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On the Open Mapping Principle and Convex Multivalued Mappings 

LE VAN HOT 

Economical Institute of Hanoi*) 

Received 17 September 1984 

We generalize the open mapping principle and apply it to study convex multivalued 
mappings. 

Zobecnime princip otevřených zobrazení a využijeme ho k vyšetřování konvexních mnoho
značných zobrazení. 

.TJaeTCÍI o6o6lHeHHe npHHHHna OTKpblTblX OT06pa>KeHHH H npHMeHHTCH K HCCJIeflOBaHHH Bbl-
nyKJIbrX MHOr03Ha4HbIX OTOÓpaMCeHHH. 

We generalize the open mapping principle for mappings defined on closed 
subsets of a Banach space and some results in [4], [5], [7] derive as its corollaries. 
In the conclusion we prove that a convex multivalued mapping F whose value at 
some point x0 is a closed convex bounded subset and whose domain is the whole 
space is of the form F(x) = F(x0) + T(x)9 where Tis a linear mapping. 

Let X, Ybe metric spaces, f: X -> F a mapping. For each r > 0, x e X, we put: 

kr(f, x) = r~l sup {s: s ^ 0, Bs(f(x)) £ f(Br[x))} 

where Br(x) denotes the ball with center x and radius r. Of course k?(f, x) = 0 for 
all r > 0 , x e l Put: 

k(f, x0) = lim kr(f, x) 
x^x0 
r->0 

Lemma 1. Let X, Y be Banach spaces, A, B convex subsets of X, Te L(X, Y), 

Suppose that 7\A) _ Br(y0) and h(A, B) = e/||T||, 0 < s < r, where h(A, B) denotes 

the Hausdorff distance between sets A, B. Then T(B) _ Br_e(y0). 

Proof: In contrary we suppose that Br_e(y0) $ T(B). Let yi^Br_e(y0) and 

yt $ T(B). For T(B) is a closed convex subset of Y, there exists a y* e Y*, \\y*\\ = 1 

and a, $ such that y?(yi) = a > p ^ y*(y) for all y el\B). yt(yi - yo) = yi(yi) -

- y?(yo) = « ~ yt(yo) _ ||yi ~ yo|| _ r - s. Take yn e Br(y0) such that 
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lim y*(y„ - y0) = r. Thus \\yn - y\\ ^ y*(y„ - y) ^ y*(yn - y0) - y*(y) + 
n 

+ y*(y0) ^ y*{y« - y0) - P + y*i(yo) for all yeT\~B). Hence b[T(A), T(B)) ^ 
^ lim y*{(yn - y0) - P + y*{y0) ^ r - P + y*(y0) > r - a + }'?(v0) = e. 

n 

That contradicts the fact h{T(A), T(B)) = ||T|| h(A, B) = e. This finishes the 
proof of Lemma 1. 

Proposition 1. Let X, Y be Banach spaces, A a closed convex subset of X, Te 
€ L(X, Y). Then 

(1) kr(T| A, x) = kr(T| A, x) for all r > r' > 0 and x e A, 
(2) k(T | A, x) = lim kr(T | A, x) for all x e A, 

r - 0 

where T\ A denotes the restriction of Ton A. 

Proof: It is clear that BXr(x) n A 2 ^(Br(x) n A - x) + x for all r > 0, 0 < 
< A = 1 and x e A. If Bs(T(x)) c T | B r ^ n " A ) = T(Br(*) n A - x) + T(x) then 

HAs(T(x)) <= >LT(Br(x) n A - x) + T(x) c T(BAr(x) n A). Thus kAr(T| A, x) = 

= kr(T| A, x) for 0 < X = 1 or kr(T| A, x) = kr^(T| A, x) for all r > r' > 0, 
x e A. By the Dini theorem we have: 

lim kr'(T| A, x) = lim lim kr(T| A, x ) . 
JC-+JCO r ->0 JC-»JC0 

r - 0 

On the other hand h(Br(x) n A, Br(x0) n A) ^ ||x - x0||. Then 

lim h(Br(x) n A, Br(x0) n A) = 0 . 
X-*JCO 

By Lemma 1 lim kr(T| A, x) = kr(T| A, x0). Thus k(T| A, x0) = lim kr(T| A, x0), 
x->xo r -»0 

for all x0 e A. 

