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Transient Phenomena and Self-optimizing Control of Markov Chains 
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Received 10 October 1984 

Finite statě controlled Markov chains with transition probabilities depending on a para-
meter are considered. The parameter values converge to a limit. The best asymptotic distribution 
of the reward is found, and conditions are given under which the optimum obtains for adaptive 
controls. 

Pojednává se o konečných řízených Markovových řetězcích s pravděpodobnostmi přechodu 
závislými na parametru. Hodnoty parametru konvergují k limitě. Je nalezeno nejlepší asympto
tické rozložení výnosu a udány podmínky, za nichž se dosáhne optima při adaptivních řízeních. 

HccjiezryiOTCH KOHenHbie ynpaBJuieivrbie uenH MapKOBa c BepoaTHOCTJiMH nepexo^a 3aBHcn-
IHHMH OT napaMeTpa. 3HaneHH5i napaivteTpa CTpeMHTCH K npe^ejiy. Haň^eHo HaHJiy«miee acbíMnro-
THHecKoe noBe,aeHHe Aoxoaa H npeaJioiceHbi VCJIOBHA, npH KOTOPBIX ommiyM floCTHraeTca AJIH 
a^anTHBHbix ynpaBneHHH. 

0. Summary 

In [2] and in subsequent papers (see [3], [4] for review) self-optimizing controls 
of Markov processes were studied, which are based on the principle of inserting the 
estimates of the unknown parameters into the optimal stationary control. This is in 
fact a sequential application of the certainty equivalence principle. In the present 
paper we investigate the situation, when the parameters of the system change with 
time, and converge to a limit. Thus, we assume the occurence of a transient phenome
non, and investigate its influence on the performance of the system. In the cases 
where the transient behaviour is known, partially known or unknown conditions are 
given for the optimality of suitable (self-optimizing) controls and the asymptotic 
normality of the pertinent rewards. 

To make the presentation as simple as possible, we consider, as in [2], the case 
of a finite Markov chain. Moreover, we concentrate on parameter estimates by the 

*) Sokolovská 83, 186 00 Praha 8, Czechoslovakia 
**) Bundesstrasse 55, 2 Hamburg 13, Federal Republic of Germany 
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maximum likelihood method although the results can be extended in a straight
forward way to other minimum contrast methods. Finally, to shorten the Taylor 
expansions, we suppose that the unknown parameter is one-dimensional. 

The paper is aimed to present some novel aspects of nonstationary decision 
processes treated in [1]. 

1. Fundamentals 

Consider a system S taking on states from a finite set say I. S is observed at 
times n = 0, 1, 2, ... . Let Xn denote the state of S at time n. The transition law of S 
is specified by transition probabilities from state i to state k 

(1) p(i9 k; z, a ) , zeZ, a e A , i,kel. 

z is a control parameter ranging in a closed bounded set Z c Rq. a is a parameter 
specifying the conditions of the transition. We shall denote by f$n its value for the 
passage from Xn to Xn+l9 n = 0, 1 , . . . . Let A c= Rl be closed and bounded. 

The value of the control parameter at time n is a random variable depending 
on the observed trajectory 

(2) Zn = zn(X0,...,Xn), n = 0 , l , . . . . 

The control Z = {Z„, n = 0, 1,...} is called stationary if 

(3) Zn = z{X„), n = 0,i,..., 

where z is a mapping from I to Z. We write then Z ~ z. Let the distribution of the 
initial state be fixed, 

P(X0 = i) = Pi, * e I . 

From the above said it follows that under (2) the probability distribution Pz of X = 
= {Xn9 n = 0, 1,...} satisfies 

(4) Pz(Xn + 1 = k\X0 = i0,..., Xn = in) = p{in9 k; zn(i0,..., *•„), pn) . 

To evaluate the performance of the system we introduce the quantity 

CN = i <Xn, Xn+l; Zn, p„), N = 1, 2,.... 
n = 0 

CN will be called the reward up to time N. The transition probabilities (1) as well 
as the functions defining the reward from one transition 

c(i, k; z, a ) , z e Z, a e A , i, kel, 

are assumed to be continuous in (z, a). We make also the following hypothesis. 

Assumption 1. For each cce A and each stationary control z the matrix ||p(i, k; 
z(i), a)||isfce/ is indecomposable. 
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Next we restate some facts about stationary controls. Assume (3) and 

Pn = a, n = 0, 1, 2, ... . 

