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Algebraically Compact Modules 

ALBERTO FACCHINI 
Mathematical Institute of Udine University*) 

Received 26 February 1985 

The paper is devoted to a study of algebraically compact modules. 

Článek je věnován studiu algebraicky kompaktních modulů. 

CrarbH nocBemeHa H3y*ieHHio a.nre6paHHecKH KOMnaKTHbrx Mojryjieň. 

This paper is a reasonably self-contained report on some techniques employed 
in the study of algebraically compact (pure-injective) modules. In particular we are 
concerned with the direct sum decompositions of algebraically compact modules. 
We do not provide the proofs but give all the necessary references to them. 

We begin with a quick review of the definition and main properties of algebraically 
compact modules in § 1, following Warfield's paper [35]. In § 2 we present spectral 
categories as they are introduced in Gabriel's and Oberst's note [14]. In §§ 3, 4 and 5 
we examine various possibilities of applying spectral categories to the study of 
algebraically compact modules, presenting a paper of the autor [7], Gruson's and 
Jensen's category D(R) [19], and Gabriel's functor ring of the finitely presented 
modules [13] respectively. Finally in § 6 we show how it is possible to apply the results 
of the previous sections to the study of the structure of algebraically compact modules 
over valuation rings. 

1* Algebraically compact modules: definition and main properties 

The study of algebraically compact Abelian groups was begun by Kaplansky 
[22], Los [24], Balcerzyk [1] and Maranda [25]. Then the theory was extended 
to modules by Stenstrom [33], Fuchs [10] and Warfield [35] and to general algebraic 
systems by Mycielski [26]. Here we present the notion of algebraic compactness 
following Warfield's paper [35]. 

Fix an associative ring R with 1. 

Proposition 1. Let 0 - > A - > # - > C - » 0 b e a short exact sequence of left R-
modules. The following properties are equivalent: 

*) Istituto di Matematica, Informatica e Sistemistica, Universita di Udine, Udine, Italy. 
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(a) For any finitely presented left R-module M, the sequence 0 -> Horn (M, A) -> 
-> Horn (M, B) -> Horn (M, C) -> 0 is exact. 

(b) For any right R-module F, the sequence 0 - > F ® A - > F ® B - > F ® C - > 
—> 0 is exact. 

n 

(c) Any finite set of linear equations £ r^Xj = ah 1 = i = k, with r{j e K and 
1=i 

ay e A, which is soluble in B is soluble in A. 

A short exact sequence satisfying the conditions of Proposition 1 is called pure. 
In this case A is said to be a pure submodule of B. A module D is pure-injective 
if for any pure short exact sequence 0 - > A - > B - > C - > 0 the sequence 0 -> 
-> Horn (C, D) -> Horn (B, D) -> Horn (A, D) -> 0 is exact, or, equivalently, if any 
morphism A -> D can be extended to a morphism B —> D whenever A is a pure 
submodule of B. 

The interest of the notion of pure-injectivity mainly lies in its connection to the 
notion of (topological) compactness and its equivalence to the concept of algebraic 
compactness. A left R-module M is compact if there exists a compact Hausdorff 
topology on M making it a topological module over the ring R, where R is endowed 
with the discrete topology (i.e., M is a topological group and the multiplication 
R x M -> M is continuous.) A left R-module M is algebraically compact if every 
family of linear equations £ r^Xj = mt (/ eI) that is finitely soluble is soluble. Here 

JeJ 

the r , /s are in R, the m/s in M and for any i el the elements r^'s are zero for all 
but a finite number of j e J. 

Theorem 2. The following conditions on a left K-module M are equivalent: 

(a) M is pure-injective. 
(b) M is isomorphic to a summand of a compact K-module. 
(c) M is algebraically compact. 

