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1984 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSIC A VOL. 25. NO. 1 

Two Enumeration Principles for Free Algebras 

J. D. H. SMITH 
Technische Hochschule Darmstadt*) 

Received 30 March 1983 

Two enumeration principles for finite free algebras in locally finite varieties, based respec
tively on essential dependence and linearity, are discussed and illustrated. A concept of linearly 
essential dependence of an algebraic operation on its arguments is then introduced, enabling 
these two principles to be combined. The technique obtained is applied to varieties of commutative 
Moufang loops. In particular, the free commutative Moufang loop of nilpotence class 4 and 
exponent 3 is shown to have cardinality 3d(-n\ where 

rf(»)=-+(;) + 4(;) + i4( ; )+3o( j ) + 2o(;). 

Jsou diskutovany a ilustrovany dva enumeracni principy pro konecne algebry v lokalne" 
konecnych varietach, zalozene na podstatne zavislosti a linearitS. Tato technika je aplikovana 
na variety komutativnich Moufangovych lup. 

,3,HCKyTHpyK>TCH H HJiJiycTpHpvK>TCfl JXBSL 3HVMepauHOHHbix npHHHHna flJifl KOHeMHbix anre6p 
B JIOKaJIbHO KOHeHblX MHOr006pa3HHX, OCHOBaHHbie Ha CymeCTBeHHOH 3aBHCHMOCTH H JIHHeapHOCTH. 
3Ta TexHHKa rrpHMeHHeTCH K MHoroo6pa3HHM KOMMyTaTHBHbix .nyn Mycj>aHr. 

1. Introduct ion 

Let T be a locally finite variety of algebras, i.e. such that the free T-algebra 
on a finite set is itself finite. One then has the problem of specifying, for each natural 
number H, the cardinality of the free T-algebra on n generators. Notorious examples 
of this problem are furnished by distributive lattices ([l , p. 97]; [5]) and commutative 
Moufang loops ([8, Vopros 10.3]; [9, Problem 10.2]; [16]). The problem gains ad
ditional interest when its solution entails a detailed analysis of the structure of the 
free algebras. The current note looks at two principles that are useful in tackling the 
problem, illustrating their application with a number of examples. The principles 
themselves, examined in sections 2 and 3 respectively, are quite elementary, but 
combining them, as in the last section, enables one to simplify certain apparently 
complicated enumeration problems — such as those for exponent 3 commutative 
Moufang loops of nilpotence class 4 and 5. 

*) Technische Hochschule Darmstadt FB4 AG1 Schlossgartenstrasse 7, D-6100 Darmstadt, 
West Germany . 
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2. Essential dependence 

An n-ary operation (x l 5 ...,xn)p of T is said to be essentially dependent on 
{x1? ..., xn], essentially n-ary, or just essential (if specific reference to the arguments 
or arity is unnecessary), provided the element (xl9 ..., xn) p of the free T-algebra XF 
on the set X = {xl9 • ..,x„} does not He in any subalgebra of XF generated by 
a proper subset of X (cf. [11, p. 37]). For example, in the variety of distributive 
lattices the operation x u y is essentially binary, whereas (x u y) n x is not.The 
first of the enumeration principles presupposes that it is easier to count the essentially 
n-ary operations rather than all of the n-aries. Let XF' denote the set of essentially 
n-ary elements of XF. Then (cf. [10, p. 181]) 

(2.1) |XF| = Z | Y F ' | , 
Y = X 

so that 

it suffices to know each |XF'| in order to determine each |XF|-

The relationship between the two is best expressed in terms of exponential generating 
functions [13, p. 97]. For each natural number n, let n be an n-element set. Define 

(2-2) /W-IИ-;, 

the exponential generating function for the cardinalities of the finite free algebras. 
Define 

(2.3) g(x) = £ \nF'\ 
n! 

the generating function for the essential operations. These definitions may be in-
terpred formally, or analytically if convergence obtains. (The formal interpretation 
is more generally applicable, but the analytic interpretation leads on to such refine
ments as asymptotic expansions.) Now by (2.1), 

(2.4) \nF\=i(^\,F\. 