Then X is a time homogeneous Markov chain which is recurrent in virtue of As
sumption 1. Denote by n^z, a), i el9 its stationary distribution. The expectation 

0(z>a) = I X ( z > a ) EK1'- fe; z ( 0 > a ) c(*> f e' z ( 0 > a ) 
i k 

is the stationary reward per one step under control z. It can be shown that <9(z, a) 

is continuous in z. The maximal stationary reward 

0(a) = sup 0(z, a) 
* 

is thus attained for a control which we shall denote z(i9 a), i e I. The following 
characterization of 0(a) due to R. Bellman is important. 

Proposition 1. For a e A, 0(a) is the unique number such that auxiliary constants 

(5) wt(a), iel9 

can be found that 

(6) sup Q>(i , k; z, a) (c(i, k; z, a) + wk(a)) - w,(a) - 0(a)] = 0 , i e l . 
zeZ k 

The constants (5) are determined uniquely up to a shift by a constant. z(i, a) is optimal 
if and only if the supremum in (6) is attained for z = z(i, a), i e I. 

The expression in square brackets in (6) will be denoted by 

$(i9 z, a) , iel, zeZ, a e A . 
Thus we have 

(7) sup <P(i, z, a) = 0 = <P(i, z(i, a), a) , iel. 
zeZ 

Further we state an assumption pertaining to the consistency of the maximum 
likelihood method. 

Assumption 2. For i, k e I either p(i, k; z, a) > 0 for z e Z, ae A, or 
p(i, k; z, a) = 0, z e Z, a e A. If a, a' e A, a =j= a', then for each z 

\\p(i, k; z(i), a)\iM1 #= \p(i, k; z(i), a%MI, 

i.e., the transition laws are different. 
Finally we recall the most simple versions of the law of large numbers and the 

central limit theorem for martingales. 

Proposition 2. Let 

MN = Z Y „ , N=l,2,..., = 1 
л = 0 
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be a martingale with respect to a nondecreasing sequence of Borel fields {̂ "N, N = 
= 0,1,...}. Let 

\Yn\ = const, a.s., n = 0, 1, ... . 
Then 

(8) KmN-1MN = 0 a.s. 
N->00 

If, in addition, 

(9) lim AT' £ E{ Y2
n \^n} = £ in prob., 

N->oo и = 0 

where £ is a constant, then MNjy/N has asymptotically normal distribution N(0, £) 
as N -» co. 

a.s. is abbreviation for almost surely. The proofs of Propositions 1, 2 are given 
in [2]. 

2. General results for transitory behaviour 

In the rest of the paper we assume that the parameter sequence fin9 n = 0, 1,... , 
is induced by a transient phenomenon, i.e., 

(10) lim fim = a0 . 
J1-+O0 

CN as N -> oo is to be made as large as possible. The main instrument in our in
vestigation will be the martingale introduced in the next proposition. 

Proposition 3. Under arbitrary control Z the sequence 

(11) MN = C„ - £ 0(/U + wXn(pN. t) - wXo(po) + 
n = 0 

+ I K„(/Vi) - wx„(A.)) - Z *(^.. z - /».). Al = 1, 2, . . . , 
n = l /i = 0 

is a martingale with respect to the Borel fields SFN of random events defined in terms 
ofX0,X1,...,X iV,N = 0 , l , . . . . 

Proof. We have 

M,r = iYm9 N= 1,2,..., 
n = 0 

with 

(12) Y„ = c(X„, Xn+1; Zn, p„) - 0(fi„) + wXn+1(0n) - wXn(fi„) -

- 4>(X„, Zn, pn) -= c(X„, Xn+i; Zn, p„) + wXn+1(/9B) -
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- 2X*., k; Z„, p.) (c{X„ k; Z„, pn)+ wtf.)) . 
h 

MN is immeasurable, and according to (4) 

EZ{Yn\&n} = 0 , n = 0 , l , . . . D 

Note that in virtue of the hypotheses made the functions 

0(a) , wt(cc) - w/a) , 4>(i, z, a) , ijel, 

are continuous in a and in (z, a), respectively. Hence, they are bounded. Next 
proposition states that 6>(a0) is the asymptotic upper bound for the average reward 
attainable. 