It is also possible to construct a theory similar to the theory of injective envelopes 
and essential submodules in the following way. If A is a pure submodule of B, then B 
is a pure-essential extension of A if there are no nonzero submodules S ^ B with 
A n S = 0 and A + S/S pure in B/S. A module B is a pure-injective envelope of 
a submodule A if B is a pure-essential extension of A and a pure-injective module. 

Theorem 3. Pure-injective envelopes exist and are unique up to isomorphism. 

We conclude this introductory section with a theorem due to B. Zimmermann-
Huisgen and W. Zimmermann [38] on the endomorphism rings of algebraically 
compact modules. 

Theorem 4. Let M be an algebraically compact left R-module, S = EndR (M) 
and J(S) the Jacobson radical of S. Then S/J(S) is a right self-injective von Neumann 
regular ring, and idempotents lift modulo J(S). 
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2. Spectral categories 

Theorems 3 and 4 seem to suggest that pure-injectivity might be regarded as 
a sort of injectivity (or quasi-injectivity, see [8]) in a suitable ambient category. The 
two main ideas are the following : 1) modify the category P-Mod of all left P-modules 
so that pure-injective modules are exactly the injective objects in the modified 
category; 2) give the algebraically compact modules a structure of spectral category. 
The various developments of these two ideas, which are closely linked together, 
will be the main theme of this paper. Here we shall not report on the approach to the 
study of algebraically compact modules via model theory. For this approach we refer 
the reader to the papers of Fisher [9], Garavaglia [15], Ziegler [37] and Prest [28]. 
We tackle the problem only with module theory and its immediate extension, that is, 
abelian category theory. 

Since the injective objects of a Grothendieck category can be given the structure 
of a spectral category and the decompositions of injective modules are studied with 
spectral categories, we will briefly describe these categories, following Gabriel's 
and Oberst's note [14], We also refer the reader to [32] and [18], 

Let C be a Grothendieck category, that is, an abelian category with a generator 
and exact direct limits. It is known that for every object A of C there exists an 
essential monomorphism into a unique (up to isomorphism) injective object, the 
injective envelope of A. Moreover, if A is an object of C the set of essential subobjects 
of A is directed under reverse inclusion. Therefore we can define a category Spec C, 
the spectral category of C, in the following way: Spec C has the same objects as C; 
if A and B are objects of Spec C, then 

HomSpecC(A, B) = Urn Homc (A', B) 
A' 

where the direct limit is taken over all essential subobjects A' of A. There is a canonical 
functor P: C -» Spec C which is the identity on objects and induces the canonical 
homomorphism of Homc (A, B) into Hm Homc (A', B) on morphisms. The P-
images of an object of C and its injective envelope in C are isomorphic objects 
in Spec C. 

Proposition 5. If C is a Grothendieck category, then Spec C is a Grothendieck 
category in which every exact sequence splits. 

(If C is a generator in C, a generator in Spec C is U = P(©C/C ') where C 
ranges in the set of all subobjects of C.) c ' 

If we call spectral category any Grothendieck category in which every exact 
sequence splits, the proposition says that Spec C is spectral for any Grothendieck 
category C. (Note that other authors call spectral category any abelian category 
in which every exact sequence splits.) 

Spectral categories can be characterized algebraically. 

Proposition 6. Let 5 be a spectral category with a generator U and set 5 = 
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= Ends (U)- Then S is a von Neumann regular right self-injective ring and S is 
equivalent to the full subcategory N(S) of Mod-S whose objects are the nonsingular 
injective modules. Conversely, for any von Neumann regular right self-injective 
ring S, the full subcategory N(S) of Mod-S is a spectral category. 

It is easy to see that in this case the nonsingular injective modules are exactly 
the direct summands of direct products of copies of R [18]. 

There is a considerable advantage in passing to the category Spec C, because it 
has a much simpler structure than the category C itself. For instance, in Spec C 
every object is injective, every subobject is a direct summand, simple objects are 
exactly indecomposable injective objects, two objects A and B of C have isomorphic 
injective envelopes if and only if P(A) and P(B) are isomorphic in Spec C, two 
injective objects of C are isomorphic if and only if their P-images are isomorphic 
in Spec C, and so on. In particular Spec C is the natural tool to study the injective 
objects of C. 

