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1984 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 25. NO. 1 

Prime Ideals in Universal Algebras 

A L D O U R S I N I 
Institute of Mathematics, Siena 

Received 30 March 1983 

After recalling the notion of ideal in algebras with a constant 0, we introduce a notion of 
product of ideals and consequently a notion of prime ideal, and of the radical of an ideal. Some 
results about these notions are shown and in particular we prove a generalization of I. S. Cohen's 
theorem, after which if all prime ideals are finitely generated then all ideals are finitely generated, 
that holds in commutative rings with identity. 

Poté, co připomeneme pojem ideálu v algebrách s konstantou 0, zavedeme pojem součinu 
ideálů, pojem prvoideálu a pojem radikálu. Ukážeme některé výsledky, vztahující se k těmto 
pojmům a zvláště dokážeme zobecnění věty I. S. Cohena, podle níž jestliže všechny prvoideály 
v komutativním okruhu s jednotkou jsou konečně generované pak všechny ideály jsou konečně 
generované. 

Mw HanoMHHM noHHTHe Hfleana B ajireópax c KOHCTaHToň 0 H IIOTOM BBeaeM noHflTHa npoin-
BefleHHfl HfleajiOB, npuiMoro Hfleana H pa^HKajia. Mw noKa»ceM HeKOTopwe pe3yjn>TaTH, OTHOCH-
nraecíi K STHM noHHTHHM H ocooeHHo oKaaceM o6o6meHHe ToepeMbi H. C KoreHa yTBepnKflaiomeft, 
HTO ecnH Bce npflMbie Haeajiw B KOMMyTaTHBHOM KOJibue c ezrHHHueH KOHCHHO nopoxc^eHu, TO Bce 
H^eajiu KOHeHHO nopoacaeHbi. 

In order to speak meaningfully of "prime ideals" in Universal Altebra, we need 

1) a concept of "ideal"; 

2) a notion of "product" of ideals. 

In order to do so in a useful way we need in addition at least the following: 

3) to generalize some classical results in Ideal theory. 

This paper shows that this threefold aim can be accomplished in a certain sense. 

1. I d e a l s 

We will fix once and for all a class K of algebras of a fixed type, and assume that 
there is a distinguished nullary operation or else a constant, equationally definable 
in all algebras of K, which we denote by 0. 
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Surely we want that if A e K and R is a congruence of A, the equivalence class 
[0] R is to be an "ideal": that is why we introduce our first definition (see [10], [11]): 

If p is any term in the variables x = xu ..., xn and y = yl9..., yk, and p(x, 0,... 
..., 0) = 0 holds identically in K, then we say that p is an ideal term in y. 

If A e K and I is a subset of A such that p(a, B) I whenever p(x, y) is an ideal 
term in y, a e An, B e Ik, then we say that I is an ideal of A. 

The set i(A) of all ideals of A naturally becomes an algebraic lattice. (For more 
precision, one should add some qualification, like "K; 0-ideal" or the like, which we 
let implicit. We will also write "a e A" instead of "a e An", etc). Normal subloops, 
normal subgroups, invariant subgroups of (multi)operator groups, filters and ideals 
in (pseudo)boolean algebras, and many more similar notions fall within the scope of 
our concept of ideal. However, words bear no trade mark, and ideal in lattices or 
semigroups do not in general coincide with ideals in our sense. 

For A e K, and R a congruence of A, we have that [0] R is an ideal of A. Some
times the converse is true, and moreover the ideal completely determines the con
gruence: we say that K is ideal determined if for all A e K, any ideal of A is the class 
of 0 for exactly one congruence; in this case we let Is be the congruence corresponding 
to an ideal I, a + I be the congruence class of a e A, and A/I be the quotient algebra. 
Ideal determined equational classes have been nicely characterized by a MaPcev 
condition: 

1.1. For a variety K, K is ideal determined iff for some positive integer m, there are 
binary terms dl9..., dm, dm+1 such that: 

K\=(d1(y,z) = 0 A ... Adm(y,z) = 0)~y = z, 

K |= dm+1(y, y) = 0 A dw+1(0, y) = y . 