Proposition 4. Under arbitrary control Z 

J V - 1 

Э Z (13) lim AT 'C* g 6>(a0) = lim AT1 £ 0(P„) , Pz a.s. 
,Y-+oo N-+00 n = 0 

Proof. Note that by (7) the last sum in (11) is always nonpositive. The before 
last sum is o(N) as N -> oo, since 

*xAPm-i)-nXJiPn)^0 

because of (10). Thus, dividing (11) by N we get (13) from (8) as N -> oo. • 
The limiting evolution of 5 is characterized by the parameter value a0. The fixed 

optimal stationary control corresponding to a0 was denoted z(*, a0). It seems and 
proves to be best for the controller to approach this control in the limit, i.e., to have 

(14) l im(Z n -z (X / I , a o ) ) = 0 . 
n-> oo 

The self-optimizing controls dealt with in Section 3 serve to this aim. Here we state 
basic relations holding for controls satisfying (14). 

Proposition 5. Let Z be such that (14) holds almost surely. Then 

(15) l i m N - 1 ^ = <9(a0) 
N-oo 

Pz almost surely. 

Proof. Recalling the proof of Proposition 4 and with regard to (7) we see that 
(15) follows from 

0 = lim (<*>(K„, Zn, pn) - <P(Xn, z(X„, a0) , a0)) = lim <P(Xn, Zn, pn) Pz a.s. Q 

Remark 1. If (14) holds in probability then we have (15) with convergence in 
probability. 
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Before stating the next proposition let us compute £z{ Y2 | 3F^ for the martingale 
difference (12). We have from (4) 

Ez{Y2\^n} = c2(Xn;Zn9^n)9 n = 0 , 1 , . . . , 

where 

c2(i, z, a) = £>(i, k; z, a) (c(i9 k; z, a) + vvfc(a))2 -
k 

- (ZK'> k; z, a) (c(i, k; z, a) + wk(<x)))2 , i e I , zeZ9 oceA. 
k 

We recall also that nt(z('9 a0), a0), i el, is the limiting distribution for the Markov 
chain X under the stationary control z(«, a0). 

Proposition 6. Let w,(a), i el, be continuously differentiable, and let 

(16) hm^-"z\pn+1-p„\ = 0. 
N->ooyjNn = 0 

Then for any Z satisfying 

(17) Pz-nm(Z„-z(Xn,ao)) = 0 

we have 

jc„-le(f,) \ 

where ^(xJyJC) is the distribution function of the law N(0, () with 

C = Z ^ K " * ao)> ao) c2(i; z(i, a0), a0) . 
i 

Pz-lim means convergence in probability. 
In terms of stochastic ordering of random variables (18) states that CN is 

asymptotically stochastically smaller than N( £ &(Pn), NC). Hence, Proposition 6 
n = 0 

contains for large N a characterization of the best possible performance of the 
system when random fluctuations of the actual value of CN are taken into con
sideration. 

Proof of P r o p o s i t i o n 6. Let the hypotheses and (17) hold. Consider (11). 
We have 

(19) Pz-lim N-l ££z{ Yl | j g = Pz-lim AT ' " f W - . Z«- A.) = C • 
/V-*oo n = 0 iV->oo « = 0 

(19) is verified by the same reasoning as that which led to Remark 1. Hence, by 
Proposition 2, MN\^/N is asymptotically N(0, Q as N -> co. 
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Further, 

*xn(Pn-i) - *xM = 0(|A.-i - Pn\) as n - oo . 

Consequently, in virtue of (16), 

(20) lim i ^ - i ) - w*n(/g) = 0. 
N-00 yJN n=l 

The last sum in (11) is nonpositive. Thus we have for x e ( — oo, oo) 

(c„ -"z W \ 
(21) P z ^ ^ < xj ^ PZ((M„ - wIw(.5„_.) + 

+ "_.(.*o) - Z K.(A.-i) - Wxn(/5„)))/V(!V) < x) . 
n = 1 

The right-hand side tends to ^(x/VO as N -> oo. This establishes (18). • 

3. Control with full information 

Corollary 1. Under the hypotheses of Proposition 6 set 

(22) Z„ = z(Xn, /Q , n = 0,1,2,.... 