All these considerations apply in particular to C = P-Mod for any ring R, and 
thus the study of injective modules is reduced to the study of nonsingular injective 
modules over a regular self-injective ring or, equivalently, to the study of spectral 
categories. Both methods lead to situations that are now well understood. 

We refer the reader to Renault [29], Goodearl and Boyle [18] and Goodearl's 
books [16] and [17] for the study of nonsingular injective modules over self-injective 
regular rings and to Gabriel and Oberst [14], Roos [31], [32], Warfield [34], 
Popescu [27] and Facchini [2], [3], [5] for the study of spectral categories. In parti
cular we want to point out the dimension theory for the nonsingular injective modules 
in [18], the decomposition into types according to von Neumann and Murrays 
classification in [32] and [18], the decomposition of a spectral category into a discrete 
and a continuous part in [14], the study of the lattice of subobjects in a spectral 
category in [32] and the study of spectral categories via enriched category theory and 
topos theory in [5]. 

?. The direct approach 

In this section we show how it is possible to give a structure of spectral category 
to algebraically compact modules. 

Let C be any additive category (i.e., C is preadditive and has finite coproducts.) 
A (two-sided) ideal I in C is a function which assigns to each ordered pair (A, B) 
of objects of C a subgroup I(A, B) of Homc (A, B) such that the following property 
holds: if / : A -> B, g: B -> C, h: C -• D are morphisms of C and g el(B, C), then 
hgfel(A,D). 

Let I be an ideal in C. Then the factor category of C modulo I is defined in 
the following way: the objects of C/I are the objects of C (if A is an object of C, 
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then the same object considered as an object of C/I will be denoted by [A]); if [A] 
and [B] are objects of C/I, then Homc / / ([A] , [B]) = Homc (A, B)Jl(A, B). 

It is easy to verify that C/I is an additive category; moreover there is a natural 
functor C -> Cjl that is the identity on objects and the reduction modulo I(A, B) 
on morphisms A -> B. 

Given an additive category C, the Jacobson radical J(C) of C is the ideal in C 
defined as follows: if A and B are objects of C and p: A © B -> A and i: B -> A © B 
are the canonical projection and the canonical injection, set J(C) (A, B) = 
= {fe Homc (A, B) \ ifp e J(Endc (AL © B))}, where J(Endc (A © B)) denotes the 
Jacobson radical of the ring Endc (A © B). It is possible to verify that J(C) is really 
an ideal in C and that it is the unique ideal I in C such that I(A, A) is the Jacobson 
radical of the ring Homc (A, A) for every object A of C. For the Jacobson radical 
of a category we refer the reader to [23] and [21]. 

Let us go back to algebraically compact modules. Let A be the full subcategory 
of K-Mod whose objects are all algebraically compact left K-modules. Since the direct 
sum of two algebraically compact left K-modules is algebraically compact, the cate
gory A is additive and has a Jacobson radical J(A). 

Theorem 7. Let A be the full subcategory of R-Mod of all algebraically compact 
modules, J(A) its Jacobson radical and Ajj(A) the factor category. Then AjJ(A) 
is a spectral category. 

A direct proof of Theorem 7 will appear in [7]. Note that A is not an abelian 
category in general, but that Ajj(A) is a Grothendieck category. 