Theorem 1. Let X be a complete metric space, x0 e X, Ya normed space,/: X -> 
-> 7 a continuous mapping. Suppose that there is a continuous mapping g: X -> Y 
and an r > 0 such that g(x0) = f(x0) and 

(1) k(g, x0) > 0, 
(2) ||f(x) - f(x') - #(x) + g(x')\\ = K d(x, x') for all x, x' e X, d(x, x0) < r, 

d(x', x0) < r, 
( 3 ) K ( % , x 0 ) ) - 1 < 1 . 

Then f(x0) e int (f(Bs(x0)) for all 5 > 0. 

Proof: Choose 0e(O, 1), ee(0, 1) such that (K + 0)(k(g, x0) - e)~l < 1. 
Put x = k(g, x0) - e. Then there exists a b > 0 such that Bxs(g(x)) = g(Bs(x)) ^or 

all xeX, d(x, x0) < b < r and 0 < 5 < b. Put q = (K + 0) x~l < 1. Let y e Y 
and ||y — f(*0)|| = x(l — q) s, 0 < s < b. We construct inductively the following 
sequence {xn} such that: (1) d(xn+i, xn) = q"(l - q) s, (2) \\g(xn+l) - g(xn) + 
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+ /(x„) - y\\ _i 0d(xn + l9xn) for all n. Since \\y - f(x0)\\ ^ x(l - q) s then y e 

eBx(1.q)s(g(x0)) c g(B(1_q)(x0)). If >> = /(x0) = g(x0) then put x_ = x0. If a = 

= ||y - g(^o)|| > 0 then by the continuity of g there is a 8 > 0 such that ||g(x) -
- g(x0)|| < a/2 for all x, d(x, x0) < S. Choose x_ G-B(i-_)_(x0) such that ||g(x_) -
- y\\ _̂  0 min [a/2, <5}. Then of course d(x_, x0) _̂  <5 and ||g(x_) - y\\ = 0S = 

^ 0</(x_,xo). Suppose that we have constructed {xk}9 0 < k ^ n satisfying the 
inductive assumptions. Then 

d(xn, x0) <"^d(xk + u xk) < s(l - q) (1 - q%l - q) < s. 
* = 0 

Consider 

yn = g(xn) - g(xn-1) + f(xn.1) - y , z„ = g(x„) - f(xn) + y . 

By the inductive assumptions we have ||y„|| _S 9 d(xn9 x„__), ||zn — g(xrt)|| = 
= \\f(xn) - / (x„_0 - g(x„) + a(x„__) + j„|| ^ Kd(x„, x„__) + 0d(x„,x„__) = 
= (K + 0)dyxn,xn.1) ^ (K + 0)q\l - q)s. Thus zne B(K+d)qn-1(1.q)s(g(xn)) _= 
= ^(^"(i -c7)s(x/i))- I n t u e same argument as in the construction of x_, we choose 
xn+i eBqnil_q)s(xn) such that: \\g(xn+1) - zn\\ __ 0d(x„+1,x„). Then 

\\g(xn+1) - g(x„) + f(x„) - y|| __ 0 d(x„ + 1, x„) , 

4x*i+i>x») = iV ~ 4)s' 

That completes the inductive construction. Of course {x„} is a Cauchy sequence 
in X, then there exists an x e X, x = lim x„; it is a*(x, x0) _ 5 and 0 = lim (g(xn+ _) — 
- g(xn) + f(xn) - y) = /(x) - y. Thus y = f(x). This proves that B*(1-_)s(/(x0)) __ 
__ f(Bs(x0)), i.e. /(x0) e int/(Bs(x0)). This ends the proof of Theorem 1. 

Corollary 1. Let X9 Y be Banach spaces, A __ X a convex closed subset of 
X9 Te L[X, Y) such that T(A) is a set of the second category. Then int T(A) + 0 
and if x e A, Tvx) e int T(A), then k(T| A, x) > 0. 