Let z(i, a), i el, be continuous at a0. Then (17) holds because of (10). Since also 

i*{XH,ZH9pn) = 0, N= 1,2,..., 

we have equality in (21). Consequently, 
N-

ř c я - Z « W 
limP2 ' "=° 

N-00 \ y/N / " ' Ш ' xє("°°,oo)" 
Remark 2. Note that (16) is fulfilled if 

Pn = Pn+i, n = 0, 1 , . . . . 

Consider next the case that {/?„, n = 0, 1, ...} satisfies 

02m = a 0 = i?2m+l , WI = 0, 1, . . . , \fiH - G.0| ^ \fin+l - a 0 | , M = 0, 1, . . . . 

We can speak about damped oscillations of the parameter. Two step transitions are 
to be considered if (16) does not hold. As example take a Markov chain X with two 
states and two control parameter values, say 0,1. Let the transition probability 
matrix be 
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U + (-lYa, i - ( - l Y a j ' 0 ) 1 ' | a | =*-
Further let 

c(0, k;z, a) = a, c(l, k; z, a) = 0 , k = 0, 1 , z = 0, 1 , |a| ^ i . 

Optimal control for a fixed is to take always z = 0, and this yields the average 
reward 

<%) = ( i + a) a . 
Assume 

a 0 = 0> P2m = Pzm + 2> Plm +1 = "Pirn > m = 0, 1, 

Introduce a Markov chain X one step of which corresponds to two transitions in the 
original chain for a equal /? and — /?, respectively. It can be seen that the control 
identically equal to 1 is optimal, and leads to 

0(P) = 2p2 . 

Applying Proposition 6 to X, and noting that £ = 0, we obtain 

N-1 
2 'Cs-Zßl 

л = 0 
(23) lim Pz\ — - — < xf = 1 , x > 0 

(23) holds for arbitrary Z since for a0 = 0 all controls are optimal. 
For 

Zn = l, n = 0, 1,..., 
we have also 

I / V - l 

CN - I p2

m 

(24) limP z n—^— <xj = 0, x<0. 
v J N-,00 \ VN ' 

On the other hand, (22) means 

(25) Zn = 0, n = 0, 1,... 

(24) does not hold under (25) for p2m = K m + i ) " 1 7 6 e-g-
Next we consider the situation when the value a0 is unknown. We shall distin

guish two cases: 1. The controller has some information about the transitory sequence 
[j3n> n = 0, 1,...}. 2. The controller is not aware of the transient phenomenon or 
neglects it. 

4. Control with partial information 

Let 

(26) pn = a0 + b0 g(n) , n = 0, 1,..., 

42 



where 

lim g(n) = 0 . 
n->oo 

The sequence {g(n), n = 0,1,...} is known to the controller, while the constants 
a0, b0 are unknown to him. a0 e A, b0 e B, A and B closed and bounded. To maximize 
the average reward the controller would like to employ (22). Since he does not know a0 

b0, he sets 

(27) Zn = z(Xn,z* + bU{n)), n = 0,\,..., 

where a*, b* are maximum likelihood estimates of a0, b0. I.e., 

(28) L„(a*> b*) = sup L„(a, b) , n = 1, 2,.. ., 
as A,be B 

n-1 
L*(a> fc) = E In p(Xm, Xm+l; Zm,<x + b g(m)) . 

m-=0 

Proposition 7. Let Z be an arbitrary control. Let (a*, b*), n = 1, 2,..., be pairs 
of random variables satisfying (28). Then for 

P* = ** + b*g(n), n = 0,l,. . ., 

holds 

(29) lim p* = a0 Pz a.s. 
П-+0O 

With regard to Proposition 3 the proof of (29) is the same as the proof given 
in [2] for g(n) = 0, n = 0, 1,... . 

Corollary 2. Let z(i, a), i e I, be continuous at a0, and let (27) hold. Then 

(30) lim (Zn - z(Xn, a0)) = 0 Pz a.s. 
«->oo 

Therefore Propositions 5 and 6 apply. 
(30) enables us to use Taylor's expansion to derive additional properties of the 

estimates. For the rest of the paper we make the following hypothesis. 

Assumption 3. a0 is an interior point of A. The second derivatives with respect 
to a, 

p"(i, k;z,a), i,kel, zeZ, 

exist in a neighbourhood of a0, and are continuous in (z, a) at (z(i, a0), a0). Moreover, 

I - 1 Z-.W-, a « . ) ^ M i ^ o k ^ > 0. 
i k p(i, k; z(i, a0), a 0 ) 
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We say that 

(31) (P*N - Ps) s/N , N = 0,1 

is almost bounded in mean square, if to arbitrary e > 0 there exist a random event D 
and a constant K so that 

(32) PZ(D) > 1 - e, 

(33) NEZ
XD(P*N - hf = K , JV = 0 ,1 , . . . 