For a proof see [5]. (It is well known how to transform into a Mal'cev condition the 
property in 1.1: see also the proof of 1.2 below). 

One more important property of ideal determined varieties is that the lattices 
of congruences of their algebras are modular. 

What about "one-sided" ideals? 
We let P0 be the set of all ideal terms. If we restrict ourselves to a subset P of P0, 

we have a corresponding notion of P-ideal of A, K. 
For S c A, we denote by Sid the ideal generated by S, i.e.: 

Sid=Cl(lei(A)\Sc:l) = 

= {p(a, s) | p(x, y) an ideal term in y, a e A, s e S} . 

Since an intersection of P-ideals of A is a P-ideal, we can similarly define the 
P-ideal generated by S, and we denote it by Sp. Some assumption will be needed if 
one wants to have a closure operation. For instance if 0 e P, and P is closed under 
composition (in the sense that if p(x, y)e P and p l v x \ y1),..., pn(xn, yn) e P, then 
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also p(x, pu ..., pn) e P), then "~"p" is an algebraic closure operation, and the set iP(A) 
of all P-ideals of A is an algebraic lattice. 

We say that P c P0 is a base of ideal terms for K if Sp = Sid for all A e K and 
S ^ A, i.e. if every P-ideal is an ideal. 

1.2. Let K be an ideal determined equational class of finite type. Then there is a finite 
base of ideal terms. 

Proof. Assume K has binary terms dl9 ..., dm satisfying 1.1; then one easily sees that 
for A e K and I e i(A), 

aľb ifГ di(a,b)el for í = 1, . . . , m , 

If/ is an fi-ary operation in the type of K, we consider the algebra freely generated 
in K by xu ..., xn, yu ..., yn; since f(x)Isf(y), if / is the ideal generated by 
{di(xu, yu) \i = 1, ..., m;u = 1, ..., n}, then there must be 2n(m + l)-ary terms rif 

such that: 

riJ(x,y,0,0,...,0) = 0; 

rtJ(x, y, dx(xu yx),..., dm(xl9 yt),..., dx(xn, yn),..., dm(xn, yn)) = dt(f(x),f(y)), 

for i = 1,. . . , m, hold identically in this algebra, hence in K. 

Similarly, by translating the first condition of 1.1 into equations, we get quater
nary terms gl9..., gm such that: 

9i(x>y>di(x>y)>o) = x; 

g{x, y, 0, d{x, y)) = gi + 1(x, y, di+1(x, y), 0) , (i = 1, . . . , m - l) , 

gm(x, y, 0, dm(x, y)) = y ; 

hold identically in K (see [3]). Since congruences are transitive and symmetric rela
tions, we also get (2m + 3)-ary terms ql9 ..., qm such that: 

qt(x, y, z, dx(x, y),..., dm(x, y), dx(z, y), ..., dm(z, y)) = dt(x, z) ; 

qi(x,y,z,0,...,0) = 0, 

hold identically in K for i = 1, ..., m. 

Finally, since x belongs to the ideal generated by {y, dx(x, y)9..., dm(x9 y)}, 
there must be a (m + 2)-ary term p0 such that in K: 

x = Po(x9 y, y, dx(x, y),..., dm(x, y)) , 

0 = po(x,y,0,0,...,0). 

Therefore the set 

{0, dh gi9 qi9 p0, rif \ i = 1, . . . , m; / an operation} 

is a base of ideal terms for K. If the type is finite, we get our claim. 
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The question of the existence of an equational class which is ideal determined, 
has a finite base for ideal terms but has an infinite number of essentially distinct opera
tions in the type seems to be open. 

Remark. Propositin 1.2 should explain why in a number of classical cases ideals admit 
a simple algebraic definition. For instance if K+ has an ideal determined reduct 
variety K, and if terms ritf with the property in the proof of 1.2 exist for any new 
operation f, then ideals relative to K+ are simply ideals relative to K which are also 
{ri,f | *" = 1> •••• *w;fa new operation} — idelas. 