Proof: Let x0 be any point of A. Without loss of generality we can suppose 
x0 = 0. Then for r > 0 we have 

A = U -B„/0) n i c y „(_3r(0) n A), 
« = i 

T(A) = U r (^r (0) n / 4 ) c y nT(£?r(0) n A) . 

Since T(A) is of the second category, there exists an n0 such that int T(_?Wor(0) n A) + 

4= 0. Choose y_ = T(x_) e T(L?„or(0) n _4) and s > 0 such that: T(x_) + Bs(0) c_ 

= ^ o r ( O ) n A) __ -r(l?IIor+1|jCl||(jc1) n A). Then by Proposition 1, we have 
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k(T|A,Xi) = k^^'^^^TlA^i) = s/(n0r + Hxill) > 0. In Theorem 1, put X = A, 
f=g = T; we have T(xt) e int T(Br(xl) n A) c int TKA) for all r > 0. Thus 
int T(A) + 0. If 0 = T(0)eint T A ) then there is a K > 0 such that -(yx\K)e 
e T(A). Let nxeN such that -(y^K) e T(Bmr(0) n A) <= n ^ B ^ O ) n A); then 

Bs/K(0) _= i T(Bnor(0)nA) + n{T(Br(0) n A) s ^ + n A TvBr< 0) n A) . 

Then 

k(T| A, 0) = kr(T| A, 0) = > 0 . 

Knl + n0 

That finishes the proof of Corollary 1. 

r 

Let A be a convex subset of a Banach space X, put Cor A = {x e A: for each 
y e A, y 4= x there is a z e A and a 1 G (0, 1) such that x = (1 — X) y + Az}. 

Corollary 2 (P. C. Duong - H. Tuy [7]). Let X, Y be Banach spaces, F: X -> 2y 

a multivalued closed convex mapping such that F(K) is of the second category. Then 
r 

for each x0 e Cor (dom F) and for each open set U 3 x0, F(x0) n int F(U) =1= 0. 

Proof. Put A = Gr(F) = {(x, y): y e F(x), x e K } . By the assumption, A is 
a closed convex subset of the Banach space X x Y We define T: X x Y -» Y by 
T(x, j ) = y. ThenF(U) = T(U x Yn A). By Corollary 1 there is yx e int T(A) # 0, 
for T(A) = F(K) is of the second category. Let yt eF(xl), xt e dom F. There is 
an x2 e dom F and a A e (0, 1) such that x0 = Xx{ + (1 — X) x2. Take a y2 e F(x2). 
Then y0 = Xy\ + (1 - X) y2 e int T(A), y0 e F^Xi + (1 - X) x2) = F(x0). By Cor
ollary 1, k(T| A, (x0, y0)) > 0. Putting f=g = T, X = A in Theorem 1, we have 
y0 e int T^Br(x0, y0) n A) for all r > 0, hence y0 e int F(U) = int T\JJ x Yn A) 
for all open sets U containing x0. 

Corollary 3. (Robinson [4] - P. C. Duong - H. Tuy [7].) Let X, Y be Banach 
spaces, F: X -> 2y a multivalued closed convex mapping such that FyX) is open. 
Then F(U) is open for each open set U. 

Proof Put A = Gr(F), T((x, j;)) = y. Then T((x, y)) e int T(A) for each 
(x,y)eA. Thus k(T| A, (x, y)) > 0. Then T(Vn A) is open for each open set V 
in X x Y Hence F(U) = T\U x Yn A) is open for each open set U. 

Recall that a multivalued mapping F: X -> 2y is surjective at a point x0 if it 
carries every neighbourhood U of x0 onto a neighborhood F(U) of F(x0). 

Let M be a subset of Y We say that a singlevalued mapping f is M-surjective 
at x0 if the mapping f(x) — M is surjective at x0. 
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Let X, Y be Banach spaces, F: X -> 2Y be a multivalued convex mapping. 
Put k\F,(x0,y0)) = r"1 sup {inf {||j; - y0\\, yeF(x)}, ||x - x0|| = r, x e dom F} 
for o O j o e F(x0). 

It is obvious that kr(F, (x, y)) = kr,{F, (x, y)) if r > r' > 0. Put k(F, (x, y)) = 
= lim kr(F, (x, y)), F~ \y) = {xeX:ye F(x)}. It is clear tht if F is convex then F"x 

r-*0 

is convex, if F is closed then F"1 is closed. 