XD is the indicator of D. 

Lemma 1. Let (27) hold and let z(i, a), iel, be continuous at a0. Further let 

(34) g(n) = }M, n = l , 2 , . . . , 0<g<i, 
ng 

where 

(35) l i m n f ^ + ^ - l U o . 

«-*oo \ h(n) / 

Then (31) is almost bounded in mean square. 

Proof. Note that (35) implies 

lim nE h(n) = oo , lim n~~e h(n) = 0 for s > 0 . 
n-*oo n-+oo 

For 
(36) *„ = £ I ~ - i _ J V 1 - * , JV^oo, 

n = i n9 1 — g 

we have 

I 9(n) = l ' *„(«(») - H» + !)) + *« W • 
n = 1 n = 1 

N 

(35) and (36) imply that the sum on the right is 0( £ g(n)). Hence, 
n = l 

(37) £g(n) —Ng(N), N -+ oo . 
«=i l - g 

By a similar argument 

(38) £ n(g(n) - g(n + 1)) = £ h(n) ( ^ - - J L - ) + 
n=i «=i \yr (n + 1/y 

+ I r - ^ W " ) - »(» + 0) ~ tflffW ~ -J-Ng(N), N - oo . 
B =i (n + 1)" n=l 1 - a 

44 



To simplify the Taylor expansion of LN(a*, b*) assume p"(i, k\ z, a), i, k e I, 
continuous on Z x A, and write shortly 

(39) In p> = A In p{Xn, Xn+l\ Zn, a) | a =, n 

da 

(40) In p" = i- i In />(*„, ___ + 1 ; Z„, a)|._,_ 
da2 

with /?,. between a* + b* #(fl) and fin. Note that In p' and In p" depend on n which is 
suppressed for convenience. Then 

(41) ±(Lv(a*, _•) - L„(a0, b0)) = ± Y ( « * + b* g(n) - a0 - b0 g(n)) In p' + 
N Nn = 0 

+ ^ _ ' ( « N + K 9(n) -<x0-b0 g(n))2 In p" . 
2JVn = 0 

The last term is a quadratic form in 

«* - «o , (b* - b0) g(N) 

the matrix of which is 

( t N-l i \ - i 

— T In p", Y g(n) In p* . 
2N*% P 2Ng(N)n%

yy } 

-^l^X9^ ln P"> -ilA^Zein)2 ^ P"j 
2N g(N)n = 0 2N g(Nfn = 0 ' 

Let us investigate the limit of (42) as N -> oo. Set 

N-i 

= 11 
л = 0 

S* = _ln/>". 

With regard to (29) and by a similar argument as in the proof of Proposition 5 we get 

(43) lim - SN = X _>;(z(- a0), a0) p(i, k; z(i, a0), a0) . 
/V-ooN i k 

. (In p)" (i, k\ z(i, a0), a0) = - J Pz a.s. 

Further 

£ g ( « ) In p" = i\e(» - 1) - *(»)) S„ + g(N - I) SN . 
n = 0 n = l 

Hence from (38), (43), 

üm —1— Yg(n) ln p"= - Í-L- + Л j = ___ 
v ^ Л g(Л)„ť0 Vl - - / 1 - í 

P^a.s 
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Similarly, 

lim ^ — £ g(n)2 ln p" = Pz a.s. 
N->«,Ng(N)2 n% 1 - 2в 

We conclude that (42) converges almost surely as N -> oo to the negative definite 
matrix 

1 

1-9 
2 1 1 1 

U - 0 1 - 2*/ 

This implies that for N sufficiently large the last term in (41) does not exceed — K0A^, 
where K0 is a positive constant, and 

A2 = (4-«0y + (b*.-b0)
2g(N)2. 

Since the left-hand side of (41) is nonnegative, we conclude that there exists 
an almost surely finite random variable v such that 

(44) 0 = (a* - a0) -j- "% In p' + (b* - b0) g(N) . 
N n = 0 

1 £ g(n) In p' - K0A
2 , N = v, v+l,.... 