Thus 

(2.5) f9(x)-(i -)-(i\"F'\-\ = 
\m=o m\J \r=o r\J 

= i*" I \rF'\--r-,=i-,i(n)\rF'\, i.e. f(x) = e*g(x). 
,,=-0 r+m = n r\ m\ n = On\r = o\rJ 

An example of the use of (2.5), consider the variety T of normal bands [6, 
IV.5], i.e. idempotent (aa = a) entropic (ab . cd = ac . bd) semigroups (ab . c = 

54 



= a . be). The normal band words essentially dependent on a set X = {xl9 ..., xn} 
of arguments may be written as yi-..yr, where {x1,...,xn} = {yx, . . . , y r } . The 
value of such a word depends only on the choice of yt and yr; there are n2 such 
choices. Thus \XF'\ = n2 and g(x) = ^n2 xnJn\ = (x + x2)ex, whence by (2.5) 
f(x) = (x + x2)e2*, i.e. \XF\ = 2n~2n(n + l) [6, Ex. IV.14]. A slightly more 
illuminating example is that of rectangular bands [6, Prop. IV.3.2], semigroups satis
fying aa = a and abc = ac. Here the only essential operations are xl9 xtx2, and 
x2x1. Thus g(x) = x + x2 andf(x) = (x + x2) ex. The most trivial example is that 
of sets or right zero bands (ab = b), where g(x) = x andf(x) = xex. The only essen
tial operation is the identity mapping. 

Elementary examples where the essentials are harder to count than the general 
operations are the varieties of vector spaces over a finite field GF(q), where |nF| = qn 

andf(x) = eqx. In such cases (2.5) can then be regarded as a quick way of counting 
the essentials. 

3. Use of linearity 

In many locally finite varieties T the cardinality of the finite free algebras grows 
so fast that the series (2.2) and (2.3) diverge. For example, if T is the variety of bands 

n - l 

(idempotent semigroups), \nF'\ = J~[ (n — r + l ) 2 r [6, IV(4.8)], or if Tis the variety 

of groups of exponent 3, \nF\ = 3d(n) with d(n) = n + [ " ) + ( " ] [7, Satz l ] . 

In the latter case d(n) seems to be the number to be looking at, not |nF|. Now d(n) 
is the dimension of the vector space over GF(3) obtained from the nilpotent group nF 
by taking the direct sum of the successive quotients down the lower central series. 
These quotients are certainly abelian groups, and become GF(3)-spaces on defining 
x J—> x~l to be scalar multiplication by — 1. A general version of this situation leads 
to the second enumeration principle, the use of linearity. 

From now on, consider F : Set -+ T as the free algebra functor from the category 
of sets to the category T of T-algebras and homomorphisms. 

Hypothesis 3.1. Suppose given a variety V of vector spaces over a finite field (GF(3) 
in the motivating example). Suppose given a functor E : T -> V (the vector space 
construction in the example) preserving the cardinalities of underlying sets of finite 
algebras, and such that A cz BeT implies AE c BEe V. 

Then the second enumeration principle is that for finite sets X, 

it suffices to know each dimXFF in order to determine each \XF\. 

Using this principle, the enumeration problem for T reduces to specification of the 
dimension d(n) = dim(nFF) for each natural number n. 
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4. Linearly essential dependence 

For the variety T if groups of exponent 3, as in the previous section, the use of 
linearity leads to the exponential generating function 

(4-0 j(*) = X < ! ( " ) ^ 
TI=O n\ 

for d(n)9 which is (x + x2/2! + x3/3!) . ex. One is then tempted to ask what is counted 
by the corresponding g(x) given by (2.5), namely x + x2/2! + x3/3!. To answer this 
question, consider the following 

Definition 4.2. Under Hypothesis 3.3, T-operations having a set X of arguments 
exhibit linearly essential dependence on their arguments if they do not lie in the 
subspace of XFK spanned by the YFF as Y ranges over all proper subsets of X. 
The T-operations (xu ..., xn)p that have linearly essential dependence on their 
arguments {x1? ...,xn} are also called linearly essentially n-ary or just linearly 
essential. Otherwise, (xl9 ..., xn) p is called linearly inessential. 

In the motivating Burnside group example, the ternary operation [xl9 x2] . 
. [x2, x3] is linearly inessential, although it is essential. 

Let e(X) denote the codimension of the subspace of XFF consisting of linearly 
inessential operations with X as their set of arguments. Then in analogy with (2.1) 
one has 

(4.3) dimXF£ = I > ( Y ) , 
yt=jr 

while (2.4) corresponds to 

(4.4) d(n) = i(n^e(r). 

Thus g(x) = e~xf(x) is the exponential generating function 

(4-5) 9{x) = te{n)X-
n=o n\ 

for the codimensions of the spaces of linearly inessential operations. For the variety 
of groups of exponent 3, the function g(x) = x + x2/2! + x3/3! enumerates the 
bases {xt}9 {[*i, x2~]}, and {[x1? x2, x3]} of complements of the spaces of linearly 
inessentials. 