2. Multiplication of ideals 

An operation of multiplication of ideals will be considered useful for our pur
poses if it induces a useful concept of primeness. 

If A e K, R, R' are congruences of A, we surely want that if x is in the "product" 
of the ideals [0] R, [0] R', then x(R n R') 0 and moreover that x be expressed in 
terms of a suitable polynomial function involving elements from [0]K, [0] R'. 

This leads to our second basic definition (see [11], [5]): 
A term t(x, y, z) is called a commutator term in y, z if it is an ideal term in y and 

an ideal term in z. 
If A e K and X, Yare non empty subsets of A, we set: 

[X, Y] = {t(a, u, v) | t(x, y, z) a commutator term 

in y, z, a e A, ueX, v e Y} ; 

If I, J e i(A), [I, J] is the commutator of I, J. 
We observe that [X, Y] is always an ideal. If K is an ideal determined variety, 

and I, J are ideals of A e K, then [I, J]5 is the commutator of the congruences I3, J6 

If T0 is the set of all commutator terms, we can relativize the previous notions 
to a subset T of T0: 

[X, Y]r = {(a, u, v) | t e T, a e A, u e X, v e Y} , 

and we call it the T-product of X, Y Observe that [ , ] T is increasing in both ar
guments, and that [X, Y] _= X n Yif X, Yare ideals. 

The notion of T-product captures: product of (one-sided) ideals in rings, the 
the commutator of subgroups, the meet (= intersection) of ideals in boolean algebras, 
etc. 

We say that the T-product is finitary in AeK if the T-product of two finitely 
generated ideals of A is finitely generated as an idela. 

A pure commutator term in y, z is a commutator term t(x, y, z) in which x is 
empty. A set T c T0 is a base for T0 if for any t e T0 there are p(x, y) e P0 and 
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/J9 ..., tke Tsuch that 

K|= t = p(x,tu...,tk). 

2.1. If K has a finite base for T0 composed of pure commutator terms, then the 

commutator is finitary in every algebra A e K. 

Proof. It is clearly enough to show that the commutator [I, J] of two principal 

ideals I = (a), J = (b), is finitely generated. We show that 

(*) [I, J] = {t(a,..., a, b, ..., b)\t a pure term of the base} . 

Let i el, j e J, u e A and Z = t(u, t,j) be an element of [I, J]. Then for some 

tt, ..., tk in the base for T, and p e P0, we have 

Z = p(u, ^ ( l 1 , ; 1 ) , . . . , tk(i\f)) , where V <= i, j r <= J . 

Therefore for some u\, vh e A, ideal terms ph, p'h, we have: 

t,(Y,Г) = t,(ph(й'h, a,..., a), p'h(Гh, b,..., b)) . 

But tr(ph(x, y\, ..., yh

nh), ph(x', z\,..., zh

n)) is a commutator term in y, z, and can 
be expressed as a composition of terms in the base by an ideal term. Hence Z belongs 
to the second member of (*). The other inclusion is trivial. 

Next, some notations. For principal ideals (a), (b), we write \a, b\ instead of 
[(a), (b)]. Also, the theory of residuated grupoids (see [ l ]) can be applied to the 
structure <i(A), [ , ]T>. In particular we set 

( I : J ) r = V ( / I e i ( A ) | [ H , J ] r ^ I ) , 

for I, J e i(A); (I : J)T is called a T-residual of I; a proper T-residual if J $ I. For 
I e i(A) we also define by induction: 

It^I1 = I ; 

/(»+D = [IO»,IO')]r; /«+- = [ I " , I ] r . 

I will be called T-nilpotent (resp. T-solvable) if for some n, F = (0) (resp. I(n) = 
= (0)). We drop the decoration '"T-" everywhere in case T = T0. 

3. T-prime ideals 

Let K be an ideal determined equational variety. In this section T is a subset 
of T0 such that the following assumptions hold: 

(A 1) For every algebra AeK, I, Je i(A), one has: [I, J]re i(A). 

(A 2) 7-product [ , ] r is distributive in both arguments over arbitrary joins in i(A). 
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If T = T0, then A 1, A 2 hold automatically, as a general consequence of com
mutator theory. 