Ng(N)n%' 

To establish that (31) is almost bounded in mean square take e > 0 arbitrary. Find N0 

such that 

Pz(v = N0)>l-e, 

and set D = {v _ 7V0}. From (44) follows applying Schwarz's inequality 

(45) 0 = 1 V[_zxD(aJ - a0)2] ^ E 2 ^ p')2] + 
N n = 0 

+ i J\Ez
XD(b* - b0)

2 g(N)2] . ^ - i - Yg(n)2 Ez(\n p')2] - K0E
Z

XDAN 

N = N0,N0 + 1 

We have used the fact that In p' are martingale differences. From (45) we obtain 

0 = K, J[NEzxDA2
N-] - K0NEZ

XDA2 , N = N0,N0 + 1, . . . 

for a suitable constant Kt. But this implies that 

NEZ
XDA2, N= 1,2, . . . 

is bounded. Since 
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2NEZ
XDA2

 = NEZ
XD(P* - pNf, 

we have (33). • 

The subsequent proposition asserts that the control (27) is as good as (22) in 
the sense introduced in Section 2. 

Proposition 8. Under the hypotheses of Lemma 1 let 

(46) wt(a), iel, <P(i, z(i, a), p), iel, peA, 

have continuous derivative with respect to a e A. Then for the control 

Zn = z(Xn, a* + b* g(n)), n = 0, 1 , . . . , 

holds 

/ N~1 \ 

cN-Y,o(pn) \ 

<47> SrA-^—^J-'W-"l-°°-")-
Proof. Consider the proof of Proposition 6. (17) holds by Corollary 2. We shall 

show that (18) can be strengthened to (47). Note that 
co oo 

I|/».+ .-A.| = NX|ff(«+ l)-fl(n)|<oo. 
n = 0 n=0 

Thus (16), and hence (20), is fulfilled. To demonstrate (47) it suffices to establish 

(48) PzAim - i - t 0(Xn, Zn, Pn) = 0. 
N->oo yJN n = 0 

For p in the interior of A we conclude from 

<P(i,z{i,p),p) = 0, - 1 0(i, z(i, a), p)l=p = 0 , i 6 / , 
da 

that 

(49) -0(i,z(i,a),p) = \OL-p\<p(a-p), iel, a e A , 

with 

lim cp(x) = 0 . 

(p can be assumed bounded. 
(48) is valid if 

(50) lim Ez (XD -±-Ntl*(Xm9 Zn, pn)) = 0 
N -00 \ V'N/! = 0 / 

with D having probability arbitrarily close to 1. Let D be such that (32), (33) hold. 
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Then 

-Ez (xD ~ l ^ n , Z„, p„)\ = -L"ZE^XDW ~ P„\ <P(tf - Pn)) 
\ y/Nn = i ) N/yV»=i 

(51) = - 1 lV[£zXo(/3: - A)2] V[£V/Í - A.)2] * 
V!Vn=l 

i Vx 

Since 

we have 

= т; I 7- V[£Ш* - /Л)2] 

lim (/?„* - /?„) = O i>z a.s., 
H-+00 

um EZ<K/C - /y 2 = o . 

Hence (51) implies (50). • 

5. Control without information on the transitory behaviour 

Case 1 
We shall show that the controller may neglect the transient phenomenon if 

(52) fitt - a 0 = o(—\, n-> oo , 

which is the situation complementary to (34) assumed in the first part of this section. 
The result can be extended under additional smoothness hypotheses. 

Let the control be performed as follows. The controller assumes 

Pn = ao - n = 0, 1, ... , 

and employs 

(53) Z„ = z(Xn, a*n) , n = 0,l,..., 

where a* is his maximum likelihood estimate of a0. Namely, 

(54) L„(a„*) = sup L„(a), n = l,2,..., 
aeA 

n- 1 

L « ( a ) = Z l n P(Xm> Xm + 1J Zm, a) . 
m = 0 

Let us stress that the true situation is given by the sequence {/?„, n = 0, 1, ...} 
satisfying (10). Corollary 2 remains valid with (27) replaced by (53). The following 
analogue of Proposition 7 is valid 
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Proposition 9. Let Z be an arbitrary control. Let a*, n = 1, 2 , . . . , be a sequence 
of random variables satisfying (54). Then 

lim a* = a0 Pz a.s. 
n-*co 

Lemma 2. Let (16), (52), (53) hold, and z(/, a), i eI, be continuous at a0. Then 

(55) K - f t v W i V , N = 0, 1 , . . . , 

is almost bounded in mean square. 