We briefly describe some properties of the category AjJ(A). The monomorphisms 
in Ajj(A) are all of type [ / ] : [A.] -> [B] where/: A -> B is a splitting monomorphism 
in K-Mod [here if A, B are objects of A, and / : AL -> B is a morphism in A, then 
[A], [B], [ /] are their images in AjJ(A), in particular [ / ] = / + J(A), (A, B) e 
e HomAjJ(A)([A], [B]).] If/: A -> B is a morphism in A, then the kernel of [ / ] : [A] -> 
-> [B] can be constructed in the following way: since EndA/J(A)[(A © Bj] = 
= EndR (A © B)Jj(EndR (A © B)) is a von Neumann regular ring (Theorem 4), 
there exists g: B -> A such that [ /] = [fgf]; the idempotent [gf] e 
e Endjj (A)/J(EndR (A)) can be lifted to an idempotent e e End^ (A) (Theorem 4). 
Then the subobject (direct summand) [(1 — e) A] of [A] is the kernel of [ / ] : [A ] -> 

Given a family {AA | X e A} of algebraically compact modules, the coproduct 
of the [AA], X e A, in AjJ(A) is the image in AjJ(A) of the pure-injective envelope 
of the direct sum of the A/s: ®[AX] = [P£(®AA)]. Finally, a generator in AjJ(A) 

x x 
is given by the image in AjJ(A) of the pure-injective envelope of the direct sum of 
a family of representatives (up to isomorphism) of all modules of cardinality 
= max{K0, \R\}. 

For a similar use of factor categories (modulo the Jacobson radical) we refer 
the reader to Harada's book [21]. 
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4. The approach via the functor category 

In this section we consider a method of rendering algebraically compact modules 
injective in a suitable ambit. It is due to Gruson and Jensen [19], [20]. 

Consider the category Pf(P) of all finitely presented right P-modules, regarded 
as a full subcategory of Mod-R. The additive functors of Pf(K) into the category Ab 
of all abelian groups are the objects of a category D(R). The morphisms in D(R) 
are the natural transformations between two functors. The functor category D(R) 
turns out to be a Grothendieck category. 

Two important functors are defined: the first one is the functor ®R : R-Mod -> 
-> D(R) which maps the left K-module RM into the functor — ®RM (this is an object 
of D(R)); the second one is the functor "evaluation in K" eR: D(R) -> K-Mod which 
maps the functor F: Pf(K) -> Ab into F(R). [The abelian group F(R) can be regarded 
as a left P-module in the following way: if re R and x e F(R), define rx = F(fir) (x), 
where //r: R -> R is the left multiplication by r, fir: 11-> rt, so that F(//r): F(P) -• F(R) 
is a homomorphism of abelian groups, and F(jnr) (x) is an element of F(P).] One 
obtains that ®R is a left adjoint for eR. The fundamental result for the study of 
algebraically compact modules is the following 

Theorem 8. Let F be an object of D(R). Then F is injective in D(R) if and only if F 
is naturally isomorphic to — ®#M for some algebraically compact left K-module M. 

Now we may study an algebrically compact module M by passing to the functor 
— ®RM: Pf(R) -> Ab. This turns out to be an injective object in D(R), which is 
a Grothendieck category, so that we can pass to the spectral category Spec D(R), 
study the object in this category, and then bring back the information obtained in 
this way to the algebraically compact module M. 

It is possible to prove that the category Spec D(R) and the category A\J(A) 
of § 3 are equivalent, and this yields a second proof of Theorem 7. 

5. The functor ring 

We now consider a second technique of making the algebraically compact 
modules injective. It is based on Gruson's and Jensen's results (§ 4) and a result 
in Gabriel's thesis [13, Chap. II, § 1]. This technique was employed in a different 
problem by Fuller [11], [12]. I am grateful to Robert Wisbauer, who suggested to 
me the possibility of applying this idea in our context. 

Let JR be a ring with identity and {Ux \ I e A} a set containing one isomorphic 
copy of each finitely presented right K-module. Set UR = © Ux and define 

keA 

S = {j: UR - UR \f(Ux) = 0 a.e.} £ End {UR) 
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where a.e. means for all but a finite number of k e A. It is obvious that S is a subring 
of End (UR). In general S has not an identity, but it has enough idempotents [11]: 
a ring Tis a ring with enough idempotents if there is an orthogonal set of idempotents 
{ex 11 e A} in Tsuch that T = © Tex = © exT(for our ring S it is sufficient to take 

keA keA 

the idempotents for the decomposition © UA.) The ring S si called the functor ring 
keA 

of the finitely presented right R-modules. 