The technique just outlined is admirably suited to varieties T of commutative 
Moufang loops of exponent 3, which behave much like the variety of groups of 
exponent 3. In particular, such varieties are locally finite [4, Theorem VIII. 11.3] 
and locally nilpotent [4, Theorem VIII. 10.1], so there is a functor E : T -• V defined 
exactly as for the Burnside groups. Let NC(CML3) denote the variety of commutative 
Moufang loops of nilpotence class at most c. In the simplest non-trivial case, namely 
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c = 2, { x j and {(xl5 x2> ̂ 3)} m a y De chosen as bases of complements of the spaces 
of linearly inessentials, so 

(4.6) g(x) = x + ~ 

and f(x) = (x + x3/3!) . ex = £ I n + I 1J xM/n!. One thus recovers Bruck's for

mula [3, Theorem 9A(v)] 

(4.7) d(n) = " + ( " ) • 

For N3(CML3), one has (by [4, VIII] and [15]) {*,}, {(*„ x2,x3)}, {(xln, x2n, 
x3„; x4n) | n e <(1234)>}, and {(*,„, x2„, x3n! x4n, x5„) | n e <(12345)> - {(l)}} as 
bases of complements to the linearly inessentials. Thus in this case 

(4.8) fl(x) = x + - + 4 - + 4 -
3! 4! 5! 

and 

whence the well-known formula 

(4.9) dw=n+($)+inv) 
(cf. [2, Prop. 4.5.6], [12, p. 68], [14]). 

For N4(CML3), g(x) takes the form 

-y- ̂  Y Y Y Y Y 

(4.10) 0(x) = ;c + ^_ + 4 - + 4 ^ + 10— + 3 0 — + 2 0 — . 
3! 4! 5! 5! 6! 7! 

The fifth term here corresponds to associators of shape (2) [15, §2], the sixth to shape 
(1, 0), and the seventh to shape (0, 0, 0) (cf. [16, §8]). Then 

(4.H) d W = »+(") + 4(:)+,4(») + 30(») + 20@. 

References 

[1] BALBES R. and DWINGER P.: Distributive Lattices, University of Missouri Press, Columbia 
Missouri 1974. 

[2] BENETEAU L.: Free commutative Moufang loops and anticommutative graded rings, J. Alg. 
67 (1980), 1-35. 

57 



[3] BRUCK R. H.: Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946)> 
2 4 5 - 3 5 4 . 

[4] BRUCK R. H.: A Survey of Binary Systems, Springer, Berlin 1958. 
[5] DEDEKIND R.: Uber Zerlegungen von Zahlen durch ihre grossten gemeinsamen Teiler, Ges. 

Werke Bd. 2, 103 -148 . 
[6] HOWIE J. M.: An Introduction to Semigroup Theory, Academic Press, London 1976. 
[7] LEVI F. and van der WAERDEN B. L.: Uber eine besondere Klasse von Gruppen, Abh. Math. 

Sem. Hamburg 9 (1933), 1 5 4 - 158. 
[8] M A N I N J U . I.: Kubiceskie Formy, Nauka, Moskva 1972. 
[9] M A N I N J U . I. (tr. HAZEWINKEL M.): Cubic Forms, North-Holland, Amsterdam 1974. 

[10] MARCZEWSKI E.: Independence in abstract algebras, Colloq. Math. 14 (1966), 169—188. 
[11] POSCHEL R. and KALUZNIN L. A.: Funktionen- und Relationenalgebren, Deutscher Verlag 

der Wissenschaften, Berlin 1979. 
[12] RAY-CHAUDHURI D. K.: Affine triple systems, in Combinatorics and Graph Theory (ed. 

S. B. Rao) , Springer Lecture Notes in Mathematics 885, Berlin 1981. 
[13] ROTA G.-C: Finite Operator Calculus, Academic Press, New York 1975. 
[14] R O T H R.: Hall triple systems and commutative Moufang exponent three loops, Ph. D. 

dissertation 1979, Ohio State University. 
[15] SMITH J. D. H.: A second grammar of associators, Math. Proc. Camb. Phil. Soc. 84 (1978), 

4 0 5 - 4 1 5 . 
[16] SMITH J. D. H.: Commutative Moufang loops and Bessel functions, Inv. Math. 67 (1982), 

173 -187 . 

58 


		webmaster@dml.cz
	2012-10-05T23:10:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