P e I(A) is T-prime (c-prime in case T = T0) if: for all I, J e i(A), if [I, J]T c P, 
then / c P o r J c ? . 

Q 6 i(A) is T-semiprime (c-semiprime if T = T0) if: for all I e (A), if [I, I]T .= 
c P, then I £ p . 

A subset M of A is a T, m-system (resp. T, n-s>'stem) if: for all a, b e M, [a, 6 ] T n 
n M 4= 0, (resp. for all aeM, [a, a ] T n M =}= 0). 

The proof of the following is more or less routine: 

3.1. (i) For P e i(A), the following are equivalent: 

1. P is T-prime; 
2. for all a, be A, if [a, b]T c P, then a e P or b e P; 
3. A \ P is a T, m-system; 
4. (In case T = T0) D(AJP) = (0), 

(where for BeK, D(B) = (J ((0) : (x)), "zero divisors" of B). 
x * 0 

(ii) For Q e i(A) the following are equivalent: 

1. Q is T-semiprime; 
2. For all a e A, [a, a ] T £ Q implies a e Q; 
3. A \ Q is a T, n-system; 
4. A/Q has no non zero nilpotent ideals. 

As to the existence of prime proper (i.e. =j= A) ideals, we quote the following: 

3.2. Let 5 be a T, m-system, I e i(A), I n S = 0. If P is maximal in {J e i(A) | / c j 
and J n 5 = 0}, then P is T-prime. 

Proof. Let a,b$P and [a, b]T £ P. Take s e (P v (a)) n 5, r e (P v (b)) n 5. 
Then 

[s, r ] T £ [P v (a), P v (b)]T = [P, P ] T v [(a), P ] T v [P, (b)]T v [a, 6 ] r s P , 

hence [s, r ] T n 5 = 0, and 5 would not be a T, m-system. 

3.3. Assume [A, ^4]T = A; then any maximal proper ideal is T-prime. 

The proof is similar to that of 3.2. 

Observe that A is finitely generated as an ideal iff there is a finitely generated 
ideal F such that [F, A] = A. The condition is satisfied if there is a formal unit, i.e. 
an element ue A such that [A, (u)] = A. If A is a finitely generated ideal, then by 
Zorn's Lemma A has maximal proper ideals (if A 4= (0)) and they are prime ideals. 

3.4. Assume that the commutator is associative in A. If X is an ideal, then any maximal 
proper residual of X is c-prime. 

Proof. (See [7], propriete 2.1.). 
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The T-prime radical of I 6 i(A)9 denoted JJl (or ^Jl in case T = T0) is the inter
section of all T-prime ideals containing I. 

3.5. For Q e i(A) the following are equivalent: 

i) Q is T-semiprime; 
ii) Q is T-radical, i.e. IjQ = Q\ 

iii) Q is an intersection of T-prime ideals. 

Proof. Any T-prime is T-semiprime and an intersection of T-semiprime ideals 
is T-semiprime, therefore if Q = IjQ then Q is T-semiprime. 

For the converse, first observe that if N is a T, n-system and a eN, then there 
is a T, m-system M _= N with ae M. In fact, define a0 = a; given a, eN , choose 
ai+1 e [af, ajr n N; then let M = {at | / e co}. Now assume that Q is T-semiprime 
and a £ Q. Let M .= A \ Q be a T, m-system such that a e M. By Zorn's Lemma we 
get a maximal P amongst the ideals J such that Q .= J and J n M = 0. Then P is 
T-prime, P = Q and a £ P: hence a^\jQ. 

3.6. For any I e i(A), 

^(I) = {a G A| for every T, m-system 5, if a e S then 5 n I =# 0} = the smallest 
T-semiprime ideal containing I = the intersection of all the minimal T-prime 
ideals containing I. 

The proof follows from previous results or Zorn's Lemma. 

Remarks. For rings, our notion of c-semiprime is the classical notion of semiprime 
(see e.g. [8]); hence our notion of prime radical is the classical notion. 