Now let T be any ring with enough idempotents, let T-Mod be the category of 
all left T-modules, and let T-ModA be the full subcategory of F-Mod whose objects 
are the T-modules M with the property that for every x e M there exists an idempotent 
e = e2 e R such that x = ex. 

The category T-ModA contains r Tand all submodules, factor modules, and direct 
sums of its membeis. There is a slight difference for direct products though. The 
direct product of {My | y e F} in F-ModA is not the ordinary cartesian product 
Y\ My, but rather its submodule f ] A My = [x e Y[ My | x = ex for some idempotent 
yeT yeT yeT 

e = e2 e R}. Of course © My c Y\A Mx c Y\ ^v> an<^ t n e injections and projections 
are the usual ones. yef yeF yer 

Proposition 9. Let R be a ring with identity, and let S be the functor ring of the 
finitely presented right K-modules. Then the categories 5-ModA and D(R) are equi
valent. 

The functors T: 5-ModA -> D(R) and V: D(R) -• S-ModA that give the equi
valence are defined as follows on objects: 

Given any object SM in 5-ModA, T(SM) is the functor Pf(R) -* Ab that maps 
the finitely presented module Ux into the abelian group exM; 

Given any object F: P/(K) -> Ab in D(R), then V(F) = © F(UA) with the 
keA 

5-module structure defined by / . x = ( £ (F(fflX)) (xx)X for / - - ( / J e S s 
keA 

£ End ( © Ux) and x = (xx) e ®F(UX) [Note that if fa: Ux -> U^ then F(fa): 
keA k 

FyUx) - . F(UJ, so that F(fa) (xx) e F(UM). Since fa = 0 for almost all 1, 
F(fa) (xx) = 0 for almost all A, so that £ (F(fa)) (xx) e F(U,).] 

keA 

The next Corollary follows immediately from Theorem 8 and Proposition 9. 
Note that U is a End (UK)-R-bimodule, so that if RM is any left i*-module, U ® RM 
is a left End (UR)-module, hence a left S-module by restriction of scalars. Moreover 
U® R Mis in5-Mod A . 

Corollary 10. Let N be a module in S-ModA. Then N is injective in 5-ModA 

if and only if it is isomorphic to U ® RM for some algebraically compact left R-
module M. 
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6. Algebraically compact modules over valuation rings 

In § 3 we saw that it is possible to give a structure of spectral category to the 
algebraically compact modules by constructing the category AJJ(A), the full sub
category A of algebraically compact modules modulo its Jacobson radical. In § 4 
we saw that AJJ(A) is equivalent to the spectral category of the Grothendieck 
category D(R) of all additive functors from finitely presented modules to abelian 
groups. In § 5 we saw that AjJ(A) is equivalent to the spectral category of the category 
S-ModA for a suitable ring S with enough idempotents, the functor ring of the 
finitely presented modules. Now we apply the results of the previous sections to the 
study of algebraically compact modules over valuation rings. This part of the paper 
is a survey of a research that is now in progress, and its form is still unfinished. 

A valuation ring is a commutative ring with identity such that for any two 
elements r and s, either r divides s or s divides r. Algebraically compact modules 
over valuation domains already received particular attention in Warfield's paper 
[35]. In this section we apply Gruson's and Jensen's techniques (§ 4) to the study of 
the structure of these modules. 