Proof. Suppose again for brevity that p"(i, k; z, a), i, k e I, is continuous on 
Z x A. Retain the denotations (39), (40) with ftn between a0 and /?„, and introduce 

l n PO = — l n P(Xn> Xn+ll Zn, Cc)\a = ao , 

da 

d2 

lnP0 = —2
 l n P{Xn> Xn+U Z„ a)|a = a„ 

d a z 

where a., lies between a0 and a*. Then 
(56) I (L„(a*) - LN(«0)) = (a* - a0) i * £ l n p'0 + (a* - a0)2 ~ Y \ n pi. 

N N« = 0 2Nn = 0 
With regard to (54) expansion (56) can be used to establish the almost mean square 
boundedness of 

(57) (aN-<Xo)V^> N = 0, 1 , . . . , 

in the same way as (41) in the proof of Lemma 1. However, there is the distinction 
that ln p'0 are no longer martingale differences. Thus to estimate Fz(£ In p'0)

2 we 
proceed as follows. 

(58) E*(Z ln p'0f = £ Z ( Y (In p' + (a0 - f}„) ln p"))2
 = 

n = 0 n = 0 

= 2 ££-(lii p')2 + 2£z( X 'K - ,9B) ln p"f . 

we have 

л = 0 л = 0 

N-l 

IE 
л = 0 

N-l 

Since 

(59) | E (a0 - P„) In p"\ = const. JN , N = 1, 2,. . 

7Z, 

л = 0 
^ ( S l n p ^ g c o n s t . J V , N = l , 2 , . . . , 

which is the inequality needed to infere as in the proof of Lemma 1 that (57) is almost 
bounded in mean square. (55) has the same property because of (52). • 

The next statement is an exact analogue of Proposition 8. 
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Proposition 10. Under the hypotheses of Lemma 2 let (46) have continuous 
derivative with respect to a e A. Then (47) holds for the control (53). 

Case 2 
Assume now 

(60) pn = a0 + b0g(n), n = 1,2, . . . , 

with g(n) as in (34) and (35). Instead of (59) we have by (37) the estimate 

| £ ( c c 0 - A)lnp" | = const .N0(N) , N = N0,N0 + 1 , . . . . 
n = 0 

Thus, from (58) 

Ez{ Z In p0)
2

 = const. N2 g{N)2 , N = N0, N0 + 1, ... . 
n = 0 

From here it is deduced using the method of the proof of Lemma 2 that 

0 = const. V[£ZXDK ~ ao)2] \g(N)\ -

- const. EzxD(x* - a0)2 , N = N0, N0 + 1, ... . 

The last constant is positive, and PZ(D) can be arbitrarily close to 1. But this implies 

EXD(4 ~ O 2 = const. g(N)2 , N = N0, N0 + 1, ... , 

and hence also 

(61) EXD(X*N - PN)2 = const. g(N)2 , N = N0, N0 + 1, . . . . 

Proposition 11. Let (60) hold with 

(62) g(n) = lMi ii = 1,2, . . . , i < g < i , 
ny 

and h(n) satisfying (35). Let z(i, a), i el, be continuous at a0, let w^a), i eI, have 
a continuous derivative, and 

<P(i, z(i, a), p), iel, fie A, 

two continuous derivatives with respect to a e A. Then (47) is fulfilled for the control 
(53). 

Proof. (48) is to be verified. Instead of (49) we have the estimate 

- <P(i, z(i, a), P) ^ const, (a - p)2 , iel, a, p e A . 

Hence, from (61), 

/ 1 * _ 1 \ const N~1 const iV~1 

- * z ( XD - L I *(X z„ /»-)) = - ^ I £ZXPK - /3n)
2 ^ - ^ I 0W2, 

V s/Nn = 0 ) y/N n = 0 y'AT n = 0 
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N = N0 + 1,N0 + 2 , . . . . 

The last expression converges to 0 as N -> oo because of (62). This proves (48). • 

Corollary 3. Propositions 10 and 11 are valid with (53) replaced by 

Zn = z(Xn, a 0 ) , n = 0, 1 , . . . , 

as it is seen by inspecting the respective proofs. 
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