In the case of groups-where of course ideal = normal subgroup this notion of 
c-prime does not appear in the literature up to our knowledge. 

Let RN(G) be the (normal) subgroup of a group G generated by the family of all 
normal solvable subgroups-see also 3.12 below. The following remark, due to Antonio 
Pasini, suggests that the notion of c-prime normal subgroup is of some interest. 
Assume that G has a uniform finite bound for the length of chains of normal sub
groups. Then if G = G', proper c-prime normal subgroups are exactly maximal 
normal subgroups. If G 4= G' and if moreover RN(G) and G(oo) = () G(i) together 

ieco 

generate G as a subgroup, then H is c-prime in G iff H ^ RN(G) and H n G(oo) is 
maximal in G(oo). 

3.7. If [ , ] r is finitary in A then for any I e i(A), we have: 

IJ(I) = {a G A | (a)(w)'T _= I for some integer n}. 

Proof. The inclusion' 2 ' is trivial. For the converse, assume (a)(n),T $ I, for all n. 
Then the set 

Z = {Je i(A) 11 <= J and (a)(n)>T $ J for any n) 
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is not empty. We can apply Zorn's Lemma, to get an ideal M maximal in Z Take 
b £ M. Then for some n, 

(a)(n)>T s M v (b) ; 
consequently 

(<,)(-+->.*• c=M v [b, b]T. 

Hence M v [b, b]T $ Z, therefore [b, b]r $ M. This shows that M is T-semi-
prime, contains I, a$M; hence 0 £ ^/I. 

The following corollaries are almost evident: 
3.8. If [ , ] r is associative and Unitary in A, then for I e i(A), 

y/(l) = {a I (a)n>T r= I for some «} . 

3.9. If the commutator is unitary in A, I e i(A), then a e ^ I iff there is a finite F c I 
such that a e N/i rW. 

(We will not push further here the natural topological interpretation of 3.9 in terms 
of the "spectrum" of A.) 

The T-prime radical of A is 1/(0), denoted RT(A), and A is a T-prime algebra 
(0) is a T-prime ideal. Then by standard proof we get: 

3.10. RT(AlRT(A)) = (0). 

3.11. A is a subdirect product of T-prime algebras iff RT(A) = (0). 

3.12. If [ , ] r is finitary in A, then RT(A) is the ideal of A generated by all solvable 
ideals of A. 

4. ACC on ideals 

We will briefly consider finiteness conditions on ideals, and we will use the full 
force of the commutator to get a general form of a famous theorem by I. S. Cohen, 
stating that if all prime ideals of a commutative unitary ring are finitely generated, 
then the ring is Noetherian (see [2], [9]). 

Let K an ideal determined equational class. We say that A e K satisfies the a.c.c. 
(on ideals) if any properly ascending chain of ideals in A is finite; as usual this is 
equivalent to either of the following: every ideal of A is finitely generated or else: 
every non empty set of ideals has maximal elements. 

We will make use of the following notion of "unspecified product" of n ideals: 
any word on n letters in the free commutative grupoid gives rise in a natural way to 
an n-ary operation in i(A). By ((Il5 ..., I„)) we will denote the result of one of these 
operation; if Ix = ... = In = X, we will use the notation ((X))n. In this section prime 
means c-prime. 

4.L Assume that in A any unspecified product of finitely many prime ideals is finitely 
generated. Then for any ideal X of A there is a finite number of prime ideals 
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Pj , . . . , P„ and a product ((P,, . . . , Pn)) such that: 

( ( f i ^ s ^ s f l P , . 
i = 1 

Proof. By contradiction, assume that the set U of ideals not satisfying the pro
perty is not empty. If (Xk | k e K) is a chain in U, then 7 = (J Xfc e U: if not, there 
should exist prime ideals Ql9 ..., Qn such that keK 

( (Gi , - .Q . ) ) - -^ - -ne« 
i = l 

for some keK. By Zorn's Lemma, there is G maximal in U . G is not prime, hence 
[a, b] <= G for some a, b $ G. Then Xx = G v (a) and X2 = G v (&) a r e n o t in U-
Hence 

( ( P i , . . . , P i l ) ) « - . y I l = P ' 1 n . . . n P i J 

for i e {1, 2}, P'j,..., P'nt prime ideals. Then 

[( (P. , . . . , P.)), ( (P 2 , . . . , P2
2))] c ^ J J c G c P l n . - . n P„2

2 

which contradicts the fact that G eU. 