Corollary 4. (P. C. Duong - H. Tuy [7]). Let X, Y be Banach spaces, U an open 
subset of X, x0 e U, f: U -> Y a continuous mapping, M a closed convex subset 
of Y Suppose that there is a continuous mapping g:X -» Y and r > 0 such that 
g(*o) = /(*o) and 

(1) G(x) = g(x) — M is a closed convex mapping, 
(2) a = k(G-1,(f(xo),xo))>0, 

(3) | | / W ~ /(* ') - *(*) + #(*')! =* *l l* - *'ll f o r a11 *> *'- II* - *o | | = r, 
I k - *o | | = r , 

(4) K . a < 1, 
(5) G(X) = Y 

Then f is M-surjective at x0. 

Proof. Put Z = K x Y, ||(x, j ) | | = max {||x||, a . ||>>||}, ^ = Gr(G), T(x, y) = 
= y, h:A-^Y, h(x, y) = f(x) - g(x) + y. Then k(T\ A, (x0,f(x0)) = a~\ 
\h(x, y) - h(x\ / ) - T((x, y) - (x', y'))|| = ||f(x) - f(x') - g(x) + ^(x')|| = 

= K||x - x'||. By Theorem 1 f(x0) = y0 = h(x0, y0) e int (h(Br(x0, y0) n A)), hence 
y0e int (h(U x Yn A)) for every open set U containing x0. h(U x Yn A) = 
= {f(x) - g(x) + y: xeU, yeg(x) - M} = {f(x) - M: xeU} = F(U), where 
F(U) = f(x) - M. That proves that f(x0) e int F(U) for every open set U con
taining x0, i.e. f is M-surjective at x0. 

Now let X be a Banach space, X* denotes the linear space of all linear forms 
on X. Let f: X -> R be a convex function. Linear form x* e X* is said to be an al
gebraic subgradient of f at x0 if <x*, x — x0> = f(x) — f(x0) for all xeX. Put 
daf(xo) = {x* eX*: x* is an algebraic subgradient off at x0}. It is obvious that if 
x0 e int (domf), then by Hahn-Banach theorem daf(x0) #- 0. 

Remark. If F is a multivalued convex mapping, dom F = X and there exists 
an x0 eX such that F(x0) is bounded then F(x) is bounded for all xeX. In fact, 
if there were a n x e l such that F(x) is unbounded, then F(x0) = F(£x + i(2x0 — 
— x)) ^ %F(x) + iF(2x0 — x) would be unbounded too. It is a contradiction. 

Theorem 2. Let X, Y be Banach spaces, F: X -> 2Y be a convex closed multi
valued mapping such that dom F = X and F(x0) is bounded for an x0 e X. Then 
there exists a unique linear singlevalued mapping T: X -> Y such that F(x) = F(0) + 
+ T(x). 
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Proof. By the remark, F(x) is bounded closed for all xeX. 
(1) Let Y = R. Put - oo < cp(x) = max {y: y e F(x)} < oo, - oo < i//(x) = 

= min {y: y e F(x)} < oo. It is clear that \j/ is convex, cp is concave and dom cp = 
= dom \j/ = X. Put h(x) = \j/(x) - <p(x) = 0; h is a convex function and dah(x) + 0 
for all x G X. Let x be any point of K, x* e dah(x). Then <x*, x - x> <: h(x) - h(x) 
for all x e l , hence <x*, k> ^ h(x + k) - h(x) = -h(x) for all keX. This shows 
that linear form x* is upper bounded, thus <x*, k> = 0 for all keX. That means 
dah(x) = {0} for all x eX and thus h is a constant. Let h(x) = — a; then cp(x) = 
= a + \l/(x). It follows that cp, \j/ are simultaneously convex and concave functions. 
Thus cp, \j/ are affine. Put T[x) = \j/(x) — \j/(0), then T is a linear form on X and 

F(x) = [i/>(4 <K*)] = [>(*), Hx) + *] = Hx) - H°) + L>(°)> <H°) +«] = r M + 
+ 1X0), iA(0) + a] = T{x) + F(0). 

