x. In 
Example 3, x has index 2 and period 2. Using Table I, a has index 3 and period 1 
under Definition 4; but, under Definitions 5 and 6, a has index 1 and period 3. Also, 
note that under Definition 6, b has index 1 and period 4 although b3 = b4. 



Theorem 8. Let 5 be a set and xe S with an N-exponentiation E such that x has index r 
and period m under E. Then the following statements are equivalent: 

(a) If x* = xJ then xi+1 = xJ+1. 
(b) If xl = xJ then xi+h = xJ+h for all heN. 
(c) Let k, neN. Then fc _ r and m | n if and only if xk+n = xk. 

Proof, (a => b). By induction, a implies b. 

(b => c). Suppose fc _ r, m | n, and whenever x1 = xJ then xl+h = x-7'" .̂ There 
exists integers p and rf such that k = r + p and n = dm. By Definition 7, xr = x r+m . 
From part b, x r + m = x ( r + m ) + m = x r+2m . By induction xr = x r+dm. Hence xr+p = 
= x(r+dm)+p. Therefore xk = xk+n. 

Now assume xk+n = xk and part b holds. By Definition 7, k = r. Claim: there 
exists a positive integer s _ m such that xk = x r + s . If fc = r, let 5 = m. If r < fc _ 
_ r + m, let s = k — r. Otherwise there exists t > m such that fc = r + t. There 
exists integers j and w such that t = jm + w where 0 _ w < m . If w = 0, then 
xk = xr. So, let s = m. For w * 0, x* = x

r+>v+-/m = x r + w . So, let s = w. Hence the 
claim is proved. Now suppose m)(n. Either n < m or n > m. If n > m, n = hm + q 
where 1 _ q < m. Thus xk = x

k+hm+4 — xfc+^. Hence in either case there exists 
a positive integer v < m such that xk = xk+v. From the claim there exists an integer e 
such that s + e = m. Consider xr = x r + m = x r + s + e = xk+e = xk+v+e = x

r+s+v+e = 

= x(r+s+e) + v = x(r+m) + v = %r+v w h e r e r < m > T h i s c o n t r ad i c t s Definition 7. 

Hence m\n. 

(c => a). Suppose part c holds and x l = xJ. Without loss of generality, assume 

i < j . By part c,j = i + qm. Again by part c, x f + 1 = x(i+1)+qm. Thus xi+1 = xJ+1. 

Definition 9. Let 5 be a set and xe S with an N-exponentiation E such that x has only 
finitely many distinct powers under E. We say £ is a cyclic N-exponentiation if 
x* = xJ implies xI + 1 = xJ+1. 

Clearly, if S is a finite set then Example 2 (ii) is a cyclic N-exponentiation. 
Hence, if G is a finite groupoid then Definition 4 is a cyclic N-exponentiation for 
every element of G. Also, Example 3 is a cyclic N-exponentiation. Using Table I, 
Definition 5 is cyclic for d; but it is not cyclic for a, b, or c. Definition 6 is not cyclic 
for any element in the groupoid of Table I. 

Table II. 

a b c d l e 

a c b c b d 
b d b d d c 
c e c b e d 
d b e e b 
e b c a b a 

Definitions 4 and 5. 



The following tables which are halfgroupoids [2, p. 1] were constructed so that 
every element has a cyclic N-exponentiation under the indicated definitions. The 
blanks can be arbitrarily filled with a, b, c, d (or e in Table II) to form a groupoid. 
Thus one can see that every element of a groupoid can have a cyclic N-exponentiation 
with definitions of exponentiation other than Definition 4. 

Table III. 

a b c d 

a b 
b c d 
c d 
d c b c d 

Definition 6. 

Corollary 10. Let S be a set and x e S with a cyclic N-exponentiation E such that x 
has index r and period m under E. Then there exists a unique positive integer e such 
that xe = x2e where r = e^r + m — 1. Furthermore m I e. 

Proof. There exists a unique e e N such that r = e = r+m— 1 and m | e. 
From Theorem 8, x2e = xe+e = xe. 

Hence Corollary 10 generalizes the well known result that some power of every 
element of a finite semigroup is idempotent [3, p. 20]. The next corollary is a direct 
consequence of Theorem 8 and generalizes the Euler-Fermat Theorem for finite 
semigroups [4]. 

Corollary 11. Let S be a finite set such that every element s has a cyclic N-exponentia
tion Es which may vary from element to element. Let R = max {rs | rs is the index 
of 5 under Es} and M = /.cm. {ms | ms is the period of s under Es}. Then R and M 
are the least positive integers such that sR+M = sR under Es for all se S. 

If Definition 5 is used for every element in the halfgroupoid of Table II then 
R = 4 and M = 12. However if Definition 4 is used for a, b, and c and Definition 5 
is used for d and e then R = 4 and M = 30. 

Lemma 12. Let S be a set and X G S with a cyclic N-exponentiation £ such that x 
has index r and period m under K. Let Cx = {r, r + 1,..., r + m — 1}. Define two 
binary operations, © and *, on Cx by a © b = c where xa+b = xcanda * b = d 
where xab = xdfora, b, c, d e Cx with + and juxtaposition denoting integer addition 
and multiplication, respectively. Then (C^, ©, *) is ring isomorphic to Zjm (i.e. 
integers modulo m). 

Proof. There exists a positive integer j and e e Cx such that e = jm. Define en 

to be that element of Cx such that xen = xe+n for n e {0, 1, 2 , . . . , m - 1}. Define 



h: Cx -» Zjm by (e„)h = n (i.e. the equivalence class of integers congruent to 
n mod m). It follows routinely that h is the desired isomorphism. Note en e n. 

The final result generalizes the well known theorem that if X is a finite cyclic 
group generated by x then x* is a generator if and only if t is relatively prime to m 
[6, p. 17]. 

Theorem 13. Let S be a set and xe S with a cyclic N-exponentiation E such that x 
has index r and period m under £. For a positive integer f _ r, then t is relatively 
prime to m if and only if for each veN, where v = r, there exists a positive integer 
n _ m (depending on v) such that xtn = xu. 

Proof. Let k e N, then fc is a generator for the cyclic group Zjm if and only if 
(k, m) = 1. Hence, from Lemma 12, ek is a generator for (Cx, ©) if and only if 
(ek, m) = 1. Consequently for t ^ r, (t, m) = 1 if and only if there exists ek e Cx 

such that (ek, m) = 1 and x' = xek. Since *; ^ r there exists c e Cx such that x" = xc. 
Thus, if (f, m) = 1 then there exists n e N such that xneic = xc. By repeated use of 
Theorem 8(b), xnek = xnf. Thus xnt = x". The converse follows by a reverse argument. 

Our final result characterizes a cyclic N-exponentiation in terms of a groupoid. 

Proposition 14. Let S be a nonempty set and E is an N-exponentiation of x e S. 
Let Px = {xn\ne N} and define a relation * from Px x Px into P* by (xk, x*)* = 
= xk + 1 . Then (Px, *) is a groupoid if and only if whenever xJ = xk then xJ + 1 = x k + 1 

if and only if (Px, *) is a right cancellative left unar. 

Proof. The proof is routine and uses Theorem 8. 
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