4.2. If A satisfies a.c.c. for ideals then for every I e i(A) there is a finite number of 
minimal prime ideals containing I. 

This is a corollary of 4.L 

4.2. Can be strenghtened as follows: 

4.3. Assume that A satisfies a.c.c. on T-semiprime ideals. Then any T-semiprime ideal 
H is the intersection of finitely many T-prime ideals, minimal over H. 

We omit the proof, which is easily patterned after that of the case of rings, see e.g. [6]. 

4.4. Let A satisfy a.c.c. on ideals. For I e i(A), yjl is the largest ideal X such that 
((X))m ^ I for some positive integer m. 

Proof. Let Pl9 ..., Pk be prime such that 

( (p 1 , . . . , p i k ) ) s / snp i . 
i = l 

k 

If ((X))m s I for some m then X c P. for every /. Since y/(l) = f) -P/, and X c ^/I, 
we get , = 1 

((nw = ((-v-.-,.0). 
— where in the left hand side we are applying to the k-tuple R9..., R (where R = 

u 
= fl Pi) the operation giving ((Pl9 ..., Pk)) —. Therefore ^/J has the required 

i = l 

property. 
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Let us observe that the assumption of 4.1 is satisfied if the commutator is finitary 
and every prime ideal is finitely generated. We want now to explain how these two 
conditions do not fall short from the simple assumption of a.c.c. 

The following property of the commutator, called the "term condition", will 
be repeatedly used below (for a proof see [5]): 

4.5. Let p(x, y) be an ideal term in y, let I, J e i(A) and assume that cJc', 5[I, J] B', 
and Bel. Then 

p(c, B) [I, J] p(c', B'). 

We now assume that a is a set of ideal terms such that: 

I) 0, dl9 ..., dm, p0 (see proposition 1.2 above) are in a; 
ii) contains some base for ideal terms; 
ii) is closed under composition, i.e. if p(x, y) and p^x1, y1), ..., pk(x

k, yk) are 
in a then also 

p(x,px, ...,pk)ea 

as an ideal term in y1 * ... * yk. 

Such a will be held fixed, and moreover we assume that a is well ordered and that 
o(a) is the corresponding ordinal. For a < o(a), we have a pair na, ma of numbers 
such that the a-th element of a is of the form 

Pa(*l, • - . , * , , « , yi,---?ymj 

as an ideal term in y. Observe that for a = 0 we already know p0. 

An A-a-complex (or simply an A-complex) is a triple (M, 0, g), denoted also 
by M, where M is a non empty set, Oe M, and g is a mapping which associates to 
each a < o(a) a mapping ga from An" x M"1' into M, such that: 

1. ga(a,6) = 0, for aeA; 

2. ga respects composition, i.e. if 

Pa = pP(x, Pai C*1' y1)' • • •> p*k(*
k> yk)) 

belongs to a, and paje a for j = 1, ..., k, then 

ga(a,ax, ...,ak, in1, ..., mk) = 

= 9p(a, gaX^1' n1), • • -, 9*k(a
k, ™k)) , 

for all a, a1,..., ak e A, in1, . ..„ ink e M. 

3. If na = np and ma = mp and in A: pa(x, y) = pp(x', y') holds identically, then 

9a = 9p-

The basic example is of course that of modules over a ring A. 
In general if I is an ideal (i.e. a <r-ideal of A) it is considered in a natural way as 
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an A-tx-complex. If / e i(A), Ajl also is naturally an .A-complex, by defining 

ga(a, xx + / , . . . , xmx + /) = pa(a, x) + / . 

If /, J G i(A) and / = J, then the set IjJ = {a + J | a el} is an A-cr-complex by 
defining: 

0a(a, xx + J, ..., xma + J) = pa(a, x) + J . 