(2) Let Y be any Banach space. For each y* e Y*, put (}>*F)(x) = >>*(F(x)); 
then y*F is a convex multivalued mapping of X into 2R. Without loss of generality 
we can suppose that 0 e F(0). Let x e X, x =t= 0, 1 = Xx < A2; then 

X,x = ^(A2x)+(l - - ^ 0 , 
A2 \ k2J 

F(X,x) 2 h F(X2x) + ( l - £ ) E(0) =» £ E(A2x) 

and hence 

i F ( A . x ) - . i f ( A 2 x ) . 

On the other hand, for each y* e 7* there exists a unique linear form Ty*:X ^ R 
such that (y*F) (x) = (y*F) (0) + Ty*(x). Then 

diam F(x) = sup diam (y*F) (x) = sup diam ((y*F) (0) + Ty*(x)) = 
l|y*ll = i l|y*ll = i 

= sup diam (y*F) (0) diam F(0) . 
II;y* ll = i 

Thus lim diam [(l/A) F(Ax)] = 0. By the Cantor theorem, there is a unique element, 
A-*oo 

which is denoted by T(x), such that (F(x)} = 0 (1/A) F(Ax). Of course T(x) e F(x) 
A = 1 

for all xeX. Now we claim that T(x) is positively homogeneous. Let x1? x2 eX, 
and x2 = X0xv Without loss of generality we can suppose that A0 > 1. Then /U0 > A 
for all A ̂  1. It holds 

F(Ax2) =F(A A0xO, - i - F(Ax2) 2 1 F(Axx) 
A A Q A 

and hence 
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Tbus 

{r(*2)} = fi \ F(kx2) 2 A0 n \ F(A*i) = A0{T(*i)} . 
A> 1 A k>\ A 

i.e. T(x2) = A0 T(xx) . 

This shows that Tis positively homogeneous and of course (y*T)(x) e (y*F)(x) = 
= (y*F) (0) + Ty*(x) for all x e X. Then l((y*T) - Ty.) (x) e (y*F) (0) for all A > 0, 
((y*T) - T,.) (x) = lim (1/A) (j*F) (0) = {0}, hence y*T = Ty.. Let a, j8 e «, w, v e 
€ K, j * e Y*; then y*(T(oiu + fiv)) = T/Vaw + fiv) = a T,.(i<) + jS Ty.(v) = 
= a(y*T) (u) + j8(^*T) (v) = j*(a T(w) + jS Tvv)). Thus T(aii + fiv) = a T(M) + 
+ p T(v). Hence T is a linear mapping. On the other hand we have (y*F) (x) = 
= y*(F(x)) = (y*F) (0) + y*(T(x)) = y*(F(0) + T(x)). Then F(x) = F(0) + T(x) 
and the proof of Theorem 2 is completed. 

We denote the linear hull of a subset A by &(A). 

Corollary 5. Let X, Y be Banach spaces, F: X -» 2y a continuous multivalued 
closed convex mapping, dom F = X, F(x0) bounded for an x 0 e K . Suppose that: 
1) ®(F) = Y, 2) dim (JSf(F(0))) < oo, 3) F is 1-1, i.e. Fvx) + F(x') if x * x'. Then 
X s Y 

Proof By Theorem 2, F(x) = F(0) + T(x) for a Te L(K, Y). Of couse T is an 
injection. It is sufficient to prove that 0t(T) = Y(that means that Tis open). Suppose 
that @(T) + Y and $ e Y, $ $ 0t(T). By the assumption, for each n e N there is an 
aneF(0), xneX such that n$ = an + T(x„). Put H = J^({T(x„)}) <= «^(F(0)) 0 
0 if({^}). Then H <= «(T) and dim (H) = dim (if(F(0))) + 1. Therefore H is 
a closed subspace of Y By the Hahn-Banach theorem there is a y* e Y* such that 
y*(y) = 1> y*(y) = 0 f ° r a ' l y e H. Thus y*(a„) = n for all n e N and sup y*(y) = 

yeF(O) 

= oo. This contradicts the boundedness of F(0). That shows that 0t(T) = Y and 
the proof is over. 
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