Let R be a valuation ring and let R* be the totally ordered monoid of all the 
principal ideals of R, i.e., R* = {Rr | r e R} totally ordered by reverse inclusion and 
with multiplication defined by r*s* = (rs)* for r*, s* e R*; here we set x* = Rx 
for all x e R. When R is a valuation domain, R* is isomorphic to G+ u {oo} where G+ 

is the positive cone of the valuation group G of R. 
If M is a module over a valuation ring R, let L(M) denote the lattice of all its 

submodules: L(M) = {N | N = M}. An R*-filtration for M is an antihomomorphism 
of bounded ordered sets R* -» L(M) compatible with the module structure of M. 
Hence an K*-filtration for M is a mapping 0: R* -> L(M) such that: 

(i) If r* = s* (that is, if Rr 2 Rs), then 0(r) 2 0(s); 

(ii) 0(0*) = {0}, 0(1*) = M; 

(iii) r 0(s*) =" 0(r*s*) for r, s e R. 

If 0 is an R*-filtration for M, we say that the ordered pair (M, 0) is an R*-filtered 
module (or simply a filtered module). 

For any .R-module M there is a natural filtration vM for M given by vM(r*) = 
= rM for all r e R. More generally, for any M = N there is a filtration fiMN for M 
given by t*M,N(r*) = rN n M for all r e R. All nitrations are of this type: 

Lemma 11. Let R be a valuation ring. For any filtered K-module (M, 0) there 
exists an algebraically compact module N such that M ^ N and 0 = nMtN. An 
K-module homomorphism / : M -> N, where (M, 3>), (N, i//) are filtered K-modules, 
is an R*-filtered homomorphism if f(0(r*)) .=" i/f(r*) for all r*e.R*. Then _R*- filtered 
K-modules and K*-filtered homomorphisms form a preabelian category K-Filt, which 
is complete and cocomplete (i.e., with limits and colimits). 
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The reader expert in abelian groups will recognize the resemblance between 
this theory and the theory of valuated groups due to Richman and Walker [30] and 
others. Valuated groups arise in a completely different context. 

There is a connection between the category R-Filt of filtered R-modules and 
Gruson's and Jensen's category D(R) (§ 2). Define a functor T: R-Filt -> D(R) in 
the following way: if (M, <£) is an object of R-Filt, let T(M, $):Pf(R) -> Ab be the 
functor such that T(M, <P) (RJrR) = M/#(r*); iff: (M, <£) -> (N, i//) is a morphism 
in R-Filt, let T(f): T(M, <P) -> T(N, \J/) be the natural transformation which assigns 
to each object RjrR of Pf(R) the group homomorphism T(f)R/rR: Mj$(r*) -> 
-> Nj\j/(r*) induced by / : M -> N. Note that we have defined functors Pf(R) -> Ab 
not on all of Pf(R), but only on its objects RjrR (r e R); but this does not cause 
problems because every finitely presented R-module (when R is a valuation ring) 
is isomorphic to a direct sum of modules of type RjrR (r e R) [36]. 

Lemma 12. The functor T: R-Filt -> D(R) is full and faithful. 

By Lemma 12 R-Filt is equivalent to a full subcategory of D(R), and it is possible 
to prove that R-Filt is equivalent to the full subcategory of D(R) whose objects are 
the epic-preserving functors, i.e., the functors F: Pf(R) -> Ab such that F(/) is an 
epimorphism in Ab whenever/is an epimorphism in Pf(R). 

The category R-Filt is a preabelian category, but it is not an abelian category 
(for instance a monomorphism which is also an epimorphism need not be an iso
morphism), and it is not difficult to show that the injective objects of K-Filt are 
exactly the algebraically compact R-modules endowed with their natural filtration. 
Again we have been able to "modify" the category K-Mod (in this case by putting 
nitrations on modules), so that the injective objects of the modified category (the 
category R-Filt now) are exactly the algebraically compact R-modules. Here it is 
even possible to define a sort of "injective envelope" in the preabelian category R-Filt 
and to show that every algebraically compact module over a valuation ring R is the 
injective envelope (in R-Filt) of a direct sum of cyclic modules. These ideas will 
be developed in a forthcoming paper [6]. 
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