If (M, 0, #) and (N, 0', g') are A-complexes, N c M, 0 = 0' and ga(a, n) = 
= ga(a, n) for all a e A, n eN, a < o(a), we say that N is an A-a-subcomplex of M. 
In a natural way we get the notion of a -4-cr-subcomplex of M being the intersection 
of a family of A-subcomplexes of M, and consequently the notion of the A-a-sub-
complex of M generated by a subset H of M, denoted by SM. Then we easily see 
that 

SM = {ga(a, $)\aeA, SeH,x< o(<r)} , 

whereas 0, g are defined in the natural way. 

4.6. Assume F, G,/ are ideals of A, and [F, G] £ I c F. Then F/[F, G] becomes 
an A/I-complex by defining 

ga(ai + / , . . . , a„w + / , bt + [F, G] , . . . , bma + [F, G]) = 

= pa(a l5..., anv, bl9..., 6mJ + [F, G] . 

/ / moreover F is finitely generated as an ideal, then F/[F, G] is finitely gener
ated as an Ajl-complex. 

For the proof, the only thing which requires some care is that ga is well defined: 
this is assured by 4.5. 

Assume F, G, / are as in the hypothesis of 4.6: we explicitely note the //[F, G] 
is an >l//-subcomplex of F/[F, G]. 

4.7. Assume X, Ye i(A) and Y c X. If Y and X\Y are finitely generated as A-
complexes, then X is finitely generated as an ,4-complex (i.e. as an ideal). 

Proof. Assume that {u + J | u e U} generates I]J for some finite II s / , and 
that some finite H £ J generates J. If x 6 I then 

x + J = ga(3> ii + J, ..., ima + J) = Pa(a,!) + J , 

for some a < o(d), aeA, il9..., imgee U. Put >> = pa(a, i) and z- = dt(x, y), i = 
= 1, ..., m. Then ẑ  e J. Therefore 
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for some bl e A, hl e H. Now we have: 

x = Po(x, y, y, di(x, y), ..., dm(x, y)) = 

= Po(x, y, ga(a, I), gai(b\ fr),..., gam(Bm, S1")), 

hence x belongs to the ideal generated by U u H. 

We will be concerned with the following property of quotient algebras A/I, 
where Ie i(A): 

(Q) I F ° r F ' G i d e a l s ° f A S U c h t h a t ^ ' G ] - 7 - F > i f FIiF> G ] i s finitely generated 
^ ' [as an A/I-a-complex, then also all its A/I-subcomplexes are finitely generated. 

The basic example is of course that of a ring A such that A/I is Noetherian. 

4.8. Assume that the commutator is finitary in A, and that any quotient algebra A/I 
of A which satisfies a . cc on its ideals satisfies also property (Q). If I is an ideal 
of A, maximal amongst the non finitely generated ideals of A, then I is c-prime. 

Proof. In our hypothesis on I, Ajl will satisfy a . c c ; by absurd, let there be a, b $ I 
such that [a, b~] c I. Let 

F = I v (a), G = I v (b). 

Both F and F and also [F, G] are finitely generated ideals of A, and, by a simple 
calculation, [F, G] ^ I. Fj\F, G] is a finitely generated A/I-cr-complex. By (Q), 
I/[F, G] is also a finitely generated A/I-complex. We now consider I/[F, G] as an 
A-complex by defining 

ga(a, i! + [F, G] , . . . , ima + [F, G]) = pa(a, I) + [F, G] , 

for a e A, 7 = i1? ..., imoeeI; (this is a good definition by 4.5) and as such l\[F, G] 
is finitely generated. We then conclude that I would be finitely generated: contra
diction. 

The following is now a simple corollary, by Zorn's Lemma: 

4.9. If A satisfies the same assumption as in 4.8, and if every prime ideal of A is finitely 
generated, then A satisfies a . cc . 

As a final remark, we observe that most of the results in the present section should 
hold good for P-ideals, where the set P of ideal terms be suitably chosen; but we have 
preferred to avoid here this extreme generality which would have yielded some loss 
of perspicuity. 
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